
P2P Data Synchronization for Product Lifecycle Management

Sylvain Kublera,∗, Kary Främlinga, William Derigentb

aAalto University, Department of Computer Science and Engineering

P.O. Box 15400, FI-00076 Aalto, Finland
bUniversité de Lorraine, CRAN, UMR 7039, Vandœuvre lès Nancy, F-54506, France

CNRS, CRAN, UMR 7039, Vandœuvre lès Nancy, F-54506, France

Abstract

Intelligent products are an undeniable asset for efficient Product Lifecycle Management (PLM), providing ways to

capture events related to physical objects at various locations and times. Today and more than ever before, PLM

tools and systems must be built upon standards for enhancing interoperability among all product stakeholders and

developing tools independent of specific vendors, applications, and operating systems. Based on this observation,

this paper develops strategies to improve “information sustainability” in PLM environments using standardized

communication interfaces defined by a recent standard proposal named Quantum Lifecycle Management (QLM)

messaging standards. More concretely, data synchronization models based upon QLM standards are developed

to enable the synchronization of product-related information among various systems, networks, and organizations

involved throughout the product lifecycle. Our proposals are implemented and assessed based on two distinct

platforms defined in the healthcare and home automation sectors.

Keywords: Product Lifecycle Management, Internet of Things, Intelligent products, Data synchronization,

Multi-agent systems, Quantum Lifecycle Management

1. Introduction

The so-called “Internet of Things” (IoT) relies on

the automatic capture of observations of physical ob-

jects at various locations, their movements between

locations, sensor data collected from sensors attached

to the objects or within their immediate surroundings,

and interactions with people, mobile devices, other

objects, and locations visited by the objects (and peo-

ple and devices) at various times [1, 2, 3, 4]. This vi-

sion of the IoT is, to a certain extent, linked to the con-

cept of Product Lifecycle Management (PLM) [5, 6],

which is commonly understood as a strategic ap-

proach that incorporates the management of data asso-

ciated with products of a particular type, and perhaps

the versions and variants of that product type, as well

as the business processes that surround it. It is a fact

today that the advent of the IoT has radically reduced

the communication cost for remote collaboration and

coordination in PLM environments (in and between

organizations), which leads to transcending the tradi-

tional organizational boundaries and space limitations

[7, 8, 9]. These new boundaries reveal a real need

for new types of interactions between various types

∗Corresponding author

Email addresses: sylvain.kubler@aalto.fi (Sylvain

Kubler), kary.framling@aalto.fi (Kary Främling),

william.derigent@univ-lorraine.fr (William Derigent)

of “things” (mobiles, sensors, computers, information

systems, users, etc.) to help companies to deal with

complex, changing product environments and to meet

the new organizational and customer needs [10, 11].

In order to propose efficient PLM tools addressing all

these challenges, it is a necessary condition to rely

on standardized IoT interfaces rather than on domain-

specific applications; the reason is two-fold: i) it en-

hances interoperability among all organizations/stake-

holders involved in the product lifecycle [12], and ii)

it provides more possibilities for developing new tools

and models independent of specific vendors, applica-

tions, and operating systems [13, 14].

The Quantum Lifecycle Management (QLM) mes-

saging standards have been developed and proposed

as a standard that fulfill the main IoT requirements

[15]. These standards provide generic and standard-

ized interfaces for creating the needed information

flows between all devices and systems that the IoT

is composed of. The “QLM cloud” depicted in Fig-

ure 1 is intentionally drawn in the same way as the

Web cloud; whereas the Internet uses the HTTP proto-

col for transmitting HTML-coded information mainly

intended for human users, QLM is used for convey-

ing lifecycle-related information mainly intended for

automated processing by information systems. Based

on the QLM standards, this paper investigates new

strategies for improving “information sustainability”

in PLM systems. The main characteristic that makes

Preprint submitted to Elsevier October 21, 2014

information “sustainable” for systems and users is

that this information should be available whenever

it is needed, wherever it is needed, and by who-

ever needs it, while being “consistent” (i.e., not out-

dated or wrong) [16, 17]. Information consistency

can be maintained by implementing data synchroniza-

tion mechanisms [18]. Accordingly, in more concrete

level, this paper investigates and develops data syn-

chronization models based upon QLM that make it

possible to synchronize any product-related informa-

tion among various and distinct lifecycle entities (e.g.,

distinct organizations, networks, information systems,

devices. . .). The originality of these models lies in

the fact that they do not require the addition of any

software or hardware with QLM that significantly in-

creases the scope of research and applications, and

these models could be used in conjunction with any

other messaging protocol (other than QLM) that pro-

vides the set of interfaces needed.

Section 2 provides both the IoT and data synchro-

nization backgrounds from a PLM perspective. Sec-

tion 3 provides insight into traditional data synchro-

nization principles that ought to be integrated using

the generic QLM interfaces. Such interfaces are in-

troduced in section 4. Section 5 presents the generic

data synchronization models that are developed based

upon QLM. These models are then implemented and

validated by considering two distinct platforms in the

healthcare sector and home automation; the conclu-

sions follow.

2. IoT and data synchronization background from

a PLM perspective

PLM is a wide-ranging concept aiming to inte-

grate nearly everything in the product lifecycle, in-

cluding people, data, products, processes, metrics, and

so forth. Section 2.1 provides an overview of PLM

and related concepts. Existing strategies of data syn-

chronization intended to be non vendor- and domain-

specific (i.e., appropriate for PLM) are then reviewed

in section 2.2.

2.1. Product Lifecycle Management (PLM)

As previously mentioned, PLM is commonly un-

derstood to be a strategic approach that incorporates

the management of data associated with products

[5, 6]. These product definition data are generated

when the product is first conceived and then con-

tinue to evolve with the addition of detailed specifi-

cations, user manuals, computer-aided design (CAD)

drawings, manufacturing instructions, service manu-

als, disposal and recycling instructions. Figure 2 pro-

vides insight into a traditional product lifecycle from

the Beginning of Life (BoL), including the design,

production and distribution of the product, through the

RFID technologies

Ontologies

External

network

ERP, WMS or
other QLM-enabled

PLM system

QLM

DC

DC

DC
DC

DC

DC

DC : Device controller

Figure 1: QLM “Cloud”

Middle of Life (MoL), including its use and main-

tenance, up to the End of Life (EoL), including its

recycling. In traditional PLM, the product informa-

tion generation process seems to end after the BoL.

When the product enters actual use, PLM mainly pro-

vides access to existing information, but very little

new information is generated about the products. This

is, perhaps, a reflection of the point of view of the

manufacturing industry that tends to see PLM mainly

as a distributed knowledge management task of the

“extended enterprise” [19] that created the product.

Within this context, there has been only slight inter-

est in how the customer uses each individual product

or in how that product has behaved. Concepts such

as “product agents” [20], “product-centric” PLM [21],

and “intelligent products” [22, 23, 24] have been pro-

posed as solutions for enabling such item- or instance-

enabled PLM. Such concepts were the cornerstones

of the product instance-enabled PLM solutions de-

veloped in the PROMISE EU FP6 project1. This

project introduced the closed-loop PLM R© paradigm

[25, 26], recently renamed CL2M (Closed-Loop Life-

cycle Management), whose breakthrough challenge is

to enable the information flow to include the customer

and to enable the seamless transformation of infor-

mation to knowledge. As a result, CL2M and similar

paradigms such as the “Closed-Loop Supply Chains”

[27] or “Reverse Logistics” [28] contribute to enhanc-

ing various aspects of PLM, five of which are of the

utmost importance:

1. information security: to maintain the level of se-

curity and confidentiality required by the organi-

zations [29];

2. information manageability: to efficiently and

properly process large amounts of raw data [10];

3. information interoperability: to manage the

many changes in data media and formats

throughout the product lifecycle and to ensure in-

formation exchanges between any kinds of prod-

ucts, users, and systems [30];

1http://promise-innovation.com

2

http://promise-innovation.com

o

M
b

Designer

I
Manufacturer

ut utut

Warehouser

b

ut ut
utDistributor

Dealer

PL M

PL

M

PLM
PL

M

BoL

EoL

M
o

L

ox
Users

Repairer
A

Recycler

Data management

✓
Security

✓ Manageability

✓ Interoperability

✓
Visibility

✓ Sustainability

Figure 2: Traditional product lifecycle and major data management aspects to be addressed by a PLIM initiative

4. information visibility: to make data available

for any system, anywhere, and at anytime. The

CL2M consortium2 defines the visibility of the

information as the possibility to gather, process,

and exchange the desired information throughout

the whole life of an entity [31, 32];

5. information sustainability: to make data capable

of outliving systems, while being consistent [11].

These five aspects must be properly addressed for

an efficient PLM, as highlighted in Figure 2. How-

ever, this is particularly challenging for organizations

because PLM is a wide-ranging concept intended to

manage the entire product lifecycle, considering all

activities throughout which the product operates (from

the BoL to EoL) [6]. Within this context, one can

understand that it is of the utmost importance to de-

velop and propose sufficiently generic approaches to

address each of these aspects in all possible domains.

This form of reasoning has been the starting point of

the PROMISE consortium that created two main spec-

ifications aiming to improve information interoper-

ability and information visibility throughout the prod-

uct lifecycle, namely, the PROMISE System Object

Model (SOM) and the PROMISE Messaging Interface

(PMI). At the end of the PROMISE project, the work

on these standards proposals was moved to the Quan-

tum Lifecycle Messaging (QLM) workgroup of The

Open Group3. QLM messaging standards are derived

from the PMI and are intended to provide sufficiently

generic and generally applicable IoT messaging stan-

dards to fulfill the main IoT requirements [15]. This

is a necessary step for efficient PLM and to deal with

all of the five aspects previously mentioned. In this

2http://www.cl2m.com
3http://www.opengroup.org/qlm/

paper, we investigate new ways to synchronize infor-

mation throughout the product lifecycle making direct

use of the communications interfaces defined in QLM,

thus improving information sustainability.

2.2. Inter-organizational data synchronization

Since the 1980s, retailers and their suppliers have

been a prominent example for electronic collabora-

tion in the supply chain. Many surveys and studies

showed that poor product data quality (e.g., outdated

or wrong data) negatively impacts the benefits stake-

holders pursue by implementing tighter forms of col-

laboration [33, 16, 34]. During the late 1990s and

early 2000s, there was an increased awareness that

the only viable and feasible solution was to develop

appropriate standards-based processes that were glob-

ally acceptable to all involved parties [35]. Three of

the main groups that were active in the early data syn-

chronization efforts were the Global Commerce Ini-

tiative (GCI) that became part of the Consumer Goods

Forum, the UCCnet R© trading partner community that

became part of the Global Data Synchronization Net-

work4 (GDSN), and the Auto-ID centers (founders of

EPC – Electronic Product Code – information services

that became part of GS1) [36, 37]. Each represented a

community of many user members in different indus-

try sectors and roles in the supply chain. GDSN is one

of the most common examples of ecosystem synchro-

nization that attempts to reduce inefficiencies in shar-

ing standardized product data that hinder electronic

supply chains, electronic markets, and e-collaboration

[38]. Users upload product and location data to a reg-

istry, referred to as the “GS1 Global Registry”, which

allows trading partners to have access to updated, syn-

chronized information. This solution therefore cre-

ates one location to allow multiple trading partners to

4GDSN is associated to GS1 (for Global Standards):

www.gs1.org

3

http://www.cl2m.com
http://www.opengroup.org/qlm/
http://www.gs1.org

maintain updated supply chain data with one another.

Such solutions have cleared up many issues related

to product information management, especially for

data synchronization in supply chain environments.

Nonetheless, considering the entire product lifecycle,

some limitations still need to be addressed. For in-

stance, the limitations often do not allow for data

synchronization/replication in a peer-to-peer, loosely

coupled way (a centralized database, or registry, is al-

ways required), and the scope of action does not cover

most of the IoT applications in the MoL (it is mainly

limited to the supply chain, i.e. the BoL) [11].

Alongside these efforts, other groups and con-

sortiums addressed similar issues in different con-

texts and environments such as the Synchronization

Markup Language (SyncML) initiative, Pumatech’s

Intellisync [39], and Characteristic Polynomial In-

terpolation Synchronization (CPISync) [40]. The

SyncML standard introduced by a consortium of com-

panies in 2000 might be the best-known in the lit-

erature, which is now consolidated into the Open

Mobile Alliance5 (OMA) composed of a large num-

ber of companies (mobile operators, network suppli-

ers, service providers. . .). The primary objective of

OMA is to offer an open standard as a replacement

for existing data synchronization solutions, which

have mostly been vendor-, application-, or operating

system-specific [41]. This standard defines an XML-

based synchronization model that is portable and in-

dependent of specific data models and has the poten-

tial to handle data synchronization between distinct

systems and mobile devices. Nonetheless, existing

applications using OMA are still confined to partic-

ular domains such as healthcare applications [42, 43],

automotive applications [44], or smart grid and cities

[45, 46]. OMA was initially developed for synchro-

nizing calendars, contact lists, and similar informa-

tion, mainly between mobile phones and servers. Al-

though it has been stated that OMA is suitable for

peer-to-peer data synchronization [47], the synchro-

nization model is closer to a client-server relationship

established between one or more mobile devices and

a server than a real peer-to-peer situation [41]. Given

this observation, OMA does not perfectly comply

with the real IoT philosophy in which client-server ar-

chitectures and peer-to-peer data synchronization be-

tween devices with low processing capacity could be

initiated, handled, and canceled at any time and for

any type of data. Although OMA can be used con-

jointly with QLM messaging, it could be beneficial

to propose solutions for data synchronization directly

using standardized IoT interfaces, without adding any

software or hardware that could prevent in some re-

spects the use of other interesting features/interfaces

proposed by the messaging protocol. For instance,

5http://openmobilealliance.org

unlike OMA, QLM messaging provides crucial fea-

tures to address different types of IoT challenges such

as i) the real-time discovery of information on any de-

vice, server, and information system that can therefore

be synchronized at any time, or still ii) the possibility

of achieving two-way “full-duplex” communications

in a generic way through firewalls and with mobile

systems (e.g., to enable real-time control and mainte-

nance) [48]; see [15] for additional examples. Finally,

if QLM standards could come to be used in numer-

ous organizations and applications from different life-

cycle phases and application-domains, the support of

traditional data synchronization principles could lead

to substantial time and cost savings.

3. Data synchronization principles

Synchronizing data in any system requires two as-

pects to be considered: i) synchronizing the updated

data among all nodes that carry a replica of that data

and ii) handling the data access rights (i.e., to allow

one or a group of nodes to modify it). The context of

the application strongly influences the choice of the

suitable data synchronization technique. Two dimen-

sions must be considered:

• When do the updates have to be propagated?

Two modes exist: Synchronous (S), for which

it is necessary to inform every node carrying a

replica that a modification will occur, and Asyn-

chronous (A), which allows a node to carry out

local modifications without informing its peers.

The broadcasting of the updates is thus per-

formed in a lazy way [49];

• Where do the updates have to be performed?

Two principles exist: Primary copy (Pc), which

allows one and only one node to modify the data,

and Update everywhere (Ue), which enables one

group of nodes to modify it.

Finally, four traditional techniques of data synchro-

nization, also referred to as “data replication”, can be

defined6 [50]: i) A-Ue, ii) A-Pc, iii) S-Ue, and iv) S-

Pc. Each technique has pros and cons, as detailed in

[51]. In the context of IoT as well as PLM, nodes are

either fixed or mobile entities, with varying degrees of

“intelligence” that can range from simple barcodes or

RFID tags to vehicles and other products that have ad-

vanced sensing and actuating capabilities [9] (cf. Fig-

ure 1). Within this context, one can understand that

the four techniques of data synchronization might be

required by users and organizations according to their

needs, activities, and infrastructures. As a first step,

6In order to remain consistent, the term “data synchronization”

is used across the paper.

4

http://openmobilealliance.org

A
.

B
. k

C
. k

D
. k

E
.

t t t t t

T.Tr(Wk)S.Tr(Wk)

Upd(k)

Upd(k) Upd(k)

T.Tr(Wk) S.Tr(Wk)

Upd(k)

Upd(k)Upd(k)

1

2a 2b

3

4a 4b

Legend

T.Tr(Wk) : Transmit transaction to modify data k
S.Tr(Wk) : Start transaction to modify data k
Upd(k) : Update data k

(a) Asynchronous - Update everywhere (A-Ue)

A
.

B
. k

C
. k

Pc D
. k

E
.

t t t t t

T.Tr(Wk)T.Tr(Wk)S.Tr(Wk)

Upd(k)

Upd(k) Upd(k)

T.Tr(Wk) T.Tr(Wk) S.Tr(Wk)

Upd(k)

Upd(k)Upd(k)

12

3a 3b

4 5

6a 6b

Legend

T.Tr(Wk) : Transmit transaction to modify data k
S.Tr(Wk) : Start transaction to modify data k
Upd(k) : Update data k
F.Tr(Wk) : Forward the transaction to another node

(b) Asynchronous - Primary copy (A-Pc)

Figure 3: Techniques of data synchronization

we investigate the feasibility of implementing the two

asynchronous techniques (i.e., A-Ue and A-Pc) using

the standardized QLM interfaces.

Figure 3 illustrates the behavior of the two asyn-

chronous techniques considering five nodes: A, B, C,

D, and E. Let k be a data replica carried by nodes B, C,

and D. Considering the A-Ue technique, all nodes are

allowed to asynchronously update k. In Figure 3(a), E

sends a write request to D for modifying k (see com-

munication/arrow denoted by “1”), which proceeds to

perform the modification and updates replicas on B

and C (see arrows denoted by “2a” and “2b”). Sub-

sequently, A initiates a similar transaction addressed

to B (see arrows denoted by “3”), which modifies k

and updates replicas on C and D (see arrows denoted

by “4a”/“4b”). The A-Ue technique may lead to con-

flicts between the different nodes because all nodes

are allowed to modify k without consulting each other

(e.g., a resulting action could be to reject the update

or to raise an alert if a conflict occurs between two

data replicas). Reconciliation mechanisms nonethe-

less exist to handle such conflicts [52, 53]. This prob-

lem is avoided when using the A-Pc technique (see

Figure 3(b)) because only the node designated as Pc

is allowed to modify k. Let node C be designated as

Pc in Figure 3(b). Following the same transaction pat-

tern as before, E sends a write request to D (see arrow

denoted by “1”), which automatically forwards the re-

quest to the Pc node (i.e., C). Node C proceeds to per-

form the modification and then updates replicas on B

and D (see arrows denoted by “3a”/“3b”). The same

communication scheme appears when A addresses its

transaction to B (see arrows denoted by “4”, “5”, and

“6a”/“6b”).

Because our ultimate goal is to develop strategies to

support the four data synchronization previously out-

lined using only the generic interfaces defined by the

QLM standards, a high-level description of those in-

terfaces/standards is given in section 4.

4. QLM messaging standards

QLM messaging specifications consist of two stan-

dards proposals [15]: the QLM Messaging Interface

(QLM-MI) that defines what types of interactions be-

tween “things” are possible and the QLM Data For-

mat (QLM-DF) that defines the structure of the in-

formation included in QLM messages. In the QLM

cloud, communication between the participants (e.g.,

products and backend systems) is performed by pass-

ing messages between nodes using QLM-MI. In the

same way that HTTP can be used for transporting

payloads in formats other than HTML, QLM can be

used for transporting payloads in nearly any format.

XML might currently be the most common text-based

payload format due to its flexibility, which provides

more opportunities for complex data structures [10],

but others such as JSON and CSV can also be used.

The accompanying standard QLM-DF partly fulfills

the same role in the IoT as HTML does for the Inter-

net, meaning that QLM-DF is a generic content de-

scription model for things in the IoT. QLM-MI and

QLM-DF are independent entities that reside in the

Application layer of the OSI model, where QLM-MI

is specified at the Communication level and QLM-DF

is specified at the Format level.

4.1. QLM Data Format (QLM-DF)

QLM-DF is defined as a simple ontology, specified

using XML Schema, that is generic enough for rep-

resenting “any” object and information that is needed

for information exchange in the IoT. It is intention-

ally defined in a similar manner as data structures in

object-oriented programming. QLM-DF is structured

5

1 <q lm:E nve lope xmlns =”QLMmi . xsd ” v e r s i o n =” 1 . 0 ” t t l =” 0 . 0 ”>

2 <q l m : r e a d msgformat =”QLMdf . xsd ”>

3 <msg>

4 <O b j e c t s xmlns =”QLMdf . xsd ”>

5 <O b j e c t t y p e =” F r i d g e ”>

6 <i d>Smartfridge2334101</ i d>

7 <I n f o I t e m name=” D o o r s t a t u s ” />

8 <I n f o I t e m name=” T h e r m o s t a t ” />

9 </ O b j e c t>

10 </ O b j e c t s>

11 </ msg>

12 </ q l m : r e a d>

13 </ q lm:E nve lope>

Generic Object tree

Objects

Object Object Object . . .

InfoItem InfoItem Object . . .

MetaData Value Value . . .

InfoItem InfoItem . . .

QLM-DF ➙

QLM-MI

QLM-MI

Figure 4: QLM Data Format: generic “Object” tree and example of a QLM message relying on that tree

as a hierarchy with an “Objects” element as its top ele-

ment. The “Objects” element can contain any number

of “Object” sub-elements. Figure 4 gives insight into

both the generic hierarchy/object tree and an exam-

ple of a QLM message whose structure respects this

object tree. In this example, a unique object of type

Fridge (see row 5 of the XML message) is consid-

ered. “Object” elements can have any number of prop-

erties, referred to as InfoItems, as well as “Object”

sub-elements. In our example, the Object Fridge has

two InfoItems named Door status and Thermostat

(see rows 7 and 8). The resulting Object tree can con-

tain any number of levels. Every Object has a compul-

sory sub-element called “id” that identifies the Object

(see row 6). The “id” should preferably be globally

unique or at least unique for the specific application,

domain, or network of the involved organizations.

4.2. QLM messaging interface (QLM-MI)

A defining characteristic of QLM-MI is that QLM

nodes may act both as “servers” and as “clients” and

therefore communicate directly with each other or

with back-end servers in a peer-to-peer manner. Typ-

ical examples of exchanged data are sensor readings,

lifecycle events, requests for historical data, notifica-

tions, etc. One of the fundamental properties of QLM-

MI is that QLM messages are “protocol agnostic” so

they can be exchanged using HTTP, SOAP, SMTP, or

similar protocols. Three operations are possible:

1. Write: used to send information updates to QLM

nodes;

2. Read: used for immediate retrieval of informa-

tion and for placing subscriptions for deferred

retrieval of information from a node;

3. Cancel: used to cancel a subscription.

The subscription mechanism is a cornerstone of that

standard. Two types of subscriptions can be per-

formed:

1. subscription with callback address: the sub-

scribed data are sent to the callback address at

the requested interval. Two types of intervals can

be defined: interval-based or event-based;

2. subscription without callback address: the data

are memorized on the subscribed QLM node as

long as the subscription is valid. The memorized

information can be retrieved (i.e., polled) by is-

suing a new QLM read query by indicating the

ID of the subscription.

Another important feature of QLM-MI is that QLM

messages are “self-contained” in the sense that all

the necessary information (e.g., the actions to be per-

formed, the callback address. . .) to enable the recipi-

ent to handle the message is contained in the message

itself. The QLM message given as example in Fig-

ure 4 highlights the message interface in which the

TTL (time-to-live) value is specified in row 1 and the

operation type is specified in row 2 (“read”). Other

relevant interfaces are presented in [15] such as the

“publication and discovery” of new data sources, ser-

vices and meta-data by using “RESTful” URL-based

queries (including discovery by search engines).

Section 5 investigates how asynchronous data syn-

chronization techniques can be properly integrated

based upon QLM messaging, i.e., by making direct

use of both the interfaces defined in QLM-MI and the

Object tree defined in QLM-DF.

5. Strategy for asynchronous data synchroniza-

tion using QLM

The strategy defined in this paper to integrate data

synchronization techniques based upon QLM uses the

concept of “Product agent” [54, 55, 20]. In com-

puter science, an agent is a piece of software act-

ing autonomously; it has its own data structures and

decision-making algorithms. For decades, agent plat-

forms have been used in multiple research domains

(sociology, chemistry, biology. . .) because they help

to realize important properties such as autonomy, re-

sponsiveness, redundancy, distributedness, and open-

ness in the system [56]. An agent may operate in envi-

ronments where other agents operate, with the whole

operating as a multi-agent system [57, 58].

In our approach, a QLM node that is intended,

or should be involved in a data synchronization

6

must have an agent in charge of initiating, handling,

and removing (if necessary) the synchronization in

the whole system by collaborating with other QLM

nodes. Such an agent is referred to as a DS agent

(D and S being the initials of Data Synchronization)

and each of its options (i.e., “initiate”, “handle”, and

“remove” synchronization) are detailed in sections 5.1

and 5.2.

5.1. “initiate” and “remove” synchronization

Options initiate() and remove() provide the user

with parameters to set up or cancel a data synchro-

nization among a set of QLM nodes for a specific In-

foItem. These two options are described in the same

section because they both depend on inputs specified

by the user. We refer to these options as externally

based inputs, as emphasized in Figure 5. Three pa-

rameters must be specified (using a GUI), as depicted

in cells a and b:

1. the name of the InfoItem, denoted by IIn, whose

replicas have to be handled in the QLM cloud;

2. the list of QLM nodes, denoted by Ln, that carry a

replica of IIn and that are affected by the creation

or cancellation of a data synchronization. It is

required that all QLM nodes in Ln implement the

DS agent;

3. the technique of data synchronization, denoted

by tech, that has to be implemented or removed

among the QLM nodes in Ln. If A-Pc is selected,

the Pc node must be designated.

Algorithm 1: initiate(IIn, Ln, tech)

output:Min

1 begin

2 Min ← ∅; // Initialize the set of messages to

be sent to empty

3 ob j← DS init; // Set the type of the "Object"

element of the message to "DSinit"

4 forall the @ j ∈ Ln do // for all nodes ∈ Ln

5 M =qlmWrite(ob j, IIn, Ln, tech,@ j);

// Create the appropriate QLM write message

according to the specified inputs

6 Min ←Min ∪ M; // Add message to Min

The DS agent embedded in the QLM node request-

ing the creation or removal of a data synchronization

must communicate the necessary information to all

nodes ∈ Ln. Algorithms 1 and 2 provide the respec-

tive functions to generate the right number of QLM

messages that all contain the three parameters previ-

ously described; message are denoted by “✉ qlm(in.)”

in cell a (in. being the abbreviation for initiate) and

Algorithm 2: remove(IIn, Ln, tech)

output:Mre

1 begin

2 Mre ← ∅;

3 ob j← DS rem; // Set the type of the

"Object" element of the message to "DSrem"

4 forall the @ j ∈ Ln do

5 M =qlmWrite(ob j, IIn, Ln, tech,@ j);

6 Mre ←Mre ∪ M;

by “✉ qlm(re.)” in cell b (re. being the abbreviation

for remove) depending on the option selected. The

sub-function qlmWrite() (see row 5 in Algorithm 1

and 2) is in charge of generating the appropriate XML

message M according to the specified function inputs

(ob j, IIn, Ln, tech,@ j), whose message must be sent

to QLM node @ j. When node @ j receives M, it is

thus able to know how to process the message. For

instance, considering node B in cell c of Figure 5, it

knows that M (i.e., ✉ qlm(in.)) is a request for the

establishment of a data synchronization of type tech

regarding InfoItem IIn, which needs to be set up be-

tween nodes ∈ Ln. The logic is similar when removing

a data synchronization (cf. cell e).

Let us consider a concrete scenario when the user

initializes a data synchronization from node A (see

cell a), proving the three following parameters:

• IIn = Temperature1326;

• tech = A-Pc with node C designated as Pc;

• Ln = {192.168.1.3, 192.168.1.1, 192.168.1.2}

that are the respective IP addresses of nodes C,

A, and B in Figure 5; a convention is defined to

indicate which node is designated as Pc that con-

sists of positioning the Pc node address at the first

position in Ln.

Using Algorithm 1, the DS agent embedded in A

generates three QLM messages of type “✉ qlm(in.)”

including the three parameter values. These messages

are respectively sent to nodes B, C, and D (see arrows

between cells a and c in Figure 5). One of these mes-

sages is given in Figure 6, in which a unique Object

of type DSinit is defined (see row 5) and used to inte-

grate the three parameters. These parameters are in-

cluded using three distinct InfoItems named “IIn” (see

row 7), “tech” (see row 10), and “Ln” (see row 13).

The optional sub-element “Value” is used to indicate

each parameter value (see rows 8, 11, and 14-16). The

process is similar for the remove() option (see arrows

between cells b and e in Figure 5), except that the

“Object type” is set to DSrem and not DSinit, which

enables the recipient node to distinguish both options

and to act accordingly.

7

Legend

.
Node implementing QLM messaging

. Node implementing the DS agent in
addition to QLM messaging

Sphere representing the data synchro-
nization scheme that has been created

handle() function in charge of creating the
requested data synchronization in the system

handle() function in process and is in charge
of respecting the synchronization constraints

Del handle() function in charge of removing
the data synchronization in the system

qlm(in.) ✉ QLM message with an Object type : DSinit

qlm(re.) ✉ QLM message with an Object type : DSrem

qlm(...) ✉ QLM message (Write, Read, or Cancel) gene-
rated in a specific stage of the synchronization

qlm(Write) ✉ Conventional QLM write message

synchronization being created Ongoing synchronization process synchronization being removed

E
x
te

rn
a

ll
y

b
a

se
d

in
p

u
ts

(
)

M
e
ss

a
g
e
-b

a
se

d

re
c
e
p

ti
o

n
(✉

)

B
.

handle()

C
.
Pc

handle()

D
.

handle()

qlm(...) ✉

qlm(...)
✉

qlm(...)✉

B
.

handle()

C
.
Pc

handle()

D
.

handle()

E
.

qlm(...) ✉

qlm(...)
✉

qlm(...)✉
qlm(write)

✉

see Flow chart (Figure 7)see Flow chart (Figure 7)see Flow chart (Figure 7)

see Algorithm 1 see Algorithm 2

➚
➚

➚

➚

B
.

handle()

Del

C
.

Pc

handle()

Del

D
.

handle()

Del

qlm(...) ✉

qlm(...)
✉

qlm(...)✉

A
.

initiate()

GUI

qlm(in.) ✉
qlm(in.) ✉

qlm(in.)✉

A
.

remove()

GUI

qlm(re.) ✉
qlm(re.) ✉

qlm(re.)✉

cell a cell b

cell c cell d cell e

Figure 5: DS agent and its three constituent options

1 <qlmEnvelope xmlns =”QLM mi . xsd ” v e r s i o n =” 1 . 0 ” t t l =” 10 ”>

2 <w r i t e msgformat =”QLM df . xsd ”>

3 <msg>

4 <O b j e c t s xmlns =”QLM df . xsd ”>

5 <O b j e c t t y p e =” D S i n i t ”>

6 <i d>DSinit13</ i d>

7 <I n f o I t e m c l a s s =” I I n ”>

8 <v a l u e>Temperature1326</ v a l u e>

9 </ I n f o I t e m>

10 <I n f o I t e m c l a s s =” t e c h ”>

11 <v a l u e>A−Pc</ v a l u e>

12 </ I n f o I t e m>

13 <I n f o I t e m c l a s s =”Ln”>

14 <v a l u e t y p e =” cs v ”>

15 1 9 2 . 1 6 8 . 1 . 3 , 1 9 2 . 1 6 8 . 1 . 2 , 1 9 2 . 1 6 8 . 1 . 2

16 </ v a l u e>

17 </ I n f o I t e m>

18 </ O b j e c t>

19 </ O b j e c t s>

20 </ msg>

21 </ w r i t e>

22 </ q lmEnvelope>

QLM-MI

QLM-DF

QLM-MI

Parameter 1

Parameter 2

Parameter 3

Figure 6: ✉ qlm(in.) including the 3 parameters defined by the user

The set of QLM nodes (Ln) must then start to im-

plement (or remove) the data synchronization in the

whole multi-DS agent system based on the informa-

tion contained in messages it receives or, to be more

accurate, based on the set of parameters contained

in these messages. Such a synergy is made possible

thanks to the handle() option that is described in the

next section. This option corresponds to cells c, d,

and e in Figure 5 depending on the type of message

received by the QLM node, which can be either of

type “✉ qlm(in.)” (see cell c), of type “✉ qlm(re.)”

(see cell e), or of any other type, i.e. any message

that contains “Object” types different from DSinit or

DSrem (corresponds to cell d). Unlike initiate() and

remove() options, handle() is referred to as message-

based reception because it all starts with the reception

of a QLM message, as shown in Figure 5.

5.2. “handle” synchronization

This option is considered the core of the DS agent

because it is in charge of creating synergy in the multi-

DS agent system for initiating, handling, and even re-

moving a data synchronization according to the in-

coming messages. More concretely, the handle() op-

tion is in charge of:

i) creating the appropriate subscriptions in the

multi-DS agent system when initiating a syn-

chronization;

ii) respecting the synchronization constraints during

the period of validity of that synchronization;

iii) canceling the subscriptions that have been set up

in the multi-DS agent system when removing a

synchronization.

An accurate view of this option is provided in the form

of a flow-chart in Figure 7. First, the function identi-

fies what QLM operation is requested by the incoming

message (see box connector denoted by “1” in Fig-

ure 7). If it is a “Read”, “Cancel”, or “Response”

message, it is handled in the classic way (i.e., no fur-

ther actions than the ones defined in the QLM spec-

ifications are required). Accordingly, the message is

directly transmitted to the middleware that integrates

8

DS agent embedded on a QLM node whose address is denoted by @cur

★ : The value tech is retrieved from R

in.✉
re.✉
✉

Receive M

O = {

✉✉
. . . ✉}

O = {

✉✉
. . . ✉}

O = {

✉✉
. . . ✉}

1 2 max(O)

I = {
...

✉
...

✉
. . .

...

✉
}

1 2 max(I)

M is it a
Read, Cancel

Response

? 1

Retrieve all “Object” from M
➤ list noted O

3

Type of

O(m) is

“DSinit”

? 4

Type of

O(m) is

“DSrem”

? 7

Retrieve all “InfoItem” from O(m)
➤ list noted I

11

Retrieve from O(m)
➤ IIn
➤ tech
➤ Ln

5

Retrieve from O(m)
➤ IIn
➤ tech

➤ Ln
8

I(n)
∈ R

?
12

tech★

of I(n) =
“A-Pc” ?

13

@cur
= @Pc

?
14

forward(I(n)

15

sub(I(j),Ln ,tech,@cur)

see Algorithm 3
6

unsub(I(j),Ln ,tech,@cur)

9

M (or part of M)

handled using QLM

2

Yes (handled with the conventional QLM interfaces/properties) ✉

(Write or Response)
No

m=1 :max(O) Yes ✉
O(m)

Msub={✉ . . .

Subscription req.

✉}

Yes ✉
O(m)

Mcan={✉ . . .

Cancel req.

✉}

No

No

✉
O(m)

n=1 :max(I) Yes Yes No

Mfor={✉}

No

...

I(n)✉ No

...

I(n)✉ Yes

...

I(n)✉

Figure 7: Flow chart describing the handle() function of the DS agent: Message-based reception (see Figure 5)

these specifications (see box connector “2”). If it is

a “Write” message, the function has to further inves-

tigate whether it contains an Object of type DSinit

(see box connector “4”), DSrem (see box connector

“7”), or of other types (see box connectors “11”). Sec-

tions 5.2.1, 5.2.2, and 5.2.3 respectively detail the ac-

tions to be undertaken by the DS agent for each of

these object types.

5.2.1. Object – DSinit

When a node receives a message M containing an

“Object” of type DSinit, the set of InfoItems that com-

pose this object (i.e., IIn, tech, and Ln; cf. Figure 6)

are first retrieved as indicated in the box connector de-

noted by “5” in Figure 7. Based on these InfoItem val-

ues, it is then necessary to set up the appropriate num-

ber of subscriptions among the QLM nodes in order to

push the IIn value to all nodes that carry a replica each

time IIn is modified. The number of subscriptions to

be set up depends on the selected principle (i.e., Pc or

Ue).

Because the Ue principle allows all nodes carrying

a replica to modify it, z(z − 1) subscriptions must be

originally defined in the system, with z the number of

nodes in Ln (i.e., each node subscribes to each other).

In order to understand this equation, let us consider

the example given in Figure 8(a) where nodes B, C,

and D carry a replica of IIn. Three situations could

potentially occur: a client could request to modify IIn

on node C (situation 1 in Figure 8(a)), on node B (sit-

uation 2), or on node D (situation 3). Considering sit-

uation 1, nodes B and D must have beforehand sub-

scribed to IIn on node C (see arrows denoted by ➀ in

Figure 8(a)) by defining an event-based subscription

and by providing their respective address as a call-

back. Hence, each time IIn is modified on node C

(see arrow denoted by ➁), all subscribers receive a

notification with its new value (see arrows denoted

by ➂). The same occurs in the second and third sit-

uations. In total, when applying the generic formula

with z = 3:{A, B, C}, 3(3 − 1) = 6 subscriptions

must be originally defined as indicated in Figure 8(a)

(B➞C; D➞C; C➞B; D➞B; B➞D and C➞D). Fig-

ure 9 shows one of these 6 subscription requests that

is, in this example, generated by the DS agent em-

bedded in node B and sent to node C to subscribe to

InfoItem Temperature1234 (see rows 7-9 of the re-

quest). Note that the interval parameter of the sub-

scription (see row 2) is set to “-1”, which indicates

that it is an “event-based” subscription. Figure 9 high-

lights that each time Temperature1326 is modified,

a QLM response is automatically returned to the sub-

scriber, including both the new IIn value and the ID of

the subscription (denoted by IDsub in Figure 9).

Because the Pc principle only authorizes the node

designated as Pc to modify IIn, only (z − 1) subscrip-

tions must be originally defined (all nodes subscribe

to the Pc node, except the Pc node itself). This is

illustrated in Figure 8(b) considering the same three

situations, except that node C is now designated as

Pc. Applying this formula with n = 3:{A, B, C},

(3 − 1) = 2 subscriptions must initially be defined

(B➞C and D➞C). Although less subscriptions are re-

quired when using the Pc principle, an additional con-

straint must be handled by the DS agent, namely, to

forward the request to the node designated as Pc (see

arrows denoted by “2b” in situations 2 and 3).

The appropriate number of subscriptions to be de-

fined in the multi-DS agent system, whether when se-

lecting A-Pc or A-Ue, is computed using the function

named sub() in box connector “6” in Figure 7, which

is detailed in Algorithm 3 (see comments provided in

9

Situation 1

E
.

B
. IIn

C
. IIn

D
. IIn

➁

➀ ➀

➂ ➂

B and D must have subscribed

data IIn on C

➥ 2 subscriptions : B➞C
D➞C

Situation 2

E
.

B
. IIn

C
. IIn

D
. IIn

➁

➀

➀

➂

➂

C and D must have subscribed

data IIn on B

➥ 2 subscriptions : C➞B
D➞B

Situation 3

E
.

B
. IIn

C
. IIn

D
. IIn

➁

➀

➀

➂

➂

B and C must have subscribed

data IIn on D

➥ 2 subscriptions : B➞D
C➞D

➀ Subscription request

➁ Classical write request

➂ Messages resulting from the subscriptions

(a) Update everywhere (Ue)

Situation 1

E
.

B
. IIn

C
.
Pc

IIn

D
. IIn

➁

➀ ➀

➂ ➂

B and D must have subscribed

data IIn on C

➥ 2 subscriptions : B➞C
D➞C

Situation 2

E
.

B
. IIn

C
.
Pc

IIn

D
. IIn

➁
➀

2b ➀

➂ ➂

C and D must have subscribed

data IIn on B

➥ Same subscriptions as
in Situation 1

Situation 3

E
.

B
. IIn

C
.
Pc

IIn

D
. IIn

➁

➀
➀

2b

➂ ➂

B and C must have subscribed

data IIn on D

➥ Same subscriptions as
in Situation 1

➀ Subscription request

➁ Classical write request

➂ Messages resulting from the subscriptions
2b Request forwarded to the Pc node

(b) Primary copy (Pc)

Figure 8: Number of subscriptions to be defined according to the selected principle: Ue or Pc

1 <qlmEnvelope xmlns =”QLM mi . xsd ” v e r s i o n =” 1 . 0 ” t t l =” 3 0 . 0 ”>

2 <r e a d i n t e r v a l =”−1.0 ” c a l l b a c k =” h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 1 1 :8080

/ S e r v l e t R e p l i c a t i o n ” msgformat =” q lm df . xsd ”>

3 <msg>

4 <O b j e c t s xmlns =”QLM df . xsd ”>

5 <O b j e c t t y p e =”DSsub ”>

6 <i d>id2</ i d>

7 <I n f o I t e m t y p e =” I I n ”>

8 <v a l u e>Temperature1234</ v a l u e>

9 </ I n f o I t e m>

10 </ O b j e c t>

11 </ O b j e c t s>

12 </ msg>

13 </ r e a d>

14 </ q lmEnvelope>

B
. k

C
. k

Pc

t t

Subscription(IIn ,int,callb)

Response(IDsub)

Response(IDsub,IIn)
modification of IIn

Response(IDsub,IIn)
modification of IIn

Response(IDsub,IIn)
modification of IIn

Response(IDsub,IIn)
modification of IIn

Figure 9: Generation of one subscription message M related to the update function

this algorithm for more details).

5.2.2. Object – DSrem

When a DS agent receives a message M with an

“Object” of type DSrem, the set of InfoItems that com-

pose this object (i.e., IIn, tech, and Ln) are first re-

trieved (see box connector denoted by “8” in the flow

chart). Based on these InfoItem values, it is then nec-

essary to cancel the set of subscriptions that have been

set up among the QLM nodes beforehand (regarding

IIn). This is achieved using the unsub() function, as

indicated in the box connector denoted by “9”. This

function is not presented in this paper but is similar

to sub() (i.e., Algorithm 3), except that the generated

messages are QLM cancel requests and not QLM sub-

scription (read) requests.

5.2.3. Object – other types

When a DS agent receives a Write message M with

an Object type different than DSinit and DSrem, it first

retrieves all InfoItems that compose this Object. This

list is noted by I in box connector ‘11”. For each

InfoItem n ∈ I, the function checks whether it is af-

fected by a data synchronization, i.e. whether it has

been registered inR or not (see box connector denoted

by “12”). If not, no further actions are required, and

the modification of InfoItem I(n) can be carried out

using QLM standards (see connector between boxes

“12” and “2”). If I(n) has to be synchronized, it is

thus necessary to check whether the synchronization

that has been established is A-Pc or A-Ue. This cor-

responds to the box connector denoted by “13” with

tech being the technique of synchronization. In case it

is A-Ue, no further actions are required, and the mod-

ification of I(n) can be carried out using QLM (see

connector between boxes “13” and “2”). Otherwise,

it is necessary to check whether the current node (i.e.,

@cur) has been designated as Pc or not (see box con-

nector denoted by “14”). If true, no further actions are

required, and the modification of I(n) is carried out

using QLM standards; otherwise, I(n) has to be for-

warded to the Pc node, which is achieved thanks to the

function named forward() in box connector “15”.

10

Algorithm 3: sub(IIn, Ln,@cur, tech)

output:Msub

1 begin

2 Msub ← ∅; // The set of subscription requests Msub is initialized to empty

3 callb← @cur; // The callback address of the subscription corresponds to the QLM node that received M

4 inter ← −1; // The interval is set to "-1" to indicate that it is an "event-based" subscription

5 if tech = ”A-Ue” then // If the requested data synchronization is equal to "A-Ue, then"

6 forall the @ j ∈ Ln|@ j , @cur do // for all nodes that carry a replica of InfoItem IIn

7 M =qlmRead(IIn, inter, callb,@ j); // Send a subscription request to subscribe InfoItem IIn,

considering the interval and callback values specified at rows 3 and 4

8 Msub ←Msub ∪ M; // Add message M to the set of subscription requests to be sent

9 else // If the requested data synchronization is A-Pc

10 if @cur , @Pc then // If the current node is not the designated Pc node, then

11 M =qlmRead(IIn, inter, callb,@Pc); // Send a subscription request to subscribe IIn to Pc

12 Msub ←Msub ∪ M; // Add message M to the set of subscription requests to be sent

13 R ← {IIn, Ln, tech}; // The initiated data synchronization is memorized on the current node

�

M

b

I

ut utut

b

ut ut
ut

QLM

QLM

QLM
QLM

QLM

QLM

QLM

QLM

BoL

EoL

M
o
L

QLM cloud �

x

A

✉

✉ ✉

✉

✉

✉
3

x y
1 1

1

2

2

2

3

3

3
3✉

✉

✉

Legend

✉ QLM messages

Smart appliances

1

2

3

Data replication 1 related to InfoItem Thermostat

Data replication 2 related to InfoItem Program

Data replication 3 related to InfoItem User location

Figure 10: Home automation platform in which some lifecycle entities implement the DS agent in addition to QLM messaging

6. Case study

Two platforms respectively defined for home au-

tomation and healthcare assistance are presented in

sections 6.1 and 6.2. The different organizations and

actors of these platforms implement the QLM messag-

ing standards, and the DS agent is used to manage in-

formation replicas generated among these actors. In-

tegration of the QLM standards and the DS agent is

made possible in both case studies using the DIALOG

middleware7.

6.1. Home automation

The home automation environment consists of two

smart household appliances, namely a fridge and a

7http://dialog.hut.fi

ventilator, which both integrate a controller. Ensto eS-

mart R© controllers are used in our case study. Two res-

idents (man and woman) are able to control these ap-

pliances via their smartphone. These four devices (2

smart appliances and 2 smartphones) are augmented

with QLM capabilities and thus are able to commu-

nicate with each other using conventional QLM inter-

faces. Figure 10 illustrates this environment (in the

MoL) as well as the different actors and devices. In

our scenario, the fridge manufacturer also supports

QLM to exchange lifecycle events and information

about his own assets (e.g., fridges manufactured by

his company) with all product stakeholders. This is

made possible through the QLM cloud, as depicted in

Figure 10, which interconnects all phases and actors

involved in the fridge lifecycle.

11

http://dialog.hut.fi

Table 1: List of data synchronizations set up between the house devices

InfoItem (appliance) Functionality and permissible values M
an

’s
m

o
b
il

e

W
o
m

an
’s

m
o
b
il

e

M
an

u
fa

ct
u
re

r
D

B

F
ri

d
g
e

co
n
tr

o
ll

er

V
en

ti
la

to
r

co
n
tr

o
ll

er

Data synchronization

1 Thermostat (Fridge) Enable to adjust the indoor temperature of the fridge.

Six thermostat values {1, 2, .., 6} can be selected

✓ ✓ ✓ A-Pc ➙ Pc=fridge

2 Program (Ventilation) Enable to select a ventilation program (13 in total) ✓ ✓ ✓ A-Pc ➙ Pc=ventilation

3 eSmart modes

(Fridge+Ventilation)

Enable users to indicate whether they are at

{Home, Safe at home,Away,LongAway}

✓ ✓ ✓ A-Ue

Particular InfoItems on each appliance can be ac-

cessed and controlled using QLM. Table 1 details

these InfoItems by indicating which appliance they

are related to (see column 1), what the permissible

values are (see column 2), and who is accessing these

InfoItems. For instance, both parents are allowed to

modify the fridge Thermostat as well as the ventila-

tion Program (see rows 1 and 2 in Table 1). In both

situations, a change of the InfoItem value on the con-

troller (whether remotely or locally initiated) has to

be updated to all devices that could potentially con-

trol it (i.e., the parent mobiles). Let us note that the

modification needs to first be performed by the con-

troller and then propagated in the system/QLM cloud.

Accordingly, the A-Pc technique is selected by desig-

nating the controllers (fridge and ventilator) as Pc (see

rows 1 and 2 in Table 1). The last InfoItem, denoted

by eSmart modes, is different insofar as it is present

on both controllers; in other words, it is not unique

in the QLM cloud. This InfoItem is used to control

the status of the premises, depending on whether they

are present or absent. Four modes are available to in-

dicate whether they are at Home, Safe at home (i.e.,

sleeping), Away, or Long away (cf. Table 1). Fig-

ure 11 shows these four modes on one of the two En-

sto eSmart R© controllers. Different types of actions are

therefore undertaken according to the current mode.

For instance, some of the rules defined in the Ensto

eSmart technical documentation are: i) alarms are in-

active if residents are at Home and active if they are

Safe at Home, ii) power from the electrical sockets in

the kitchen is “off” if residents are Away, etc. These

modes can be changed both locally (operating panel,

button) and remotely (text message, call). However,

when more than one controller is used in the same

building, there is no mechanism in place to synchro-

nize the same InfoItem located on two or more dis-

tinct controllers. Because the InfoItem eSmart modes

can be modified (locally or remotely) by the two res-

idents on any of the two controllers (fridge or venti-

lator), the A-Ue technique is selected (see Table 1).

In our platform, the premises agreed that the fridge

manufacturer can also access specific InfoItems on

the fridge controller (e.g., to take proactive actions

Figure 11: Ensto eSmart R© controller with four presence modes

like the scheduling of a time for service, orders for

needed spare parts). In this scenario, the manufac-

turer is interested in knowing when residents are Away

or Long away from the house so that certain tests and

updates can be performed that could require hours or

even days. Accordingly, the manufacturer company

database system is also included into data synchro-

nization 3, as shown in Table 1 and illustrated in Fig-

ure 10 through communications denoted by “3”..

The DS agent developed in this paper is used in ad-

dition to QLM in order to realize the three expected

data synchronizations (cf. Figure 10). Section 6.1.1

details the steps resulting from such an implementa-

tion considering synchronizations 1 and 2 (of type A-

Pc), while section 6.1.2 details these stages consider-

ing synchronization 3 (of type A-Ue).

6.1.1. Data synchronization 1 and 2 (A-Pc)

A screenshot of the GUI used to initiate (or remove)

a data synchronization is shown in Figure 12. This fig-

ure shows the configuration of data synchronization 1:

InfoItem Thermostat is selected, IP addresses of the

two resident phones and the fridge are specified, and

data synchronization of type A-Pc is selected (IP ad-

12

Any phone that implements

“DS agent”

Options initiate and remove replication
cf. section 4.1 & cells a, b in Figure 5

provides the list of existing synchroni-

zation that have been registered in R

List of appliances & related InfoItems.
The user can select one of them (i.e.,

IIn) if he wants to activate a data
synchronization for one of them

List of nodes that need to be involved
in the data synchronization (i.e., Ln)

Type of data replication to be used

Validation button that calls up function

initiate() (see Algorithm 1)

in.✉in.✉in.✉

cl.✉

x y
Pc

t t t

handle()

1,3,4,5,6,2

handle()0,1,2

handle()

1,3,4,5,6,2

handle()0,1,2

handle() 1,3,4,5,6,2

handle() 0,1,2

handle() 0,1,2

Change

Thermostat
Write Req

handle()
1,3,4,7,11,12,

13,14,15,2

handle()

1,3,4,7,11,12,
13,14,2

New
value

handle()0,1,2
New
value

handle()0,1,2
New
value

h
a

n
d

le
()

:
se

e
ce

ll
c

in
F

ig
u

re
5

h
a

n
d

le
()

:
se

e
ce

ll
f

in
F

ig
u

re
5

1 2

3

4

5

6a
6b

Legend

0,1,2,..15 box connectors respectively solicited in the flow chart given in Figure 7

QLM messages of type “✉ qlm(in.)” that contains the user specifications

QLM subscription request

QLM response resulting from a QLM request (e.g., Read, Write, or Cancel)

QLM message that is forwarded to the Pc node

Figure 12: Data synchronization 1: GUI and sequence diagram

dress of the fridge is ticked as Pc). When clicking

on the “create” button, the initiate() function is called

(see Algorithm 1), leading to three QLM messages of

type “✉ qlm(in.)”, which are addressed to both resi-

dents and the fridge, as illustrated in Figure 12.

Each QLM message is automatically processed by

the recipient QLM nodes using the handle() function

integrated into the DS agent, as highlighted in Fig-

ure 12. Because the received messages are of type

“✉ qlm(in.)”, box connectors 1, 3, 4, 5, 6, and 2 from

the flow chart in Figure 7 are solicited. Following the

explanations given in Figure 8(b), only (3 − 1) = 2

subscriptions are defined, namely, the two resident

smartphones that subscribe to InfoItem Thermostat on

the fridge (see arrows denoted by “1” and “2” in Fig-

ure 12). The fridge receives both subscription requests

and thus solicits box connectors 0, 1, and 2 in Figure 7

because a subscription is a special QLM read request.

After having created both subscriptions, the DIALOG

middleware embedded in the fridge returns the sub-

scription IDs to both subscribers (see arrows denoted

by “3” and “4” in Figure 12). At that time, data syn-

chronization 1 is ready for use.

Later, the woman requests to modify the Thermo-

stat value, as depicted in Figure 12 (see box denoted

by “Write Req”). The handle() function is therefore

solicited to find out how to process such a request.

Box connectors 1, 3, 4, 7, 11, 12, 13, 14, 15, 2 are so-

licited in the flow chart (see Figure 7) because Ther-

mostat is involved in an active synchronization of type

A-Pc and the woman’s phone has not been designated

as the Pc node. Accordingly, the request is automati-

cally forwarded to the fridge, as depicted by arrow “5”

in Figure 12. The fridge in turn solicits the handle()

function, which is allowed to modify Thermostat. Be-

cause data synchronization 1 created the appropriate

subscriptions, the new Thermostat value is automat-

ically pushed (via a QLM response) to both resident

phones, as shown in Figure 12 (see arrows “6a” and

“6b” respectively).

Similarly, data synchronization 2 (InfoItem

Progam) is set up to include the two residents and the

ventilator controller.

6.1.2. Data synchronization 3 (A-Ue)

Data synchronization 3 is similarly created, as il-

lustrated in Figure 13; three QLM messages of type

“✉ qlm(in.)” are respectively sent to the manufacturer,

the fridge, and the ventilator. As before, each QLM

message is automatically processed by the recipient

nodes using handle() (see Figure 13). Following the

explanations given in section 5.2, 3(3 − 1) = 6 sub-

scriptions are now defined between the three actors

(each actor subscribes to each of the others), as illus-

trated in Figure 13 (see the legend in Figure 12 for

more information). A network protocol analyzer has

been used to capture the set of QLM messages sent

and received by the fridge (see Figure 13). It can be

observed that the fridge first sends a subscription re-

quest to the Ventilator (“1a”), which responds back

via a QLM response including the ID of the created

subscription (“1b”). Similarly, the fridge sends a sub-

scription request to the manufacturer system (“2a”),

which also returns the ID of the created subscription

(“2b”). Then, the fridge receives the requests sent

by the ventilator (“3a”) and the manufacturer (“4a”).

The fridge creates the requested subscription (i.e., re-

garding InfoItem eSmart modes) and returns to both

13

in.✉

in.✉
in.✉

I

130.233.193.125 130.233.193.97

130.233.193.140

t t t

handle()1,3,4,5,6,2

handle()0,1,2

handle()0,1,2

handle()0,1,2

handle()0,1,2

handle()

1,3,4,5,6,2

handle()

handle()

handle()

handle()

handle() 1,3,4,5,6,2

handle() 0,1,2

handle() 0,1,2

handle()
0,1,2

handle() 0,1,2

HOME
User location =

Long Away

DIALOG
New
value handle() 0,1,2

New
value

handle()0,1,2
New
value

HOME
User location =

Home

DIALOG
New
value

handle()0,1,2
New
value

handle()0,1,2
New
value

1a
2a

1b

2b

3a

3b

4a

4b

5

6a
6b

✉

✉

Network protocol analyzer capturing the set of QLM messages
received and sent by the fridge controller

1a Subscription request sent to Ventilator

1b Response containing the subscription ID

2a Subscription request sent to Manufacturer

2b Response containing the subscription ID

3a Subscription request sent by the ventilator

3b Return the created subscription ID

4a Subscription request sent by the Manufact.

4b Return the created subscription ID

5 Receive QLM response with the new value

6a Sent QLM response with the new value

6b Sent QLM response with the new value

Figure 13: Sequence diagram and network protocol analyzer screenshots related to data synchronization 3 (A-Ue)

subscribers a response containing the subscription ID

generated by DIALOG (“3b” and “4b”). At that time,

data synchronization 3 is ready for use.

Later, the residents leave home for two weeks

and, accordingly, switch the eSmart modes interrup-

tor on the ventilator from Home to Long Away (see

Figure 13). Because data synchronization 3 created

the appropriate subscriptions, the new eSmart modes

value is automatically pushed (via a QLM response)

to both the fridge and the manufacturer system as

illustrated in Figure 13 (see arrow “5” and the net-

work protocol analyzer). This synchronization avoids

having a different mode selected on each controller

and therefore avoids having decisions being made

that have opposite effects (e.g., one controller trying

to cool the house while another tries to heat it be-

cause their statuses are not synchronized to the same

value). The synchronization also enables the man-

ufacturer to be notified about the non-presence of

the residents. When the residents come home, they

switch the eSmart modes interruptor from Long Away

to Home, as depicted in Figure 13, but this time using

the fridge controller. The sequence diagram as well as

the network protocol analyzer highlights the fact that

data synchronization 3 generates two QML responses,

which are sent by the fridge (DIALOG to be exact) to

the ventilator and manufacturer systems (see arrows

“6a” and “6b”).

This case study enabled validation of the two asyn-

chronous techniques (A-Pc; A-Ue) using the standard-

ized QLM interfaces. The next section provides a sim-

ilar case study but for health assistance purposes.

6.2. Health assistance

The healthcare scenario presented in this section

considers a basic activity of daily living, namely “jog-

ging”. The jogger wears a watch able to monitor dif-

ferent features of his body and environment, such as

the Heart Rate Variability (HRV), the muscle activity

(electromyography – EMG), distances traveled, and

other terrain features. A classic sport watch (Garmin

Forerunner 620) is used in this case study to moni-

tor both the jogger’s HRV and the jogging conditions

(weather events and elevation). When the jogger goes

home, such data is wirelessly transferred to his com-

puter, as shown in Figure 14. Three additional actors

are considered:

• the jogger’s cardiologist: the jogger agreed that

the cardiologist can access particular information

contained in the jogger’s database, such as the

HRV values and jogging conditions;

• the jogger’s neurologist and insurance company:

the jogger agreed that the cardiologist can com-

municate information related to the jogger’s

health to his neurologist and healthcare insurance

company. It is becoming common for insurance

companies to create financial incentives for peo-

ple who voluntarily share information about their

health (e.g., in US) [59, 60].

Only the cardiologist is allowed to retrieve informa-

tion from the jogger database and to communicate it

14

QLM cloud

HRV
sensor

Altimeter
sensor

QLM only

HRV

Altimeter

. . .

Diagnosis

Hypoxia
✓Abnormal HRV ✓

. . .
n
th diagnosis

QLM +
DR agent

+

Neurologist

♥
Diagnosis

Hypoxia
✓Abnormal HRV ✓

. . .
n
th diagnosis

QLM +
DR agent

+

Cardiologist

Diagnosis

Hypoxia
✓Abnormal HRV ✓

. . .
n
th diagnosisxx yy

+

Insurance company QLM + DR agent

1

1

1

2

2

2

n

n

n

sub

Legend

sub Conventional QLM subscription to InfoItem HRV

1 Data synchronization 1 related to InfoItem Hypoxia

2 Data synchronization 2 related to InfoItem Abnormal HRV

n Data synchronization n related to the n
th diagnosis

Figure 14: Healthcare environment and data synchronization between particular healthcare providers and companies

to authorized persons/organizations. The information

system of each actor is augmented with the QLM mes-

saging capabilities, as emphasized in Figure 14.

The cardiologist would like to subscribe to In-

foItems HRV and Altimeter, which are located in the

jogger’s database. Therefore, each time the jogger

goes home and information is updated in the database,

it will automatically be pushed to the cardiologist’s

database. Because only one actor (the cardiologist)

is interested in receiving such information, it is pos-

sible to directly use the subscription mechanism de-

fined in QLM-MI (i.e., there is no need to imple-

ment a data synchronization via the DR agent). Given

this observation, the cardiologist sends the QLM sub-

scription request detailed in Figure 15 to the jogger

database to subscribe to InfoItems HRV and Altimeter

(see rows 7 and 8 of the XML message) by includ-

ing his own address as the callback (see row 2) and

by setting the interval parameter to “-1” (see row 2)

that indicates that the cardiologist requests an event-

based subscription. Let us note that the “id” of the

Object contained by the message (see row 6 in Fig-

ure 15) corresponds to the jogger’s INSEE number,

which is globally unique. Once new values are pub-

lished in the jogger’s database and then pushed to the

cardiologist’s database, it is thus possible to analyze

and diagnose any disorder or disease (e.g., an abnor-

mal HRV). The cardiologist could even further sub-

scribe (in “real-time”) to additional information in the

jogger’s database. To avoid making the scenario too

complex, we assume that the cardiologist only formu-

lates diagnoses based on the HRV and Altimeter val-

ues. In this regard, both the neurologist and the in-

1 <qlmEnvelope xmlns=”QLMmi . xsd ” v e r s i o n=” 1 . 0 ”

t t l =”−1”>

2 < r e a d msgformat=”QLMdf . xsd ” i n t e r v a l=”−1”

c a l l b a c k =” h t t p : / / 2 0 7 . 4 6 . 1 3 0 . 1 / / Cardio DB

”>

3 <msg>

4 <O b j e c t s xmlns=”QLMdf . xsd ”>

5 <O b j e c t t y p e=”HRV”>

6 < i d>186055763003082< / i d>

7 < I n f o I t e m name=”HRV” />

8 < I n f o I t e m name=” A l t i m e t e r ” />

9 < / O b j e c t>

10 < / O b j e c t s>

11 < /msg>

12 < / r e a d>

13 < / qlmEnvelope>

Figure 15: QLM subscription (i.e., read) request sent by the cardi-

ologist to the jogger’s database to subscribe InfoItem HRV

surance company are interested in receiving such di-

agnoses (see the diagnosis list example given in Fig-

ure 15 considering n diagnoses). Notifying the neu-

rologist about an abnormal HRV could, for instance,

enable this expert to predict future epilepsy seizures,

as studied in [61, 62] (effects of epilepsy on the HRV

in the pre-ictal phase are analyzed), and eventually al-

low him to complement or modify the current diag-

noses list (according to his access rights).

Because several health service providers are al-

lowed to access and modify some of the diagnoses

contained in this list, data synchronization strategies

are required among these actors, depending on who is

allowed to modify them. If a diagnosis can be mod-

ified by several health service providers, a synchro-

nization of type A-Ue may be more appropriate. These

different (or potential) diagnosis synchronizations are

15

0.2 s

0.5 mV PR QT

RR RR

PR interval : 0.12 - 0.20s
QT interval : 0.40 - 0.43s
RR interval : 0.60 - 1.00s

Figure 16: HRV also known as RR intervals

represented in Figure 14 through lines denoted by 1,

2,. . . , n. More concretely, InfoItems that can be syn-

chronized in this platform are the different diagnoses

contained in the “diagnosis list”. Section 6.3 focuses

on data synchronization 2, i.e., the synchronization

of the diagnosis/InfoItem named Abnormal HRV that

can take two values: YES or NO.

6.3. Data synchronization 2

The HRV indicates the variation of beat to beat in-

tervals, also known as RR intervals. Figure 16 gives

insight into an HRV signal and related intervals. RR

intervals usually range between 0.6 and 1.0 s [63]. In

our case, both the cardiologist and neurologist can di-

agnose an abnormal HRV8 and, consequently, we de-

cide to implement a synchronization of type A-Ue be-

tween these actors. This implies that the DS agent is

required in the information system of each of these

actors (not in the jogger system), as emphasized in

Figure 14.

Figure 17 presents a scenario relying on data syn-

chronization 2, which is presented in the form of a se-

quence diagram. As previously described, two main

phases for synchronizing an InfoItem are required:

i. the initialization of data synchronization among

the actors;

ii. the ongoing synchronization process when fur-

ther events and information are entered in the sys-

tem (e.g., information uploaded in the jogger’s

database, detection of abnormal HRV. . .).

These two phases are highlighted in Figure 17; how-

ever, this section only focuses on phase ii. (see

the previous case study for more information about

phase i.). When considering phase ii., data synchro-

nization 2 (related to diagnosis Abnormal HRV) is

ready for use among the three health providers/com-

panies, and the cardiologist is subscribed to InfoItem

HRV located in the jogger’s database.

8The neurologist can diagnose such a disorder by performing,

for instance, tests directly on the patient.

The jogger goes home after jogging, and data are

automatically uploaded into his database (see “jog-

ging 1” in Figure 17). Because the cardiologist sub-

scribed to InfoItem HRV, related values are therefore

pushed to the appropriate system (see communication

denoted by “1” in Figure 17). Based on these values,

an abnormal HRV is detected (values too often exceed

1.0 s), and accordingly, the diagnosis/InfoItem Abnor-

mal HRV is changed from NO to YES (see Figure 17).

The modification of this InfoItem corresponds to a

write request in the cardiologist system, and because it

is synchronized using the “A-Ue” technique, box con-

nectors 1, 3, 4, 7, 11, 12, 13, and 2 from the handle()

function in Figure 7 are solicited, leading to the send-

ing of two QLM responses to the other systems in-

volved in data synchronization 2 (see arrows denoted

by “2a” and “2b” in Figure 17).

A pre-defined service in the neurologist system has

been configured to notify the neurologist when the di-

agnosis list is updated9. This corresponds to the frame

named “Alarm()” in Figure 17. Based on this noti-

fication, the neurologist would like to obtain the ex-

act HRV values to study possible epilepsy syndromes.

To comply with this requirement, the RESTful QLM

“discovery” mechanism proposed in the QLM stan-

dards is used to discover what types of jogger health

information the cardiologist has access to. Figure 18

gives insight into how such a mechanism can be used

via the Unix wget utility. This request consists, in

this example, of a URL where it is possible to retrieve

all QLM “Object”(s) and their related InfoItems and

other Object sub-elements that are currently available

in the cardiologist system, and thus accessible to the

neurologist. In our study, the jogger’s INSEE number

is known by all doctors and is used to access the “Ob-

jects” containing jogger information. wget 1 given

in Figure 18 shows how this request is performed us-

ing the jogger’s INSEE number (French National In-

stitute for Statistics and Economic Studies) and what

information is returned in the response (i.e., informa-

tion that is accessible), namely, InfoItems HRV and

Altimeter. The wget 1 command and the related re-

sponse correspond to arrows denoted by “3” and “4”

in Figure 14. The neurologist therefore decides to

request the retrieval of historical HRV values from

the cardiologist’s database (such values could even be

subscribed to and received as future values). Such

a request and its response respectively correspond

to the arrows denoted by “5” and “6” in Figure 17.

The retrieved values are then analyzed, leading to the

conclusion that the jogger has a high risk of having

an epilepsy seizure. The diagnosis list is then up-

dated in the neurologist system from NO to YES, as

highlighted in Figure 17. However, in our platform,

9A QLM write in our study is used to send the notification to a

mobile phone.

16

xx yy

+

Company insurance

+

Neurologist

♥

+

Cardiologist

jogging 1

in.✉

in.✉

in.✉

t t t t

handle()

1,3,4,5,6,2

handle()

handle()

1,3,4,5,6,2

handle()

1,3,4,5,6,2

handle()
... see section VI-A

...

handle()1,2

New
value

handle()1,2

New
value

Alarm()
✹

discovery()

handle()1,2

handle()1,2

Epilepsy risk = YES+✎ ()
cl.

✉

handle()

1,3,4,7,11,12,2 New
value

handle()1,2

Abnormal HRV = YES+✎ ()
cl.

✉

handle() 1,3,4,7,11,12,13,2
New
value

handle() 1,2

handle() 1,2

The cardiologist subscribed
beforehand to InfoItem HRV

to the jogger’s database

Uploading of
HRV values1

2a 2b

3

4

5

6

P
h
as

e
i.

P
h
as

e
ii

.

Legend

0,1,2,..15 Indicate what box connectors are respectively solicited in the flow chart given in Figure 7

QLM subscription request either performed by the DS agent (i.e., related to a synchronization) or performed outside

QLM response resulting from a conventional subscription to InfoItem HRV made by the Cardiologist

QLM response resulting from the set of data synchronizations in place

RESTful QLM “discovery” request followed by its QLM response

QLM read request followed by its QLM response

✹
Triggering of an alarm (sms, event. . .) to notify the doctor about a health issue

+✎ ()
cl.

✉
Jogger’s data is analyzed and a diagnosis is made about the jogger health,
which is therefore entered into the computer system

Figure 17: Sequence diagram related to the initialization and ongoing process of data synchronization 3 (“A-Ue”)

no synchronization regarding the InfoItem/diagnosis

named Epilepsy risk was set up between the three ac-

tors. As a consequence, the new diagnosis value is

not propagated to other healthcare providers/compa-

nies because InfoItem Epilepsy risk is not registered

in R, as highlighted in Figure 17 (box connectors 1,

3, 4, 7, 11, 12, and 2 from the flow chart in Figure 7

are solicited). It is, nonetheless, simple to further ac-

tivate such a synchronization (if necessary), as was

done previously for the diagnosis Abnormal HRV.

+

Neurologist ♥

+

Cardiologist

t t

wget 1
wget http://dialog.hut.fi/qlm/Objects/186055763003082

<Object>

<id>186055763003082</id>

<InfoItem name="HRV"/>

<InfoItem name="Altimeter"/>

</Object>

Jogger INSEE number

Figure 18: RESTful QLM “discovery” mechanism used by doctors

6.4. Synthesis

The case study carried out on home automation

placed major emphasis on the initiating phase of our

data synchronization proposals and on showing that

the synchronization/replication constraints were re-

spected. In the healthcare scenario, we showed how

these synchronization strategies can take advantage

of other generic interfaces defined in QLM (con-

ventional subscription, QLM “discovery” mechanism,

etc.). It should be noted that in both case studies, we

did not consider any domain-specific application such

as home automation software (e.g., OpenHAB R©) or

healthcare software (e.g., McKESSON R©), which re-

quire further developments and frameworks to be inte-

grated into the IoT, or to be more exact, into the QLM

cloud for making it possible to use the proposed multi-

DS agent system. First investigations on such an inte-

gration (regardless of the data synchronization aspect)

have nonetheless been carried out in [64].

The support of traditional data synchronization

mechanisms based upon QLM now lays a solid

groundwork to develop and propose more advanced

(PLM) services to users and professionals, as has been

shown through a few examples (alarm triggers, data

analysis, discovery of information and services). In

this regard, new strategies for context-aware data dis-

tribution could further be developed to automatically

set up the appropriate data synchronization between

relevant product stakeholders and systems. The re-

cent survey on context aware data distribution in the

IoT field carried out by Bellavista et al. [65] provides

17

a threefold classification of distribution-related ser-

vices (including synchronization services) as: i) un-

aware (the service level neither reaches nor influences

run-time adaptation support strategies); ii) partially-

aware (services can influence the run-time adaptation

support); or iii) totally-aware (the run-time adaptation

support does not perform anything on its own, and it

is the service level that completely drives reconfigu-

rations). Following this classification, it can be stated

that our multi-DS agent system is currently unaware

of the product context and environment. Indeed, cur-

rently, the parameters specified in the initiate() or

remove() function are entered by the user/engineer

(see Figure 12). However, the standardized and ad-

vanced QLM interfaces offer new possibilities to de-

sign partially-aware or totally-aware algorithms/ser-

vices to automatically set the appropriate parame-

ter values according to the product context, the user

needs, and possibly other relevant surrounding infor-

mation, thus making the synchronization setting trans-

parent to the user/engineer. Such a new generation

of context-aware services is of particular importance

in the context of PLM because product stakeholders

are increasingly looking for full-services that make it

possible to retrieve consistent information about their

products under in-use conditions, to learn how their

products behave, and to self-react according to the

product and user contexts. This is all the more im-

portant in light of context-aware distribution & syn-

chronization services, as reported by Bellavista et al.

who state that such services able to self-adapt au-

tonomously depending on current management con-

ditions is still an unexplored research field.

On a final note, in both scenarios and especially in

healthcare environments, we deliberately neglected is-

sues of user’s privacy and security policies because

the primary goal was to validate the feasibility of the

multi-DS agent system.

7. Conclusion and discussion

Networks, systems, and products of the 21st century

transcend the traditional organizational boundaries

because every “thing” will literally become “con-

nected” to the so-called IoT. To a certain extent, the

IoT concept also relies on the automatic capture of

observations of physical objects at various locations

and times, their movements between locations, sen-

sor data collected from sensors attached to the ob-

jects, and so forth. This vision of the IoT is closely

linked to the concept of Product Lifecycle Manage-

ment (PLM), which is a strategic approach to enable

all participants and decision-makers to have a clear,

shared understanding of the product life. It is a fact

today that more advanced applications, services, and

interfaces must be built in the IoT to enable interac-

tions among various “things” throughout the product

lifecycle (devices, products, users, enterprise infor-

mation systems. . .). In the past few years, there has

been growing interest in proposing standards that ful-

fill these requirements, but so far, none of them have

become the official or de facto IoT standard. Recently,

Quantum Lifecycle Management (QLM) messaging

specifications have been developed and proposed to

become such a standard (official QLM specifications

should be made public during 2014). QLM standards

provide high-level abstraction communication inter-

faces that significantly enhance data exchange inter-

operability in the IoT or, from another perspective, in

PLM environments.

Our research claims that proposed solutions, mod-

els, and tools sufficiently portable and independent of

specific vendors, networks, or applications have to be

developed based on such generic interfaces, to the ex-

tent possible. This paper focuses on an essential as-

pect of PLM, which involves improving “information

consistency” throughout the product lifetime using

such independent and interoperable solutions. Infor-

mation consistency can be maintained by implement-

ing, among others, data synchronization mechanisms.

Accordingly, this paper investigates and develops data

synchronization models based upon QLM that facil-

itate the synchronization of any product-related in-

formation among various and distinct lifecycle enti-

ties (e.g., distinct organizations, networks, informa-

tion systems, devices. . .). The originality of this re-

search initiative lies in the fact that these models do

not require the addition of any software or hardware

with QLM, which significantly increases the scope of

possible applications. As a first step, this paper fo-

cuses on “asynchronous” data synchronization mod-

els. A software agent, referred to as a DS agent, has

been developed to enable the integration of the con-

ceptual models investigated in this paper. It is very im-

portant to note that these models are generic enough

to be used with any other Messaging protocol (i.e.,

other than QLM) under the condition that this protocol

must support, at least, the following functionalities: i)

support for read and write operations, ii) support for

an event-based subscription mechanism with callback

address, and iii) support for asynchronous communi-

cations (e.g., using a TTL parameter). Therefore, if

QLM fails in its attempt to become the de facto stan-

dard for IoT data exchange, the conceptual models

proposed in this paper could be easily integrated into

other standards/protocols.

The DS agent has been implemented in various

platforms that are presented in this paper, namely,

home automation and healthcare platforms, which al-

lowed us to demonstrate its practical integration with

QLM. These scenarios also provide first examples on

how our proposals can help with defining and offering

new types of services to customers and professionals.

If QLM standards could come to be used in numerous

18

organizations and applications from different lifecycle

phases, the support of traditional data synchronization

principles based upon QLM could lead to substantial

time and cost savings.

References

[1] K. Ashton, Internet things – MIT, embedded technology and

the next internet revolution, in: Baltic Conventions, The Com-

monwealth Conference and Events Centre, London, (2000).

[2] N. Gershenfeld, R. Krikorian, D. Cohen, The Internet of

Things, Scientific American 291(4) (2004) 76–81.

[3] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A

survey, Journal 54(15) (2010) 2787–2805.

[4] M. Harrison, The ‘Internet of Things’ and commerce, XRDS:

Crossroads, The ACM Magazine for Students 17(3) (2011)

19–22.

[5] A. Sääksvuori, A. Immonen, Product lifecycle management,

Springer, 2002.

[6] J. Stark, Product lifecycle management: 21st century

paradigm for product realisation, Springer, 2011.

[7] F. Ameri, D. Dutta, Product lifecycle management: closing

the knowledge loops, Computer-Aided Design and Applica-

tions 2(5) (2005) 577–590.

[8] G. Chryssolouris, D. Mavrikios, N. Papakostas, D. Mourtzis,

G. Michalos, K. Georgoulias, Digital manufacturing: history

perspectives, and outlook, in: Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manu-

facture 223(5) (2009), 451–462.

[9] G. Meyer, K. Främling, J. Holmström, Intelligent products: A

survey, Computers in Industry 60(3) (2009) 137–148.

[10] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos,

Context Aware Computing for The Internet of Things: A Sur-

vey, IEEE Communications surveys & Tutorials (99) (2013)

1–41.

[11] K. Främling, J. Holmström, J. Loukkola, J. Nyman, A.

Kaustell, Sustainable PLM through Intelligent Products, En-

gineering Applications of Artificial Intelligence 26(2) (2013)

789–799.

[12] D. Chen, G. Doumeingts, F. Vernadat, Architectures for enter-

prise integration and interoperability: Past, present and future,

Computers in Industry 59(7) (2008) 647–659.

[13] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-

aware systems, International Journal of Ad Hoc and Ubiqui-

tous Computing 2(4) (2007) 263–277.

[14] D. Uckelmann, M. Harrison, F. Michahelles, An architectural

approach towards the future Internet of Things, in: Springer-

Verlag Berlin Heidelberg (2011), 1–24.

[15] K. Främling, S. Kubler, A. Buda, Universal messaging

standards for the IoT from a lifecycle management per-

spective, IEEE Internet of Things Journal (2014), DOI:

10.1109/JIOT.2014.2332005.

[16] M. Harrison, A. K. Parlikad, Lifecycle ID and lifecycle data

management, Tech. Rep.: AUTO-ID Labs, AEROID-CAM-

005, 2006.

[17] A. H. Huang, A model for environmentally sustainable infor-

mation systems development, Journal of Computer Informa-

tion Systems 49(4) (2009) 114–121.

[18] M. Butrico, N. Cohen, J. Givler, A. Mohindra, A. Pu-

rakayastha, D. G. Shea, J. Cheng, D. Clare, G. Fisher, R.

Scott, Y. Sun, M. Wone, Q. Zondervan, Enterprise data access

from mobile computers: an end-to-end story, in: 10th Inter-

national Workshop on Research Issues in Data Engineering,

(2000), 9–16.

[19] K.-D. Thoben, J. Eschenbächer, H. Jagdev, Extended prod-

ucts: evolving traditional product concepts, in: 7th Interna-

tional conference on concurrent enterprising engineering the

knowledge economy through co-operation, Bremen, (2001),

429–439.

[20] K. Främling, T. Ala-Risku, M. Kärkkäinen, J. Holmström,

Agent-based model for managing composite product informa-

tion, Computers in Industry 57(1) (2006) 72–81.

[21] M. Kärkkäinen, T. Ala-Risku, K. Främling, The product cen-

tric approach: a solution to supply network information man-

agement problems?, Computers in Industry 52(2) (2003) 147–

159.

[22] D. McFarlane, S. Sarma, J. L. Chirn, C. Y. Wong, K. Ashton,

The intelligent product in manufacturing control and manage-

ment, Journal of EAIA, (2002) 54–64.

[23] M. Kärkkäinen, J. Holmström, K. Främling, K. Artto, Intelli-

gent products–a step towards a more effective project delivery

chain, Computers in Industry 50(2) (2013) 141–151.

[24] Y. Sallez, T. Berger, D. Deneux, D. Trentesaux, The lifecycle

of active and intelligent products: The augmentation concept,

International Journal of Computer Integrated Manufacturing

23(10) (2010) 905–924.

[25] D. Kiritsis, A. Bufardi, P. Xirouchakis, Research issues on

Product Lifecycle Management and information tracking us-

ing smart embedded systems, Advanced Engineering Infor-

matics 17(3) (2003) 189–202.

[26] D. Kiritsis, Closed-loop PLM for intelligent products in the

era of the Internet of Things, Computer-Aided Design 43(5)

(2011) 479–501.

[27] L. N. Van Wassenhove, V. D. R. Guide, Closed-loop supply

chains, Pittsburgh, 2003.

[28] D. S. Rogers, R. S. Tibben-Lembke, Going backwards: re-

verse logistics trends and practices, Reverse Logistics Execu-

tive Council Pittsburgh, PA, 1999.

[29] S. Dynes, L. Kolbe, R. Schierholz, Information Security in the

Extended Enterprise: a research agenda, in: 13th Americas

conference on information systems, 4322–4333, 2007.

[30] A. Koronios, D. Nastasie, V. Chanana, A. Haider, Integration

through standards–An overview of international standards for

engineering asset management, in: 4th International Confer-

ence on Condition Monitoring, Harrogate, (2007), 11–14.

[31] H. Jun, D. Kiritsis, P. Xirouchakis, Research issues on closed-

loop PLM, Computers in Industry 58(8) (2007) 855–868.

[32] K. Michael, L. McCathie, The pros and cons of RFID in sup-

ply chain management, in: International conference on mo-

bile business, (2005), 623–629.

[33] G. C. Initiative, Capgemini, Global data synchronisation at

work in the real world-Illustrating the business benefits, Tech.

Rep.: Global Commerce Initiative and Capgemini, 2005.

[34] M. Tajima, Strategic value of RFID in supply chain manage-

ment, Journal of purchasing and supply management 13(4)

(2007) 261–273.

[35] S. Lockhead, The Global Data Synchronisation Network

(GDSN): Technology and standards improving supply chain

efficiency, in: IEEE International Technology Management

Conference, (2011), 630–637.

[36] S. Suzuki, M. Harrison, Data synchronization specification.

Aerospace-ID program report., Tech. Rep., Auto-ID Labs,

University of Cambridge, 2006.

[37] F. Thiesse, C. Floerkemeier, M. Harrison, F. Michahelles, C.

Roduner, Technology, standards, and real-world deployments

of the EPC network, IEEE Internet Computing 13(2) (2009)

36–43.

[38] K. Nakatani, T.-T. Chuang, D. Zhou, Data synchroniza-

tion technology: standards, business values and implications,

Communications of the Association for Information Systems

17(1) (2006) 962–994.

[39] Pumatech, Invasion of the data snatchers, in: White paper,

1999.

[40] S. Agarwal, D. Starobinski, A. Trachtenberg, On the scala-

bility of data synchronization protocols for PDAs and mobile

devices, IEEE Network 16(4) (2002) 22–28.

[41] R. M. Mettala, A. Purakayastha, P. Thompson, SyncML: Syn-

chronizing and managing your mobile data, Prentice Hall Pro-

fessional, 2002.

[42] J. Pak, K. Park, UbiMMS: an ubiquitous medication moni-

19

toring system based on remote device management methods,

The Journal of Healthcare Information Management 41(1)

(2012) 26–30.

[43] Y.-C. Chen, H.-C. C., M.-D. Tsai, H. Chang, C.-F. Chong, De-

velopment of a personal digital assistant-based wireless appli-

cation in clinical practice, Computer methods and programs in

biomedicine 85(2) (2007) 181–184.

[44] F. Gil-Castineira, D. Chaves-Dieguez, F. González-Castaño,

Integration of nomadic devices with automotive user inter-

faces, IEEE Transactions on Consumer Electronics 55(1)

(2009) 34–41.

[45] G. Lu, D. Seed, M. Starsinic, C. Wang, P. Russell, Enabling,

Smart Grid with ETSI M2M Standards, in: IEEE Wireless

Communications and Networking Conference Workshops,

(2012), 148–153.

[46] M. Castro, A. J. Jara, A. F. G. Skarmeta, Smart Lighting so-

lutions for Smart Cities, in: 27th International Conference on

Advanced Information Networking and Applications Work-

shops, (2013), 1374–1379.

[47] Y. Tian, J.-P. Li, Research and implementation of data syn-

chronization with SyncML, in: IEEE International Confer-

ence on Wavelet Active Media Technology and Information

Processing, (2012), 302–304.

[48] S. Kubler, M. Madhikermi, A. Buda, K. Främling, 10th In-

ternational Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, Tokyo, (2012).

[49] R. Ladin, B. Liskov, L. Shrira, S. Ghemawat, Providing

high availability using lazy replication, ACM Transactions on

Computer Systems 10(4) (1992) 391–425.

[50] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,

Database replication techniques: A three parameter classifica-

tion, in: 19th IEEE Symposium on Reliable Distributed Sys-

tems, (2000), 206–215.

[51] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,

Understanding replication in databases and distributed sys-

tems, in: ICDCS, (2000), 464–487.

[52] J. Gray, P. Helland, P. O’Neil, D. Shasha, The dangers of repli-

cation and a solution, SIGMOD Rec. 25 (1996) 173–182.

[53] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, A. Demers,

Flexible update propagation for weakly consistent replication,

in: Operating Systems Review, SIGOPS, (1997), 288–301.

[54] A. T. M. Aerts, N. B. Szirbik, J. B. M Goossenaerts, A

flexible, agent-based ICT architecture for virtual enterprises,

Computers in Industry 49(3) (2002) 311–327.

[55] P. Valckenaers, M. Kollingbaum, H. Van Brussel, Multi-agent

coordination and control using stigmergy, Computers in In-

dustry 53(1) (2004) 75–96.

[56] L. Monostori, J. Váncza, S. R. T. Kumara, Agent-based sys-

tems for manufacturing, CIRP Annals-Manufacturing Tech-

nology 55(2) (2006) 697–720.

[57] W. Shen, D. H. Norrie, Agent-Based Systems for Intelligent

Manufacturing: A State-of-the-Art Survey, Knowledge and

Information Systems, an International Journal 1(1999) 129–

156.

[58] J. Ferber, Multi-agent systems: an introduction to distributed

artificial intelligence, Addison-Wesley Reading, 1999.

[59] J. Leber, Health Insurer’s App Helps Users Track Themselves,

http://www.technologyreview.com/news/516176/health-

insurers-app-helps-users-track-themselves, 2013.

[60] K. Reijonsaari, A. Vehtari, W. Van Mechelen, T. Aro, S.

Taimela, The effectiveness of physical activity monitoring

and distance counselling in an occupational health setting –

a research protocol for a randomised controlled trial (CoAct),

BMC public health 9(1) (2009) 494.

[61] D. H. Kerem, A. B. Geva, Forecasting epilepsy from the heart

rate signal, Medical and Biological Engineering and Comput-

ing 43(2) (2005) 230–239.

[62] S. Behbahani, N. J. Dabanloo, A. M. Nasrabadi, G. Attarodi,

C. A. Teixeira, A. Dourado, Epileptic seizure behaviour from

the perspective of heart rate variability, in: Computing in Car-

diology, Krakow, (2012), 117–120.

[63] E. Rodriguez, A. de Luca, M. Meraz, J. Alvarez-Ramirez,

Breakdown of scaling properties in abnormal heart rate vari-

ability, Journal of Applied Research and Technology 4(1)

(2006) 82–97.

[64] N. Shrestha, S. Kubler, K. Främling, Standardized framework

for integrating domain-specific applications into the IoT, in:

2nd International Conference on Future Internet of Things and

Cloud, (2014).

[65] P. Bellavista, A. Corradi, M. Fanelli, L. Foschini, A Survey of

context data distribution for mobile ubiquitous systems, ACM

Computing Surveys 45(1) (2013) 1–49.

20

	Introduction
	IoT and data synchronization background from a PLM perspective
	Product Lifecycle Management (PLM)
	Inter-organizational data synchronization

	Data synchronization principles
	QLM messaging standards
	QLM Data Format (QLM-DF)
	QLM messaging interface (QLM-MI)

	Strategy for asynchronous data synchronization using QLM
	``initiate" and ``remove" synchronization
	``handle" synchronization
	Object – DSinit
	Object – DSrem
	Object – other types

	Case study
	Home automation
	Data synchronization 1 and 2 (A-Pc)
	Data synchronization 3 (A-Ue)

	Health assistance
	Data synchronization 2
	Synthesis

	Conclusion and discussion

