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ABSTRACT 
 
In this article we introduce the notion of -
statistically pre-Cauchy double sequence of fuzzy 
numbers and establish a criterion for arbitrary 
double sequence of fuzzy numbers to be -
statistically pre-Cauchy.   
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INTRODUCTION 
 
Fuzzy set theory, compared to other mathematical 
theories, is perhaps the most easily adaptable 
theory to practice. The main reason is that a fuzzy 
set has the property of relativity, variability, and 
inexactness in the definition of its elements. 
Instead of defining an entity in calculus by 
assuming that its role is exactly known, we can 
use fuzzy sets to define the same entity by 
allowing possible deviations and inexactness in its 
role. This representation suits well the 
uncertainties encountered in practical life, which 
make fuzzy sets a valuable mathematical tool. 
The concepts of fuzzy sets and fuzzy set 
operations were first introduced by Zadeh [35] and 
subsequently several authors have discussed 
various aspects of the theory and applications of 
fuzzy sets such as fuzzy topological spaces, 
similarity relations and fuzzy orderings, fuzzy 
measures of fuzzy events, fuzzy mathematical 
programming. Matloka [20] introduced bounded 
and convergent sequences of fuzzy numbers and 
studied their some properties. Later on sequences 
of fuzzy numbers have been discussed by 
Diamond and Kloeden [15], Nanda [21], Esi [13], 
Dutta [7, 8, 9], and many others. 

A fuzzy number is a fuzzy set on the real axis, 
i.e., a mapping : [0,1]u R which satisfies the 

following four conditions: 
 

(i) u is normal, i.e., there exist an 0x R  such 

that 0 1.u x  

(ii) u is fuzzy convex, i.e. 

 1 min ,u x y u x u y  for all  

,x y R   and for all [0,1] . 

(iii) u is upper semi-continuous. 

(iv) The set 
0

: 0u x R u x  is compact, 

where : 0x R u x  denotes the closure of  

the set : 0x R u x  in the usual topology of 

R. 
 
We denote the set of all fuzzy numbers on R by 
E

1
 and called it as the space of fuzzy numbers. 

-level set u  of 1u E  is defined by: 

})(:{][ tuRtu  if  )10( , 

        })(:{ tuRt  if  )0(  

The set u  is a closed, bounded and non-

empty interval for each 0,1  which is defined 

by u = ,u u .  R can be embedded in 

E
1
, since each r R  can be regarded as a fuzzy 

number, 

                              1)(tr  if  rt  

                                = 0 if  rt  

 
Let W be the set of all closed bounded intervals A 

of real numbers such that 1 2,A A A . Define the 

relation d on W as follows: 
             

1 1 2 2, max ,d A B A B A B . 
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Then ,W d  is a complete metric space (See 

Diamond and Kloeden [14], Nanda [21]). 
 
A fuzzy double sequence is a double infinite array 
of fuzzy real numbers. We denote a fuzzy double 

sequence by mna , where mna  are fuzzy real 

numbers for each ,m n N . The initial works on 

double sequences of real or complex terms is 
found in Bromwich [1].  Hardy [18] introduced the 
notion of regular convergence for double 
sequences of real or complex terms. The works 
on double sequence was further investigated by 
Basarir and Solancan [2], Moricz [23], Tripathy 
and Dutta [31], Tripathy and Sarma [32] and many 
others. 
 
The concept of statistical convergence was first 
introduced by Fast [16] and also independently by 
Buck [3] and Schoenberg [28] for real and 
complex sequences. Further this concept was 
studied by Salat [27], Fridy [17], Cannor [4, 5] and 
many others. 

 

A double sequence of fuzzy number )( klx  is 

called -statistically convergent to L if  
 

  
,

1
lim {( , ) : ( , ) , , } 0jk

m n
j k d x L j m k n

mn
. 

 
where the vertical bars indicate the number of 
elements in the set. 
 
Definition 1: A double sequence of fuzzy 

number )( klx  is called -statistically pre-Cauchy 

if for every 0  there exist )(pp  and )(q  

such that 

2 2,

1
lim {( , ) : ( , ) , , } 0jk pq

m n
j k d x x j m k n

m n

 

In fact, the first order difference operator  can 
be viewed as an infinite triangular matrix as 
follows: 
 

1 1 0 0 0 ...

0 1 1 0 0 ...

0 0 1 1 0 ...

... ... ... ... ... ...

... ... ... ... ... ...

 

          

The fuzzy double sequence by mna  can be 

expressed as an infinite matrix of fuzzy numbers 
as follows: 

    

11 12 13 1

21 22 23 2

31 32 33 3

... ...

... ...

... ...

... ... ... ... ... ...

... ... ... ... ...

n

n

mn n

a a a a

a a a a

a a a a a  

  
Now for any fuzzy double sequence by 

a = mna , we have 

 

11 12 13 1

21 22 23 2

31 32 33 3

... ...1 1 0 0 0 ...

... ...0 1 1 0 0 ...

0 0 1 1 0 ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...

n

n

n

a a a a

a a a a

a a a a a

                                        

=

11 21 12 22 1 2

21 31 22 32 2 3

31 41 32 42 3 4

... ...

... ...

... ...

... ... ... ... ...

... ... ... ... ...

n n

n n

n n

a a a a a a

a a a a a a

a a a a a a . 

          
This approach of construction of difference 
sequences is useful to study some properties of 
the spaces of such sequences. 
 
An Orlicz Function is a function 

),0[),0[:M  which is continuous, non 

decreasing and convex with ,0)0(M  

0)(xM  for 0x  and )(xM  as 

x . 

 
If convexity of M is replaced by 

)()()( yMxMyxM , then it is called a 

Modulus function (see Maddox[22]). An Orlicz 
function may be bounded or unbounded.  

For example, 
pxxM )(  )10( p  is 

unbounded and 
1

)(
x

x
xM  is bounded. 

 
Lindesstrauss and Tzafriri [19] used the idea of 
Orlicz sequence space and introduced the 

sequence space M  as follows: 
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,
||

:)({
1

k

k

kM

x
Mwxxl   

for some 0  

They proved that M  is a Banach space normed 

by: 

1
||

:0inf||)(||||||
1

k

k

kM

x
Mxx  

The space Ml  is closely related to the space pl , 

which is an Orlicz sequence space with 
pxxM )(  for p1 . An Orlicz function M 

satisfies the 2 -condition 2(M  for short) if 

there exist constant 2k  and 00u  such that  

)()2( uKMuM  whenever 0|| uu . Note that 

an Orlicz function satisfies the inequality. 
 

)()( xMxM  for all  with 10 . 

 
The study of Orlicz sequence spaces have been 
made recently by various authors (cf [10], [11], 
[12], [25], [33], [34]). 
 
In [6] Connor, Fridy and Kline proved that a 

bounded sequence )( ixx  is statistically pre-

Cauchy if and only if 0||lim
, nij

ji
n

xx . 

 
We establish the following criterion for arbitrary 
double sequence of fuzzy numbers to be 
statistically pre-Cauchy.  
 
MAIN RESULTS 
 

Theorem 1: Let )( jkxx  be the double 

sequence of fuzzy number and let M be a 
bounded Orlicz function. Then x is -statistically 
pre-Cauchy if and only if  
 

       
2 2,

, ,

( , )1
lim 0

jk pq

m n
j p m k q n

d x x
M

m n
,  

 

for some 0 . 

 
Proof :  Suppose 
 

 
2 2,

, ,

( , )1
lim 0

jk pq

m n
j p m k q n

d x x
M

m n
,  

for some 0 .  For each 0 , 0  and 

Nnm, , we have 

 

 

mpj nqk

pqjk xxd
M

nm , ,
22

),(1
 

 

),(,, ,
22

),(1

pqjk xxdmpj nqk

pqjk xxd
M

nm

 
                                                        

2 2
, , ( , ) ,

( , )1

jk pq

jk pq

j p m d x x k q n

d x x
M

m n
 

                                                       

2 2
, , ( , ) ,

( , )1

jk pq

jk pq

j p m d x x k q n

d x x
M

m n
 

                                             

2 2

1
( ) |{( , ) : ( , ) , , } |jk pqM j k d x x j m k n

m n

0 . 

 
Now suppose that x is -statistically pre-Cauchy 

and that  has been given. Let 0  be such 

that
2

)(M . Since M is bounded, there exist 

an integer B such that 
2

)(
B

xM                                               

for all 0x . Note that, for each Nn . 

 

mpj nqk

pqjk xxd
M

nm , ,
22

),(1
 

 

),(,, ,
22

),(1

pqjk xxdmpj nqk

pqjk xxd
M

nm
 

                                                        

2 2
, , ( , ) ,

( , )1

jk pq

jk pq

j p m d x x k q n

d x x
M

m n
 

                                         

2 2
, , ( , ) ,

( , )1
( )

jk pq

jk pq

j p m d x x k q n

d x x
M M

m n
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2 2

1
|{( , ) : ( , ) , , } |

2 2
jk pq

B
j k d x x j m k n

m n

 

2 2

1
|{( , ) : ( , ) , , } |jk pqB j k d x x j m k n

m n

     (1) 
 
Since x is -statistically pre-Cauchy, there is N 
such that R.H.S of equation (1) is less than  for 

all Nn . Hence  

 

2 2,
, ,

( , )1
lim 0

jk pq

m n
j p m k q n

d x x
M

m n
. 

 

Theorem 2: Let )( jkxx  be the double 

sequence of fuzzy number and let M be a 
bounded Orlicz function. Then x is -statistically 
convergent to L if and only if 
            

,
1 1

( , )1
lim 0

m n
jk

m n
j k

d x L
M

mn
 

 
Proof:  Suppose that  
 

,
1 1

( , )1
lim 0

m n
jk

m n
j k

d x L
M

mn
 

 
with an Orlicz function M, then x is -statistically 
convergent to L (see[22]). Conversely suppose 
that x is -statistically convergent to L. We can 
prove in the similar manner to  Theorem  1  that  
 

,
1 1

( , )1
lim 0

m n
jk

m n
j k

d x L
M

mn
 

 
using that M is an Orlicz function. 
 

Corollarly 1:  Let )( jkxx  be the double 

sequence of fuzzy number. Then x is -
statistically pre-Cauchy if and only if 
    

2 2,
1 1

1
lim ( , ) 0

m n

jk pq
m n

j k

d x x
m n

 

 

Proof:  Let 
,

sup , 0jk
j k

A d x  and define 

 
x

xA
xM

1

)21(
)(  

Then      
   

,( )
(1 2 ) ( , )

jk pq

jk pq

d x x
M A d x x  

 
and                 
 

( , ) ( , )
(1 2 )

1 ( , )

jk pq jk pq

jk pq

d x x d x x
M A

d x x
 

                               

                                 
(1 2 ) ( , )

1 ( , )

jk pq

jk pq

A d x x

d x x
 

 

                                 
(1 2 ) ( , )

1 2

jk pqA d x x

A
 

  

                                 ( , )jk pqd x x  

Hence     
 

0),(
1

lim
1 1

22,

m

j

n

k

pqjk
nm

xxd
nm

   

 
if and only if               

0
),(1

lim
1 1

22,

m

j

n

k

pqjk

nm

xxd
M

nm
 

 
and an immediate application of Theorem 1 
completes the proof. 
 

Corollary 2: Let )( jkxx  be the double 

sequence  of  fuzzy  number.  Then  x  is  
-statistically convergent to L if and only if  

                  

,
1 1

1
lim ( , ) 0

m n

jk
m n

j k

d x L
mn

 

 

Proof:  Let 
,

sup , 0jk
j k

A d x  and define  

 

x

xLA
xM

1

)1(
)( . 

 
We can prove in the similar manner as in the 
proof of Corollary 1. 
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