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Abstract—The emerging massive embedded vision market is
driving demanding and ever-increasing computationally com-
plex high-performance and low-power MPSoC requirements. To
satisfy these requirements innovative solutions are required to
deliver high performance pixel processing combined with low
energy per pixel execution. These solutions must combine the
power efficiency of ASIC style IP while incorporating elements
of Instruction-Level Processors flexibility and software ecosystem.

This paper introduces Analog Devices BF609’s Pipelined
Vision Processor (PVP) as a state-of-the-art industrial solution
achieving both efficiency and flexibility. The PVP incorporates
over 10 function level blocks enabling dozens of programmable
functions that can be allocated to implement many algorithms
and applications. Additionally, the pipelined style connectivity is
programmable enabling many temporal function permutations.
Overall, the PVP offers greater than 25 billion operations
per second (GOPs) and very low memory bandwidth. These
capabilities enable the PVP to execute multiple concurrent ADAS,
Industrial, or general vision applications. This paper focuses on
the key architecture concepts of the PVP from individual function-
block construction to the allocation and chaining of functional
blocks to build function based application implementations. The
paper also addresses the benefits and challenges of architecting
and programming at the function-level granularity and abstrac-
tions.

I. INTRODUCTION

Embedded vision computing is recognized as a top tier,
rapidly growing market. Embedded vision refers to deploying
visual capabilities to embedded systems for better understand-
ing and analysis of two and three-dimensional surrounding
environments [[1]. Market examples are Advanced Driver Assist-
ance System (ADAS), industrial vision and video surveillance.
ADAS market forecasts call for a global value growth from $10
billion in 2011 to $130 billion in 2016 [2] (13-fold projected
growth). Examples of ADAS applications are pre-crash warning
and/or avoidance, lane departure warning (LDW), traffic sign
recognition (TSR), and general object classification, tracking
and verification (highlighted in Fig. [I).

Vision Processing and Video Recognition increase the
demand for extremely high performance coupled with very low
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power. With a frame rate of 30FPS and a high definition
resolution like 1280x960 Pixels/Frame, 37 million safety-
critical pixels per second stream real-time into the front-end
of an ADAS system. Many concurrent operations drive the
pixel compute complexity well into the many billions of pixel
operations per second (GOPs) range. Vision processing systems
must tackle these extreme compute intensive challenges while
consuming very little power (often less than 1W). Additionally,
these solutions must be offered at remarkably low price points.
With these requirements and constraints, embedded vision
architects face many challenges as they set out to architect and
implement vision processing solutions.

(a) Intelligent Automotive control (b) Lane Departure Warning

system. (LDW).

Figure 1: ADAS market applications

New, innovative architecture solutions are required to ef-
ficiency realize vision algorithms. Solutions solely based on
Instruction-Level Processors (ILPs) burn too much energy per
operation often making a software-only solution infeasible.
Conversely, ASIC style IP approaches can yield very high
performance and great power efficiency but lack the highly
desirable flexibility and software eco-system offered by ILPs.
As a result, we have taken an architectural approach composing
our heterogeneous multi-processor system on chip (MPSOCs)
out of flexible and programmable ASIC style IP combined
with one or more ILPs.

Embedded vision applications are comprised of a vast
and continuously evolving reservoir of algorithms. Designing



dedicated hardware IP for individual applications is cost
prohibitive due to very expensive (and rising) fabrication &
mask Non-Recurring Engineering (NRE) costs. At the same
time, a proper architecture solution needs to provide enough
performance and efficiency for each application within any
targeted market, increase productivity and reduce the overall
design and development costs. This dramatically increases the
pressure for new, innovative solutions that strike the balance
of performance, flexibility and efficiency.

In this paper, we introduce the Pipeline Vision Processor
(PVP) within Analog Devices Blackfin BF60x [3]. The PVP
provides a power and performance efficiency comparable
to custom hardware design as well as flexibility within
embedded vision domain with special focus on Advanced
Driver Assistance System (ADAS) systems. The PVP is a
composition of eleven programmable function blocks. The
PVP blocks are connected through a customized MUX-based
interconnection to create a macro datapath for many vision
algorithms. This article overviews the architecture concepts
of PVP from function-block construction via function block
chaining to PVP system integration into an MPSoC.

The remainder of this paper is organized as following.
Section [[I] briefly reviews the related work. Section out-
lines the PVP decomposition. Section [[V| provides the detail
regarding the different PVP architectural aspects. Following
that, Section [V| outlines the PVP potential for the research
community. Finally, Section [VI| concludes this paper.

II. RELATED WORK

With the demand for power-efficient high-performance
architectures, significant research effort has been invested into
utilizing hardware accelerators and building heterogeneous
architectures. Accelerator-Rich CMPs [4]], Accelerator-Store [5]],
Platform 2012 [6], QSCORE [7]] are a few examples. Hybrid
ILP with offload hardware accelerator engines are attractive for
many markets, such as the IBM power EN for cloud computer
systems [8], or Texas Instruments (TT) DaVinci platform [9]
with specialized vision/video processing accelerators. These
approaches demonstrate significant performance improvement
while reducing energy per operation through execution of
application hot-spots on the custom hardware. However, in
contrast to the PVP concept, the hardware accelerators are
considered as co-processors instead of autonomous processing
elements. As such the accelerators always depend on the main-
ILP for operating on data streams.

III. PVP OVERVIEW

This section overviews the architecture of Analog Devices’
Pipeline Vision Processor (PVP) [3]]. Analog Devices’ BF60x
SoC combines two ILP Blackfin DSP cores with the PVP
as part of the video subsystem (VSS) for high-performance
vision analytics as shown in Fig. 2| The PVP is an autonomous
heterogeneous processing node with direct access to the system
memories. Many different pixel pipelines can be composed
with the VSS leading to very efficient application realizations
with low memory subsystem bandwidth.

ADSP-BF60x

Pixel Crossbar

Video Subsystem

Figure 2: PVP system integration

PVP offers more than 25 billion operations per second
(GOPs) with very low memory bandwidth and configur-
able macro datapaths. PVP operates on frame rates up to
1280x960x30Hz (16bits) and supports multiple concurrent
applications across several embedded vision markets (through
concurrent pipelines). Representative applications (potentially
concurrent) include: lane departure warning (LDW), traffic
sign recognition (TSR), high-beam/low-beam (HBLB), ob-
ject/pedestrian identification and tracking, robotic and machine
vision.

Fig. [3] shows a coarse-gain decomposition of the PVP
including number and type of function blocks and their
connectivity. The PVP contains eleven function blocks (FBs):
four 2D convolution (CNV), arithmetic unit (ACU), polar
magnitude and Angle (PMA), 2D pixel-edge classifier (PEC),
two threshold-histogram-compression (THC), two 2D integral
image (IIT). Some FBs have multiple instances (e.g. four CNV
blocks, CNV is part of many algorithms). Furthermore, the PVP
supports input and output stream formatters to aid in receiving
input pixels and writing results to the memory subsystem.

PVP offers customized FB-to-FB communication requiring
no interaction with the system memory. The communication
is MUX-based with support for runtime re-configurability.
FB-to-FB communication within PVP has been architected
based on typical flows across target applications. After initial
configuration, the PVP operates independently on the input
data streams like an autonomous processor core. Concurrent
applications run in parallel data pipelines. The PVP includes
multiple DMAs for data streams. The PVP can fetch block
and datapath configuration independently for on-the-fly re-
configuration without ILP core intervention.
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IV. PVP ARCHITECTURE

This section discusses the PVP in more detail, including:
block level exploration, inter-block communication, PVP
control and memory access, system integration and finally
software level abstraction.

A. Function Blocks

Analog Devices has identified function blocks based on mar-
ket requirements taking into account general vision algorithms
and applications requirements, and incorporated customer
feedback and general vision trends. The blocks have been
initially targeted across several key vision markets and support
a rich set of edge detection and feature extraction algorithms.
This section summarizes the functionality of the primary blocks.

Input Formatter (IPF): 1IPFs can recieve data directly from
the video input interface (the Enhanced Parallel Peripheral
Interface (EPPI)) and from memory through DMA. IPFs incor-
porate pre-processing including color or luminance components
extraction, pixel windowing, frame counting, and control the
frame processing.

2D Convolution (CNV): PVP features four convolution
blocks. Convolution blocks support 2D convolution for varying
pixel ranges (1x1, 3x3, 5x5) and up to 16-bit coefficients. CNV
block coefficients can be configured to realize Gaussian image
smoothing, and calculating the first and second derivatives of
pixel ranges.

Arithmetic Unit (ACU): supports general purpose integer
operations (ADD, SUB, 32-bit multiply, 32-bit divide), shift
and logical operations, as well as internal 37-bit ACC and
Barrel shifting scaled to 32-bit results. Having the ACU inside
PVP avoids extra interaction with the host ILP. The ACU also
supports multiple pipelined arithmetic operations to aid in the
pixel pipeline algorithm mapping.

Polar Magnitude and Angle (PMA): converts two 16-
bit signed inputs in Cartesian format (x,y) into Polar form
(Magnitude, Angle). The PMA can be employed to identify
non-zero pixel crossing in many edge detection algorithms.

Pixel-Edge Classifier (PEC): PEC supports edge detection
including: non-linear edge enhancement filtering in a pixel
neighborhood, edge classification based on orientation, sub-
pixel position interpolation, vertical/horizontal sub-pixel po-
sition into one byte per pixel. PEC operates either in first
derivative mode (PEC-1) or second derivative mode (PEC-2).

Threshold-Histogram-Compression (THC): PVP features
two THC blocks that implement a collection of statistical and
range reduction signal processing functions including pixels
classification, rounding up to nearest threshold and finding
maximum values.

Integral Image (IIT): Two IIT blocks calculate a 2-
dimensional (2D) integral over the input pixels window.
Alternatively, IIT computes the horizontal 1D sum.

Output Formatter (OPF): PVP features four OPF Blocks,
three assigned for the video pipe and one for the memory pipe.
The output formatters receive the data results from the PVP
processing blocks and apply final formatting. For each OPF
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an individual DMA channel is assigned for writing the results
to memory.

As indicated, each function block can operate in different
operating modes varying on input and output. To control
the behavior, each block contains control and configuration
registers. They adjust the performed computation giving each
function block a specific personality, thus enabling construction
of different macro pipelines. Some blocks (e.g. CNV, IIT)
contain internal data buffers to store the required data structures
to be operated on by the block. With the 2D data nature, these
buffers store a few pixel rows before performing the operation
(e.g. 1D and 2D derivatives). Although, the block internal
buffers introduce an initial latency, the PVP has a throughput
of one pixel per cycle.

To visualize more detail, Fig. illustrates the structure of two
function blocks: PMA and THC. The PMA block (highlighted
in Fig. fa) translates from Cartesian coordinates (x, y) to polar
coordinates (angle v, magnitude M). PMA receives Cartesian
coordinates (16 bit signed each) from two inputs, and produces
three outputs: M (16 bits), ¥ (5 bits) and M + ¢ (21 bits).
Furthermore, the PMA block offers control registers to control
the operations and the desired output ports on a frame by frame
basis.

The THC function block is shown in Fig. Bbl THC has
more functional diversity than PMA, and offers three operation
modes: clipping, quantification and hysteresis modes, selectable
through control registers. THC also offers variable thresholds
(programmable at run-time) operating on histogram values. The
THC realizes basic statistical and control flow operations (if-
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Figure 5: Block allocation for Sobel edge detection



then-else conditions). It has low computational complexity
and thus is not an intuitive choice for HW acceleration.
However, by adding THC blocks to PVP, it allows for keeping
the computation/communication local, avoiding unnecessary
interactions with an ILP for simple operations, and thus
significantly contributes to efficiency.

Function blocks can be composed into a macro pipeline for
realizing applications. Fig. 5] shows a simple allocation for a
Sobel Edge Detection algorithm [3]. Two CNV blocks calculate
horizontal and vertical components of the first derivative
gradients in parallel. Their outputs are routed to the PMA. At
the output of PMA, the non-zero crossing pixels are potential
edge pixels. To identify the actual edge pixels PEC processes
the PMA output for edge classification. In the next subsection,
we describe how the PVP realizes highly efficient block-to-

B. Interconnecting Function Blocks

Function blocks in the PVP are connected through a
customized block-to-block MUX-based interconnect. In result,
the transferred data among PVP block remains local, not hitting
the memory subsystem and thus significantly reducing system
memory bandwidth. A run-time configurable MUX-based inter-
connect realizes the PVP block-to-block communication. Input
data to individual ports can be routed from different source
function blocks selected by input MUXs. The connectivity
provides a number of ways to connect block outputs as
inputs to other blocks. In this way, the blocks can be directly
fused together. For example, PMA (Fig. fa) can get input
data both from the input formatter or the CNV blocks. Only
selected communication paths are realized where semantically
meaningful. For example, PMA’s magnitude output port only
connects to THC and PEC.

Fig. [6] outlines the function block connectivity between
the PVP blocks. The block-to-block communication paths
have been architected based on typical vision flows across
many applications. The pipeline structure is composed by
programming multiplexers from the output of blocks to the
input of other blocks. Instead of an all-to-all connectivity among
all function blocks, PVP offers a selective connectivity derived
by the possibility of application decomposition. For the purpose
of connectivity organization and efficient PVP-internal pixel
pipe connectivity allocations, the blocks have been grouped
into five stages. The first and last stages belong to /PF and OPF
respectively, the remaining blocks spread between three middle
stages: Convolution blocks (CNV) in second stage, ACU, PMA
and PEC in the third stage, and /IM and THC in the fourth
stage. The PVP offers connection between blocks within the
same stage as well as forward connection including bypassing
single our multiple stages.

C. PVP Control and Configuration

After initial configuration, the PVP operates independently
as an autonomous processor on the input/output data streams.
Furthermore, the PVP supports runtime application switching
at granularity of each new image frame. The PVP can be
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Figure 6: The PVP programmable MUX-based block to block
connection.

configured in two different ways: register-based and DMA
based programming.

In register-based programming, the host ILP programs
the PVP by writing the configuration data into Memory
Mapped Registers (MMRs). The MMR registers provide the
configuration knobs for individual blocks (e.g. CNV, THC) as
well as construction of the PVP datapath (interconnecting the
PVP function blocks). After configuration, the desired PVP
operation starts with the next coming frame.

In DMA-based programming, the PVP fetches configuration
data through specialized configuration DMA channels. The
DMA-based method is derived from the descriptor-based
programming method. For the PVP, it does not make any
difference whether a memory-mapped register has been written
by the host ILP (MMR-based programming) or written by
configuration DMA. By deploying DMA-based programming,
the PVP can operates autonomously and even be reconfigured
on-the-fly independent from the ILP core interaction.

To support on-the-fly reconfiguration, PVP employs the
double buffering techniques for the MMRs. While PVP is
working on its current frame, the new configuration data can
be written to the PVP MMRs. The reconfiguration is applied
by the end of processing current frame and before starting the
processing of next coming frame. In result, new configuration
are written any time and will be properly synchronized with
pipe progress by hardware. The data structure for configuration
data is called the block configuration structure (BCS). The PVP
control DMA supports fetching and storing of multiple BCSs
to facilitate runtime PVP datapath reconfiguration; comparable
to multi-thread scheduling and execution in ILP cores.



D. PVP System Integration

Analog Devices has paired the PVP with two Blackfin DSP
cores to expand both flexibility as well as efficiency in creating
more complex applications (entire vision flow). In fact, the
PVP adds a new degree of heterogeneity to the Blackfin cores
only based SoCs. The integration supported by large on-chip
memory (4.3Mbit SRAM) to keep the data on-chip as much as
cost and area allows. Highly efficient system bandwidth features
a rich peripheral set and connectivity options including ADIs
Enhanced Parallel Peripheral Interfaces (EPPI) specialized for
streaming input pixels from the video camera.

In the current integration, the PVP often performs the more
compute intensive portion of applications which map well to
the PVP blocks, and the Blackfin cores mainly execute the
higher level analysis (which is ILP suitable). Miscellaneous
functions that are not supported by PVP blocks also have to
be mapped to the system ILPs. Input/output streaming through
DMA channels allows interfacing between the Blackfin cores
and the PVP to create more complex applications. Much of
the interactions occur through the interrupts of the PVP DMA
channels. For example, the DMA completion interrupt signal
announces that the data output DMA stored all results in system
memory.

The PVP supports two architecture concepts, the camera pipe

and the memory pipe at the same time (outlined in Section [III).

The camera pipe directly receives the input pixels from camera
interface without requiring any processor interaction. This
offers efficient stream processing, as the overhead of reading
input pixels from system memory has been removed. With
direct access to the I/O interfaces, it is conceivable to build
a complete application only out of function blocks in the
PVP. The PVP supports up to three parallel camera pipes with
their own dedicated datapaths and it can support up to three

Pre-processing
L

concurrent application kernels. However, the individual PVP
blocks can be only mapped to one of the concurrent datapaths.

Conversely, in the memory pipe mode the input data is
fetched from system memory using streaming DMAs. At each
point of time, PVP can only execute one application in the
memory pipe mode. However, camera pipes and memory pipes
can operate concurrently. The pipes have separate control
mechanisms, separate datapaths, and operate with independent
timing. Please note that each PVP block may be assigned
only to one pipe at a time. But, there is support for dynamic
reconfiguration and allocation of PVP blocks.

Fig. 2| presents how a combination of PVP and Blackfin cores
provide an efficient solution for road sign detection — highly
demanded by the ADAS market. The application is composed
of four algorithm kernels: monochrome, edge map, region of
interest, scale and deskew. Both memory pipe and camera pipe
operate concurrently. During pre-processing pixels are received
directly from the camera or sensor, translated from RGB to
monochrome and fed to the PVP (camera pipe)for performing
edge detection algorithm. Following that, the PVP writes back
the edge map data to system memory. During mid-processing
the Blackfin cores identify the region of interest (road sign) and
separate it from the whole scene. After that, the PVP is again
in charge for deskew processing of objects slanting too far in
one direction. But this time, the PVP operates in memory pipe
mode; only region of interest data is read from memory for
the purpose of deskewing. The output of PVP is written back
to memory for final post-processing (e.g. template matching)
on the Blackfin cores.

E. PVP software Stack

One key focus to ease adoption is to simplify PVP
usage and programming. ADIs Image Processing Toolbox
provides hundreds of optimized functions for image and vision
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Figure 7: PVP-based Heterogeneous processing for Road Sign Detection.
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analysis including operations like histogram, morphological
transformations and 2D convolution. Video and automotive
analytics toolboxes are also available to support vision related
applications. Where appropriate the software tools will map
functions to the PVP hardware to enable greater performance
and power efficiency vs. utilizing the DSP ILPs.

C and HW function-level APIs raise the level of pro-
gramming abstraction and efficiency thus further easing the
programmers burden. And, once again, many familiar API
calls are mapped to the PVP hardware reducing the amount of
required PVP configuration. For example, many OpenCV like
APIs are supported by the software tools and thus aid in the
PVP programming and mapping process.

V. PVP ROAD-MAP

The BF609 MPSoC generally, and the PVP specifically, offer
a new blend of flexibility (e.g. through ILPs and configurable
PVP functionality) as well as extreme performance and energy
efficiency traditionally provided only by ASIC style IP all
in one package. Additionally, the PVP raises the level of
abstraction on both the hardware and software sides, thereby
improving overall application development productivity.

The PVP offers more than 25+ billion operations per second
while consuming less than 200mW. Compared to ILPs, in
addition to reducing the overhead per operation (by raising
granularity of programmability), the PVP also significantly
reduces the volume of memory subsystem accesses through
efficiently routing data within PVP. At the same time, compared
to ASIC style hardware IP, the PVP offers much more flexibility
by offering concurrent programmable macro datapaths.

New research opportunities arise with the PVP, for ar-
chitecting and programming at a higher level of functional
granularity. The efficiency of a PVP-based architecture relies
on the early identification of meaningful function blocks and
their possible compositions, basically defining flexibility and
usability. New research is needed shifting from optimizing
individual applications to identifying common functions within
many applications across markets. The challenge is to define a
small enough set of sufficiently composable functions that
provide meaningful computation for a given market. One
approach is to analyze existing programming frameworks

(e.g. OpenCV) for frequently used functional primitives (as
candidates to be function blocks) and their composition.

At the same time, raising the programming abstraction above
instructions opens opportunities to construct frameworks that
simplify programming and utilization. Of particular interest
are the allocation of function blocks (i.e. selecting from a
user specification) and the simplified configuration of function
blocks. While this hides computation complexity, previously
drowned challenges appear in composition and communication.
As such, bandwidth management and traffic policing is needed
to facilitate real-time operation. Scheduling aspects can be
studied when multiple applications concurrently execute on a
PVP-style architecture (static scheduling currently supported).
However, function blocks could dynamically join different
data streams, which demand a dynamic scheduling, offering
challenges around context switching and related policies.

VI. CONCLUSIONS

This paper introduces the Pipeline Vision Processor (PVP)
which is integrated on Analog Devices Blackfin BF60x. The
PVP was designated and fabricated for high-performance
embedded vision processing and is intended to support a
broad array of embedded vision applications across several
key markets including Automotive and Industrial areas. The
PVP has been architected and is programmed at a function-
level granularity offering both efficiency and flexibility. While
offering more than 25 billion operations per second and up
to four concurrent applications, the PVP consumes less than
200 mW. This paper outlined the basic architectural features of
the PVP: function-block construction, chaining function blocks
and PVP system integration. The PVP opens a new area of
exploration to both academia and industry for architecting and
programming at a function-level granularity and abstraction.
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