
Least Squares Motion Estimation Algorithm in the Compressed DCT Domain
for H.26x / MPEG-x Video Sequences

Nuno Roma Leonel Sousa
Nuno.Roma@inesc-id.pt las@inesc-id.pt

Instituto Superior Técnico / INESC-ID
Rua Alves Redol No.9, 1000-029 Lisboa - PORTUGAL

Abstract

A new compressed domain motion estimation algorithm that
makes use of the DCT coefficients directly obtained from the
H.26x or MPEG-x video stream is presented. The proposed
algorithm is based on an iterative scheme that computes the
new motion vectors by applying a least squares estimation
technique. To reduce its computational effort, the algorithm
may consider only an arbitrary subset of non-null DCT co-
efficients. The performance of the algorithm was assessed
in a DCT domain H.263 video transcoder, where the ob-
tained motion vectors provided the means to significantly
enhance the quality of the temporal prediction scheme with
a consequent reduction of the required bit-rate.

1. Introduction
Video transcoding is an increasingly popular technique to
adapt or change the characteristics of a given precoded
video stream, such as its bit-rate, its spatial or temporal res-
olution or even the coding standard, to better suit the con-
straints and requirements of different transmission systems
or terminal devices. To minimize the computational com-
plexity of these systems, several techniques have been de-
veloped and proposed to directly operate in the Discrete Co-
sine Transform (DCT) domain [1]. With such algorithms,
data can be processed in the same domain as it is received
from the encoding system, thus offering significant advan-
tages both in terms of computational complexity and distor-
tion reduction [1].

One of these techniques that has been given more atten-
tion is Motion Estimation (ME) in the transform domain.
In fact, many video processing systems require the compu-
tation of new Motion Vectors (MV)s that will be used to
encode the new video stream. Most ME techniques that
have been proposed up to now reuse the MVs decoded from
the received video stream to estimate these new MVs by us-
ing several possible schemes, such as the simple mean, the
weighted average, the median, etc. [2, 3, 4]. However, it
has been observed that most of these schemes often require

a post-processing re-estimation stage to refine the estimated
MVs. Moreover, few algorithms have been presented to es-
timate entirely new MVs in the absence of any precoded
MV (e.g. INTRA to INTER frame conversion) or when
those MVs do not have any correlation with the motion ac-
tivity in the new coded frame (e.g. logo insertion [5]).

One of these ME algorithms was proposed by Koc et.
al. [6] and is based on the application of the DCT pseudo-
phases techniques, by employing the sinusoidal orthogonal
principle, to extract the shift information from the pseudo-
phases hidden in the 2D DCT coefficients of the second
kind (DCCT-II), decoded from the received stream. How-
ever, this algorithm presents a significant computational
complexity and it makes use of other kinds of the discrete
sine and cosine transforms of the processed blocks that can-
not be directly obtained from the H.26x or MPEG-x video
stream. In fact, not only does it require the computation of
the discrete cosine transform of the first kind (DCCT-I) of
the blocks under processing, but it also needs to compute
the four variations of the discrete sine/cosine trigonometric
transforms of the second kind: DCCT-II, DCST-II, DSCT-II
and DSST-II. Moreover, all these 2D transformations must
be computed for an image area corresponding to the mac-
roblock under processing, which implies a further compu-
tational effort in order to calculate the coefficients obtained
from the concatenation of the four decoded blocks.

Other approaches were also applied in photogrammet-
ric techniques for image registration of JPEG compressed
aerial photos [7] and tried to apply matching techniques us-
ing convolution in the DCT domain. Unfortunately, the ex-
perimental results demonstrated that not only does this al-
gorithm present a poor precision in the obtained values, but
it also suffers from a sign ambiguity in the disparity result.

Consequently, a different approach is presented in this
paper to perform the estimation of new MVs using the DCT
coefficients directly obtained from the H.26x or MPEG-x
video stream. The proposed algorithm is based on an it-
erative scheme that estimates the new MVs by applying a
Least Squares Estimation (LSE) technique and following an
approach somewhat similar to the one frequently adopted

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357239944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in image registration techniques [7]. Moreover, to reduce
its computational effort, the algorithm may consider only
an arbitrary subset of non-null DCT coefficients. To as-
sess its performance, the proposed algorithm was incorpo-
rated in a H.263 video transcoder [5] that performs a simple
down-scale operation in the DCT domain. The experimen-
tal results demonstrated that the obtained MVs provide the
means to significantly enhance the quality of the prediction
scheme with a consequent reduction of the required bit-rate.

2. Linear Least Squares Estimation
The LSE method is frequently used to fit a set of observed
points to a given theoretical model with a set of adjustable
parameters. One of the most popular applications of this
method is found in linear regression, to fit a set of M data
points (xi, yi) to a straight-line model:

y(x) = y(x; a, b) = a + bx + n(x), (1)

where n(x) is the Gaussian noise introduced by the sam-
pling procedure.

The solution of this optimization process is often found
by minimizing a merit function that estimates the error be-
tween the theoretical model and the observed samples:

ε2(a, b) =
M∑
i=1

(yi − a − bxi)
2 (2)

At this minimum, the derivatives of ε2(a, b) with respect
to a and b will vanish:

∂ε2(a, b)
∂a

= −2
M∑
i=1

(yi − a − bxi) = 0 (3)

∂ε2(a, b)
∂b

= −2
M∑
i=1

xi (yi − a − bxi) = 0 (4)

and the optimal values for the parameters a and b can be
found by solving a linear system of equations.

Models like this, where there is a linear function in the
estimated parameters, are denoted by linear models. On the
other hand, when the models are not linear in the parame-
ters, the solution can not be found by simply solving a linear
system of equations. In such cases, the model is often de-
noted by:

y = f(x; θ) + n(x), (5)

where f(x; θ) is a known function, that is non-linear in the
parameter θ. The least squares criterion for these cases be-
comes:

ε2(θ) =
M∑
i=1

(yi − f(xi, θ))
2
. (6)

By minimizing the derivatives of ε2 with respect to the pa-
rameters θj , one obtain:

∂ε2(θ)
∂θj

= 0 (7)

⇔ −2
M∑

i=1

(yi − f(xi, θ))
∂f(xi, θ)

∂θj

∣∣∣∣
θ=θ0

= 0 (8)

Since f(x, θ) is non-linear in the parameter θj , these
equations are usually quite difficult to solve and this proce-
dure is rarely used for non-linear cases. In such non-linear
models, a Taylor series expansion is often used to approx-
imate the non-linear regression model to a simpler model
defined with linear terms and then employ the LSE method
to estimate the parameters.

3. Least Squares Motion Estimation
The ME approach used in H.26x and MPEG-x video cod-
ing standards has a lot in common with the non-linear LSE
described above. The main objective of such procedure is
to find the best predicting macroblock in a search region
defined in the previous image s(x1, x2) that best matches
the macroblock of the current image r(x1, x2) under pro-
cessing. Since most video coding standards restrict this dis-
placement to a simple translational model, the output of this
algorithm will be a motion vector v = (v1, v2) that defines
the distance between the macroblock in the current image
r(x1, x2) and the best predicting macroblock in the previ-
ous image s(x1 + v1, x2 + v2).

However, although this translational model can be de-
scribed with a simple linear equation:

y = x + v (9)

the procedure to find the best motion vector associated to all
pixels of a given macroblock is highly non-linear. Hence,
the non-linear LSE model, as described in eq. 5, proves to
be quite suitable to be adopted and applied to the current
and previous images macroblocks:

r(x1, x2) � s(x1 + v1, x2 + v2). (10)

By decomposing this expression in a first-order Taylor
series expansion:

r(x1, x2) � s(x1 + v0
1 , x2 + v0

2)+

+
2∑

n=1

∂s

∂vn

∣∣∣∣
v=v0

(
vn − v0

n

)
(11)

� s(x1 + v0
1 , x2 + v0

2)+

+
∂s

∂v1

∣∣∣∣
v=v0

(
v1 − v0

1

)
+

∂s

∂v2

∣∣∣∣
v=v0

(
v2 − v0

2

)
, (12)

the desired displacement parameter v can be estimated by
following an iterative procedure and by computing the sev-
eral increments dvi = vi − vi−1, where v0 = (0, 0). The
best matching macroblock is obtained by minimizing the
prediction error e(x1, x2):

e(x1, x2) = r(x1, x2) − s(x1 + vi
1, x2 + vi

2) �

� ∂s

∂v1

∣∣∣∣
v=vi−1

dvi
1 +

∂s

∂v2

∣∣∣∣
v=vi−1

dvi
2 . (13)

The equation above can be represented as a linear system
with M equations and 2 unknowns (dvi

1 and dvi
2), where M

denotes the number of considered samples:

e = js · dvi . (14)

In this equation, e denotes a M × 1 vector obtained by re-
arranging the columns of the difference matrix e = r − s:

e =

...
r(xl, xc) − s(xl + vi

1, xc + vi
2)

...

M×1

(15)

js is a M × 2 matrix whose columns contain the partial
derivatives of s disposed in major column order:

js =

...
...

∂s
∂v1

∂s
∂v2

...
...

M×2

(16)

and dv is the desired displacement matrix:

dvi =
[

dvi
1

dvi
2

]
2×1

. (17)

Eq. 14 can be solved by simple algebraic manipulation:

e = js · dvi (18)

⇔ jsT · e = jsT · js · dvi (19)

⇔ dvi =
(
jsT · js

)−1

· jsT · e (20)

At the end of each iteration the partial displacement v
is updated: vi = vi−1 + dvi and the displaced image
s is obtained by motion compensation and interpolation:
si(x1 + vi

1, x2 + vi
2). The algorithm is then repeated by

computing the value of ∂s
∂v

∣∣
v=vi; s=si .

This iterative process will continue until an arbitrary stop
condition is met, e.g.:

‖vi − vi−1‖ < δ (21)

4. Least Squares Motion Estimation in
the DCT domain

By denoting the DCT of a given signal A = DCT (a) =
C · a · CT , where:

[C]m,i � C (m, i) =

√
2
N

ξ (m) cos

(
m
(
i + 1

2

)
π

N

)
,

(22)

and ξ (0) =
√

1
2 and ξ (m) = 1 for m > 0, the described

algorithm can be easily applied in the compressed DCT-
domain if one takes into account the orthonormal properties
of the DCT:

C = C∗; C.CT = C.C−1 = I ⇒ C−1 = CT (23)

In this case, eq. 13 will become:

E = R − S � ∂S

∂v1
dvi

1 +
∂S

∂v2
dvi

2 (24)

⇔ E = Js · dvi (25)

⇔ dvi =
(
Js

T · Js

)−1

· Js
T · E (26)

where E = DCT (e) is a M × 1 vector obtained by re-
arranging the columns of the difference matrix in the trans-
form domain:

E =

...
R(k1, k2) − S(k1, k2)

...

M×1

. (27)

Js is a M × 2 matrix whose columns contain the partial
derivatives of S disposed in column form:

Js =

...
...

∂S
∂v1

∂S
∂v2

...
...

M×2

(28)

and dv is the desired displacement matrix:

dvi =
[

dvi
1

dvi
2

]
2×1

. (29)

4.1. Computing the image derivative in the
DCT domain

Despite the apparent simplicity of the described procedure,
the practical interest of the proposed algorithm will greatly
depend on the possibility and the easiness of computing the
derivatives of S from the input coded image.

Let us consider the displacement of a given image by a
small motion vector v = (v1, v2). According to the defini-
tion of the inverse DCT, s(y1, y2) = s(x1 + v1, x2 + v2)
will be given by:

s(y1, y2) =
N−1∑
m1=0

C(m1, y1)
N−1∑
m2=0

C(m2, y2) · S(m1, m2)

(30)

By taking into account the chain rule of the derivatives
of s (y1, y2):

∂s (y1, y2)
∂v1

=
∂s

∂y1
· ∂y1

∂v1
=

∂s

∂y1
· 1 =

∂s (y1, y2)
∂y1

(31)

one obtain:

∂s(y1, y2)
∂y1

=
N−1∑
m1=0

∂C(m1, y1)
∂y1

N−1∑
m2=0

C(m2, y2) · S(m1, m2)

(32)

=
N−1∑
m1=0

P (m1, y1)
N−1∑
m2=0

C(m2, y2) · S(m1, m2).

(33)

In matrix form:[
∂s(y1, y2)

∂y1

]
= P · S · CT (34)

where

P � P (m1, y1) =
∂C(m1, y1)

∂y1
=√

2
N

ξ (y1)
(
−m1π

N

)
sin

(
m1

(
y1 + 1

2

)
π

N

)
. (35)

Likewise, it can be shown that[
∂s(y1, y2)

∂y2

]
= C · S · PT . (36)

Consequently, in the transform domain, one have:[
∂S

∂v1

]
= C

[
∂s

∂v1

]
CT = C P S CT CT = D1 S D2

T

(37)[
∂S

∂v2

]
= C

[
∂s

∂v2

]
CT = C C S PT CT = D2 S D1

T

(38)

where D1 = CP and D2 = CC are constant N × N
matrices that can be pre-computed and stored in memory.

Step 0: Read the macroblocks of the current (R) and previ-
ous (S) images from the coded video sequence:

R = DCT (r (x1, x2))
S = DCT

(
s
(
x1 + v0

1 , x2 + v0
2

))∣∣
(v0

1 ,v0
2)=(0,0)

Step 1: Compute the prediction error in the DCT domain:
E = [R − S]M×1 , by considering vi

Step 2: Compute the partial derivatives of S:

Js =
[

D1 · S · D2
T

... D2 · S · D1
T

]
M×2

Step 3: Compute the displacement increment dvi:

dvi =
[

dvi
1

dvi
2

]
2×1

=
(
Js

T · Js

)−1

· Js
T ·E

Step 4: Update the motion vector vi:
vi = vi−1 + dvi

Step 5: Evaluate the stop condition:
If ‖vi − vi−1‖ < δ, stops the algorithm and sets v = vi;
otherwise, re-compute S|v=vi and return to Step 1.

Figure 1: Iterative LSE algorithm of the motion vectors in
the DCT domain.

4.2. Algorithm
As a consequence, the iterative least squares motion estima-
tion algorithm in the DCT domain can be described by the
procedure presented in figure 1.

4.3. Scalable Computational Complexity
In most video coding standards, temporal redundancies are
exploited by applying a motion compensation algorithm to
the disjoint set of macroblocks that compose each frame.
In turn, each macroblock is composed by four N × N pix-
els luminance blocks, with N = 8, thus corresponding to an
image area with 256 = (16 × 16) pixels. To exploit the spa-
tial redundancies present in each image, the DCT is applied
to each of these (8 × 8) blocks and the obtained coefficients
are quantized and transmitted to the decoding system.

The main advantage of using the DCT is that it concen-
trates most of the pixels energy in the lower frequency co-
efficients of the coded block. As a consequence, most high
frequency coefficients are set to zero after the quantization
step. This fact conducts to significant advantages when the
proposed motion estimation algorithm is performed in the
DCT domain.

Most of the computational effort of the proposed algo-
rithm is spent in the computation of the partial derivatives
matrix js. As it was described in section 3, when this algo-
rithm is applied in the pixel domain, all N × N pixels of
the four luminance blocks that compose each macroblock
should be taken into account in the iterative estimation pro-
cedure. Consequently, the number of considered samples
will be M = 4 × (8 × 8) = 256 and most of the computa-

tional effort is spent in the calculation of the (256 × 2) sized
js matrix, which implies the computation of 16 (N × N)
matrix multiplications.

In contrast, when the proposed estimation algorithm is
applied in the DCT domain, only the non-null coefficients
need to be taken into account, thus leading to a significant
smaller number of considered samples M . This fact can
even be used to scale the computation effort that should be
spent by the algorithm. As it was suggested by Reeves [7],
a subset of the (N × N) DCT coefficients of each block
can be selected using a zig-zag pattern similar to the one
that is adopted by most coding standards, thus discarding
the remaining high frequency coefficients but still keeping
the information that is more relevant for the image structure.
Moreover, since higher frequencies will contain more noise,
discarding those high frequency DCT coefficients may even
improve the convergence of the method [7]. Furthermore,
to avoid the interference of any eventual difference of the
global luminance level of the two considered frames, the
DC coefficient of the blocks should not be considered.

5. Application: Motion Re-Estimation
in DCT Domain Scaled Video

To evaluate the proposed algorithm, a Least Squares Motion
Estimation (LSME) module was incorporated in a H.263
DCT domain video transcoder that performs a 1

2 × 1
2 down

scaling operation, as described by Chang [8]. As a conse-
quence, the set of four luminance blocks bi,j i, j ∈ {1, 2}
that compose each macroblock of the original frame will be
represented by a single block b̂ in the scaled frame:

b̂ = h1b11w1 + h2b21w1 + h1b12w2 + h2b22w2 (39)

with

h1 = wT
1 =

[
f
∅
]

and h2 = wT
2 =

[∅
f

]
, (40)

where ∅ is a (N/2 × N) null matrix and f is given by:

f =
1
2
·
[

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

]
N/2×N

(41)

However, although hi and wi matrices are sparce, Hi =
DCT (hi) and Wi = DCT (wi) are not. Consequently,
a different formalization based on the decomposition pro-
posed by Shibata [9] was adopted, which minimizes the
number of operations without any loss in the image qual-
ity. By denoting F = f · CT , it can be shown [9] that the
scaled macroblock may be obtained by concatenating the

several partial matrices represented in eq. 42.

B̂ = C ·

F ·
"
B11 · F T

... B12 · F T

#
N,N

. .

F ·
"
B21 · F T

... B22 · F T

#
N,N

 · CT (42)

The same scale factor was then applied to the decoded
motion vectors v of the original video sequence, in order
to compute an initial estimate of the motion vector of each
scaled macroblock. Several different approaches have been
proposed in the last few years [3] [4]. In particular, it was
adopted the Simple Motion Estimation Scaling (SMES) al-
gorithm proposed by Liang [3], which takes into account
the spatial activity of the original macroblocks in the com-
putation of the scaled motion vector v̂:

v̂ =
1
ρ
·
∑I

i=1

∑J
j=1 vi,j · αi,j · βi,j∑I

i=1

∑J
j=1 αi,j · βi,j

(43)

where αi,j is the spatial activity of macroblock (i, j), mea-
sured by the number of non-null AC coefficients, βi,j is
the area (in terms of number of pixels) of the original mac-
roblock (i, j) involved in the composition of the transcoded
scaled macroblock and ρ is the scale factor. For the con-
sidered case, it was assumed that ρ = 2, βk = N2 and
I = J = 2.

The motion vector v̂, obtained from eq. 43, was then
used as a coarse estimate of the desired motion vector of
the scaled macroblock. This estimate, as well as the scaled
versions of the current and previous frames resulting from
the application of eq. 42, were then applied to the proposed
LSME algorithm (fig. 1) to obtain an accurate refinement
of the desired motion vector. This algorithm was imple-
mented so that a maximum of 3 iterations are performed to
converge to the final motion vector, unless the constraints
corresponding to the adopted stopping condition are met:
‖vi − vi−1‖ < δ, where δ = 0.1.

6. Experimental Results
To assess the performance of the proposed LSME algo-
rithm, a simpler version of the H.263 video transcoding
system for DCT domain video scaling described above was
also implemented [5], without the developed least squares
motion re-estimation module incorporated in the coding
loop. In such simpler transcoder, the scaled motion vectors
obtained with eq. 43 were directly considered in the coding
algorithm, without any further refinement stage.

The obtained experimental results are presented in ta-
ble 1, considering a set of 300 frames of several CIF video
sequences characterized by a considerable amount of move-
ment and two distinct quantization steps: Q=4 and Q=8. In

Table 1: Bit-rate and PSNR measures obtained with the
considered transcoding systems using the proposed LSME
and SMES algorithms.

Video Q=4
Sequence PSNR [dB] ∆PSNR [dB] ∆Bits

Football 37.45 +0.05 -10.52%
Stefan 37.25 +0.00 -6.62%
Carphone 38.58 +0.06 -4.93%
Table-Tennis 37.44 -0.01 -3.08%
Mobile 36.21 +0.04 -0.50%

Video Q=8
Sequence PSNR [dB] ∆PSNR [dB] ∆Bits

Football 33.22 +0.10 -12.09%
Stefan 31.74 +0.03 -7.37%
Carphone 34.23 +0.07 -5.24%
Table-Tennis 33.29 +0.02 -3.70%
Mobile 30.30 +0.06 -1.31%

this table, it is presented the PSNR quality measures ob-
tained with the simpler transcoding system using the SMES
algorithm and the corresponding gains, both in terms of the
PSNR and bit-rate, that were obtained with the introduction
of the proposed LSME refinement module. To emphasize
the direct influence of the proposed LSME module on the
output bit-rate, the output buffer controller of the encoding
system was also disabled, so that the obtained differences
of the amount of bits required to encode each frame can be
directly attributed to the influence of the developed motion
re-estimation module. As a consequence, the encoded video
sequences presented quite similar PSNR measures, since all

8

24

40

56

0 20 40 60 80 100 120frame

kBits

SMVS LSME

(a) Stefan video sequence (Q=8).

8

24

40

56

72

0 10 20 30 40 50 60 70 80frame

kBits

SMVS LSME

(b) Football video sequence (Q=4).

Figure 2: Number of bits required to encode each frame
using the proposed LSME and the SMES algorithms.

prediction differences could be encoded with the maximum
resolution for the considered quantization steps. The charts
presented in figure 2 illustrate the difference between the
required number of bits to encode each frame using the two
considered motion estimation approaches.

As it can be seen from table 1 and figure 2, a further re-
duction of the number of bits required to encode each video
sequence can be obtained with the proposed LSME algo-
rithm. For the considered test sequences, this reduction was
more significant in video sequences with more amount of
movement and achieved values up to 12%.

7. Conclusion
A new compressed domain ME algorithm was proposed.
This algorithm is based on an iterative scheme that esti-
mates the new MVs by applying a LSE technique. To do
so, it only uses an arbitrary subset of non-null DCT coeffi-
cients, directly obtained from the H.26x or MPEG-x video
stream. The proposed algorithm was then incorporated in a
H.263 video transcoder that performs a simple down-scale
operation in the DCT domain. The experimental results
demonstrated that the obtained MVs provide the means to
significantly enhance the quality of the temporal prediction
scheme with reductions up to 12% in the obtained bit-rate.

References

[1] H. Sun, T. Chiang and X. Chen, Digital Video Transcoding
for Transmission and Storage, CRC Press, 2004.

[2] Jie Chen, Ut-Va Koc and K. J. Ray Liu, Design of Digital
Video Coding Systems - A Complete Compressed Domain Ap-
proach, Marcel Dekker, 2002.

[3] Y. Q. Liang, L. P. Chau and Y. P. Tan, “Arbitrary downsiz-
ing video transcoding using fast motion vector re-estimation,”
IEEE Signal Processing Letters, vol. 9, no. 11, pp. 352–355,
Nov. 2002.

[4] Y.-P. Tan, Y. Liang and H. Sun, “On the methods and per-
formances of rational downsizing video transcoding,” Signal
Processing: Image Communication, vol. 19, pp. 47–65, 2004.

[5] N. Roma and L. Sousa, “Fast transcoding architectures for
insertion of non-regular shaped objects in the compressed dct-
domain,” Signal Processing: Image Communication, vol. 18,
no. 8, pp. 659–683, Sep. 2003.

[6] U.V. Koc and K. Ray Liu, “DCT-based motion estima-
tion,” IEEE Transactions on Image Processing, vol. 7, no. 7,
pp. 948–965, Jul. 1998.

[7] R. Reeves, Image Matching in the Compressed Domain,
Ph.D. thesis, Queensland Univers. of Techn., Australia, 1999.

[8] S.-F. Chang and D. G. Messerschmitt, “Manipulation and
compositing of MC-DCT compressed video,” IEEE Journal
Selected Areas in Comm., vol. 13, no. 1, pp. 1–11, Jan. 1995.

[9] Y. Shibata, Z. Chen and R. H. Campbell, “A fast degradation-
free algorithm for DCT block extraction in the compressed
domain,” in Proc. Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP’99), Mar. 1999, vol. 6, pp. 3185–3188.

