
A Proximal-Gradient Homotopy Method for the Sparse

Least-Squares Problem

Lin Xiao∗ Tong Zhang†

October 22, 2012

Abstract

We consider solving the `1-regularized least-squares (`1-LS) problem in the context of sparse
recovery, for applications such as compressed sensing. The standard proximal gradient method,
also known as iterative soft-thresholding when applied to this problem, has low computational
cost per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it
often exhibits fast linear convergence in the final stage. We exploit the local linear convergence
using a homotopy continuation strategy, i.e., we solve the `1-LS problem for a sequence of
decreasing values of the regularization parameter, and use an approximate solution at the end
of each stage to warm start the next stage. Although similar strategies have been studied in the
literature, there have been no theoretical analysis of their global iteration complexity. This paper
shows that under suitable assumptions for sparse recovery, the proposed homotopy strategy
ensures that all iterates along the homotopy solution path are sparse. Therefore the objective
function is effectively strongly convex along the solution path, and geometric convergence at
each stage can be established. As a result, the overall iteration complexity of our method is
O(log(1/ε)) for finding an ε-optimal solution, which can be interpreted as global geometric rate
of convergence. We also present empirical results to support our theoretical analysis.

1 Introduction

In this paper, we propose and analyze an efficient numerical method for solving the `1-regularized
least-squares (`1-LS) problem

minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1, (1)

where x ∈ R
n is the vector of unknowns, A ∈ R

m×n and b ∈ R
m are the problem data, and λ > 0 is

a regularization parameter. Here ‖ · ‖2 denotes the standard Euclidean norm, and ‖x‖1 =
∑

i |xi|
is the `1 norm of x. This is a convex optimization problem, and we use x?(λ) to denote its (global)
optimal solution. Since the `1 term promotes sparse solutions, we also refer problem (1) as the
sparse least-squares problem.

The `1-LS problem has important applications in machine learning, signal processing, and
statistics; see, e.g., [Tib96, CDS98, BDE09]. It received revived interests in recent years due to

∗Machine Learning Groups, Microsoft Research, Redmond, WA 98052. Email: lin.xiao@microsoft.com
†Department of Statistics, Rutgers University, Piscataway, NJ, 08854. Email: tzhang@stat.rutgers.edu

1

the emergence of compressed sensing theory, which builds upon the fundamental idea that a finite-
dimensional signal having a sparse or compressible representation can be recovered from a small
set of linear, nonadaptive measurements [CRT06, CT06, Don06]. We are especially interested in
solving the `1-LS problem in such a context, with the goal of recovering a sparse vector under
measurement noise. More precisely, we assume A and b in (1) are related by a linear model

b = Ax̄+ z,

where x̄ is the sparse vector we would like to recover in statistical applications, and z is a noise
vector. We assume that the noise level, measured by ‖AT z‖∞, is relatively small compared with the
regularization parameter λ. This scenario is of great modern interest, and various properties of the
solution x?(λ) have been investigated [CT05, DET06, MB06, Tro06, ZY06, CT07, ZH08, Zha09,
BRT09, Kol09, vdGB09, Wai09]. In particular, it is known that under suitable conditions on A
such as the restricted isometry property (RIP), and as long as λ ≥ c‖AT z‖∞ (for some universal
constant c), one can obtain a recovery bound of the optimal form

‖x?(λ)− x̄‖22 = O
(

λ2‖x̄‖0
)

, (2)

where ‖x̄‖0 denotes the number of nonzero elements in x̄. The constant in O(·) depends only on
the so-called RIP condition that we will discuss later on, and this bound achieves the optimal order
of recovery. Moreover, it is known that in this situation, the solution x?(λ) is sparse [ZH08], and
the sparsity of the solution is closely related to the recovery performance.

In this paper, we develop an efficient numerical method for solving the `1-LS problem in the
context of sparse recovery described above. In particular, we focus on the case when m < n (i.e.,
the linear system Ax = b is underdetermined) and the solution x?(λ) is sparse (which requires
the parameter λ to be sufficiently large). Under such assumptions, our method has provable lower
complexity than previous algorithms.

The `1-LS problem (1) is closely related to the following two constrained convex optimization
problems:

minimize
x

‖Ax− b‖22 subject to ‖x‖1 ≤ ∆, (3)

known as the least absolute shrinkage and selection operator (LASSO) [Tib96], and

minimize
x

‖x‖1 subject to ‖Ax− b‖22 ≤ ε, (4)

where ∆ and ε are two nonnegative real parameters. These problems have the same solution as (1)
for appropriate choices of the parameters λ, ∆ and ε. However, other than in some special cases, the
exact correspondence between these parameters are not known a priori. Therefore, algorithms that
are specific for solving one formulation may not be used directly for solving others. Nevertheless,
our method can be adapted to solve (3) and (4) efficiently, either by using an augmented Lagrangian
approach [YOGD08], or by using a root-finding procedure similar as the one given in [vdBF08].

1.1 Previous algorithms

There have been extensive research on numerical methods for solving the problems (1), (3) and (4).
A nice survey of major practical algorithms for sparse approximation appeared in [TW10], and
performance comparisons of various algorithms can be found in, e.g., [WNF09, WYGZ10, BBC11].

2

Here we briefly summarize the computational complexities of several methods that are most relevant
for solving the `1-LS problem (1), in terms of finding an ε-optimal solution (i.e., obtaining an
objective value within ε of the global minimum).

Interior-point methods were among the first approaches used for solving the `1-LS problem
[CDS98, TVW05, KKL+07]. The theoretical bound on their iteration complexity is O (

√
n log(1/ε)),

although their practical performance demonstrate much weaker dependence on n. The bottleneck
of their performance is the computational cost per iteration. For example, with an unstructured
dense matrix A, the standard approach of solving the normal equation in each iteration with a direct
method (Cholesky factorization) would cost O(m2n) flops, which is prohibitive for large-scale appli-
cations. Therefore all customized solvers [CDS98, TVW05, KKL+07] use iterative methods (such
as conjugate gradients) for solving the linear equations. These methods only require matrix-vector
multiplications involving A and AT , and the computational cost per iteration can be O(mn). The
cost can be further reduced if the matrix-vector multiplication can be conducted more efficiently,
e.g., O(n logn) if A is a partial Fourier matrix.

Proximal gradient methods for solving the `1-LS problem take the following basic form at each
iteration k = 0, 1, . . .

x(k+1) = argmin
y

{

f(x(k)) +∇f(x(k))T (y − x(k)) + Lk

2
‖y − x(k)‖22 + λ‖y‖1

}

, (5)

where we used the shorthand f(x) = (1/2)‖Ax−b‖22, and Lk is a parameter chosen at each iteration
(e.g., using a line-search procedure). The minimization problem in (5) has a closed-form solution

x(k+1) = soft

(

x(k) − 1

Lk

∇f(x(k)) , λ

Lk

)

, (6)

where soft : Rn × R
+ → R

n is the well-known soft-thresholding operator, defined as

(soft(x, α))i = sgn(xi)max {|xi| − α, 0} , i = 1, . . . , n. (7)

Iterative methods that use the update rule (6) include [DDM04, CW05, Nes07, HYZ08, WNF09].
Their major computational effort per iteration is to form the gradient ∇f(x) = AT (Ax− b), which
costs O(mn) flops for a generic dense matrix A. With appropriate choices of the parameters Lk,
the proximal-gradient method (5) has an iteration complexity O(1/ε).

Indeed, the iteration complexity O(log(1/ε)) can be established for (5) if m ≥ n and A has full
column rank, since in this case the objective function in (1) is strongly convex [Nes07]. Unfortu-
nately this result is not applicable to the case m < n. Nevertheless, when the solution x?(λ) is
sparse and the active submatrix is well conditioned (e.g., when A has RIP), local linear convergence
can be established [LT92, HYZ08], and fast convergence in the final stage of the algorithm has also
been observed [Nes07, HYZ08, WNF09].

Variations and extensions of the proximal gradient method have been proposed to speed up
the convergence in practice; see, e.g., [BDF07, WNF09, WYGZ10]. Nesterov’s optimal gradient
methods for minimizing smooth convex functions [Nes83, Nes04, Nes05] have also been extended to
minimize composite objective functions such as in the `1-LS problem [Nes07, Tse08, BT09, BBC11].
These accelerated methods have the iteration complexity O(1/

√
ε). They typically generate two or

three concurrent sequences of iterates, but their computational cost per iteration is still O(mn),
which is the same as simple gradient methods.

3

Exact homotopy path-following methods were developed in the statistics literature to compute
the complete LASSO path when varying the regularization parameter λ from large to small
[OPT00a, OPT00b, EHJT04]. These methods exploit the piece-wise linearity of the solution as
a function of λ, and identify the next breakpoint along the solution path by examining the optimal-
ity conditions (also called active set or pivoting method in optimization). With efficient numerical
implementations (using updating or downdating of submatrix factorizations), the computational
cost at each break point is O(mn + ms2), where s is the number of nonzeros in the solution at
the breakpoint. Such methods can be quite efficient if s is small. However, in general, there is no
convergence result bounding the number of breakpoints for this class of methods (for some special
cases, the number of breakpoints is the same as the number of nonzeros in the solution [DT08]).

Greedy algorithms such as orthogonal matching pursuit (OMP) are also very popular for sparse
recovery applications (e.g., [DMA97, Tro04, NT09]). However, they are not designed to solve any
of the optimization problems (1), (3) or (4). Their connections with exact homotopy methods are
analyzed in [DT08].

1.2 Proposed approach and contributions

We consider an approximate homotopy continuation method, where the key idea is to solve (1)
with a large regularization parameter λ first, and then gradually decreases λ until the target
regularization is reached. For each fixed λ, we employ a proximal gradient method of the form (5)
to solve (1) up to an adequate precision (to be specified later), and then use this approximate
solution to serve as the initial point for the next value of λ. We call the resulting method proximal-
gradient homotopy (PGH) method.

This is not a new idea. Approximate homotopy continuation methods that use proximal gradient
methods for solving each stage (with a fixed value of λ) have been studied in, e.g., [HYZ08, WNF09,
WYGZ10], and superior empirical performance have been reported when the solution is sparse.
However, there has been no effective theoretical analysis for their overall iteration complexity. As a
result, some important algorithmic choices are mostly based on heuristics and ad hoc factors. More
specifically, how do we choose the sequence of decreasing values for λ? and how accurate should
we solve the problem (1) for each value in this sequence?

In this paper, we present a PGH method that has provable low iteration complexity, along with
the following specific algorithmic choices:

• We use a decreasing geometric sequence for the values of λ. That is, we choose a λ0 and a
parameter η ∈ (0, 1), and let λK = ηKλ0 for K = 1, 2, . . . until the target value is reached.

• We choose a parameter δ ∈ (0, 1) and solve problem (1) for each λK with a proportional
precision δλK (in terms of violating the optimality condition), except that for the final target
value of λ, we reach the absolute precision ε.

• We use Nesterov’s adaptive line-search strategy in [Nes07] to choose the parameters Lk in the
proximal gradient method (5).

Under the assumptions that the target value of λ is sufficiently large (such that the final solution
is sparse) and the matrix A satisfies a RIP-like condition, our PGH method exhibits geometric
convergence at each stage, and the overall iteration complexity is O(log(1/ε)). The constant in
O(·) depends on the RIP-like condition. Moreover, it is sufficient to choose λ ≥ c‖AT z‖∞ (for some

4

universal constant c), which implies that the solution satisfies a recovery bound of the optimal
form (2). Since each iteration of the proximal gradient method cost O(mn) flops, the overall
computational complexity is O(mn log(1/ε)), implying global geometric rate of convergence.

The low iteration complexity of our PGH method is achieved by actively exploiting the fast
local linear convergence of the standard proximal gradient method when the solution x?(λ) is sparse
[LT92, HYZ08]. Using the homotopy continuation strategy, the proximal gradient method at each
stage always starts with a point that is close to its solution. Moreover, by choosing appropriate
parameters η and δ in our method, we ensure that all iterates along the solution path (i.e., not
only the final points) at each stage are sufficiently sparse. Under a RIP-like assumption on A, this
implies that along the homotopy path, the objective function in (1) is effectively strongly convex,
and hence global geometric rate can be established using Nesterov’s analysis [Nes07].

The advantage of our method over the exact homotopy path-following approach ([OPT00a,
OPT00b, EHJT04]) is that there is no need to keep track of all breakpoints. In fact, for large-scale
problems, the total number of proximal gradient steps in our method can be much smaller than
the number of nonzeros in the target solution, which is the minimum number of breakpoints the
exact homotopy methods have to compute. This phenomenon is predicted by our low iteration
complexity, and also confirmed in our empirical studies.

Compared with interior-point methods (IPMs), our methods has a similar iteration complexity
(actually better in terms of theoretical bounds), and computationally can be much more efficient
for each iteration. The approximate homotopy strategy used in this paper is also analogous to the
long-step path-following IPMs (e.g., [Nes96]), in the sense that the least-squares problem becomes
better conditioned near the regularization path (cf. central path in IPMs). However, our results
only hold for problems with provable sparse solutions, and the parameters η and δ depends on the
problem data A and the regularization parameter λ. In contrast, the performance of interior-point
methods is insensitive to the sparsity of the solution or the regularization parameter.

As an important special case, our results can be immediately applied to noise-free compressed-
sensing applications. Consider the basis pursuit (BP) problem

minimize ‖x‖1 subject to Ax = b, (8)

which is a special case of (4) with ε = 0. Its solution can be obtained by running our PGH method
on the `1-LS problem (1) with λ → 0. In terms of satisfying the condition λ > c ‖Az‖∞, any
λ > 0 is sufficiently large in the noise-free case because z = 0. Therefore, the global geometric
convergence of the PGH method for BP is just a special case of the more general result for (1)
developed in this paper.

It is also worth mentioning that variants of the proximal gradient method (5) can be directly
applied to the constrained LASSO formulation (3). Moreover, under suitable conditions and when
the parameter ∆ is set to nearly equal to ‖x̄‖1, geometric convergence away from the optimal
solution can be established [ANW11]. However, for sparse recovery applications, such a result is
less satisfactory than the homotopy approach we analyze in this paper due to the requirement
of estimating ‖x̄‖1 — which is extremely difficult to determine efficiently in practice even for the
simple noise-free case of basis pursuit. The proof techniques are also different, and the analysis
of geometric convergence for PGH is more difficult than that of [ANW11], because we have to
demonstrate sparsity of all the intermediate solutions in the proximal gradient steps along the
homotopy path. A significantly simpler argument can be used in [ANW11], if the extra knowledge
of ‖x̄‖1 is known a priori.

5

1.3 Outline of the paper

In Section 2, we review some preliminaries that are necessary for developing our method and its
convergence analysis. In Section 3, we present our proximal-gradient homotopy (PGH) method,
and state the assumptions and the main convergence results. Section 4 is devoted to the proofs of
our convergence results. We present numerical experiments in Section 5 to support our theoretical
analysis, and conclude in Section 6 with some further discussions.

2 Preliminaries and notations

In this section, we first introduce composite gradient mapping and some of its key properties
developed in [Nes07]. Then we describe Nesterov’s proximal gradient method with adaptive line
search, which we will use to solve the `1-LS problem at each stage of our PGH method. Finally
we discuss the restricted eigenvalue conditions that allow us to show the local linear convergence
of Nesterov’s algorithm.

2.1 Composite gradient mapping

Consider the following optimization problem with composite objective function:

minimize
x

{

φ(x) , f(x) + Ψ(x)
}

, (9)

where the function f is convex and differentiable, and Ψ is closed and convex on R
n. The optimality

condition of (9) states that x? is a solution if and only if there exists ξ ∈ ∂Ψ(x?) such that

∇f(x?) + ξ = 0

(see, e.g., [Roc70, Section 27]). Therefore, a good measure of accuracy for any x as an approximate
solution is the quantity

ω(x) , min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖∞. (10)

We call ω(x) the optimality residue of x. We will use it in the stopping criterion of the proximal
gradient method.

Composite gradient mapping was introduced by Nesterov in [Nes07]. For any fixed point y and
a given constant L > 0, we define a local model of φ(x) around y using a quadratic approximation
of f but keeping Ψ intact:

ψL(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 +Ψ(x).

Let
TL(y) = argmin

x
ψL(y;x). (11)

Then the composite gradient mapping of f at y is defined as

gL(y) = L(y − TL(y)).

In the case Ψ(x) = 0, it is easy to verify that gL(y) = ∇f(y) for any L > 0, and 1/L can be
considered as the step-size from y to TL(y) along the direction −gL(y). The following property of
composite gradient mapping was shown in [Nes07, Theorem 2]:

6

Lemma 1. For any L > 0,

ψL(y;TL(y)) ≤ φ(y)−
1

2L
‖gL(y)‖22.

The function f has Lipschitz continuous gradient if there exists a constant Lf such that

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2, ∀x, y ∈ R
n.

A direct consequence of having Lipschitz continuous gradient is the following inequality (see, e.g.,
[Nes04, Theorem 2.1.5]):

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ Lf

2
‖y − x‖22, ∀x, y ∈ R

n. (12)

For such functions, we can measure how close TL(y) is from satisfying the optimality condition by
using the norm of the composite gradient mapping at y.

Lemma 2. If f has Lipschitz continuous gradients with Lipschitz constant Lf , then

ω(TL(y)) ≤
(

1 +
SL(y)

L

)

‖gL(y)‖2 ≤
(

1 +
Lf

L

)

‖gL(y)‖2

where SL(y) is a local Lipschitz constant defined as

SL(y) =
‖∇f(TL(y))−∇f(y)‖2

‖TL(y)− y‖2
.

Proof. Let Dφ(x)[u] denote the directional derivative of φ at x along the direction u, i.e,

Dφ(x)[u] = lim
α↓0

1

α

(

φ(x+ αu)− φ(x)
)

.

Corollary 1 in [Nes07] states that for any u ∈ R
n with ‖u‖2 = 1, the following inequality holds:

Dφ(TL(y))[u] ≥ −
(

1 +
SL(y)

L

)

‖gL(y)‖2.

In addition, it is shown in [Nes07] that for any x ∈ R
n,

min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖2 = − min
‖u‖2=1

Dφ(x)[u].

(See [Nes07, Section 2].) Therefore, we have

ω(TL(y)) ≤ min
ξ∈∂Ψ(TL(y))

‖∇f(TL(y)) + ξ‖2 ≤
(

1 +
SL(y)

L

)

‖gL(y)‖2.

The last desired inequality follows from the fact SL(y) ≤ Lf .

7

Algorithm 1: {x+,M} ← LineSearch(λ, x, L)

input: λ > 0, x ∈ R
n, L > 0

parameter: γinc > 1
repeat

x+ ← Tλ,L(x)

if φλ(x
+) > ψλ,L(x;x

+) then L← Lγinc

until φλ(x
+) <= ψλ,L(x;x

+)
M ← L
return {x+,M}

Algorithm 2: {x̂, M̂} ← ProxGrad(λ, ε̂, x(0), L0)

input: λ > 0, ε̂ > 0, x(0) ∈ R
n, L0 ≥ Lmin

parameters: Lmin > 0, γdec ≥ 1
repeat for k = 0, 1, 2, . . .

{x(k+1),Mk} ← LineSearch(λ, x(k), Lk)
Lk+1 ← max{Lmin,Mk/γdec}

until ωλ(x
(k+1)) ≤ ε̂

x̂← x(k+1)

M̂ ←Mk

return {x̂, M̂}

In this paper, we use the following notations to simplify presentation:

f(x) =
1

2
‖Ax− b‖22

φλ(x) = f(x) + λ‖x‖1.

Correspondingly, we add the subscript λ in specifying the composite gradient mapping:

ψλ,L(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 + λ‖x‖1

Tλ,L(y) = argmin
x

ψλ,L(y;x)

gλ,L(y) = L
(

y − Tλ,L(y)
)

ωλ(x) = min
ξ∈∂‖x‖1

‖∇f(x) + λξ‖∞.

We call the process of computing TL(y) a proximal gradient step. For the `1-LS problem, Tλ,L(x)
has the closed-form solution given in (6). Given the gradient ∇f(x), the optimality residue ωλ(x)
can be easily computed with O(n) flops.

2.2 Nesterov’s gradient method with adaptive line-search

With the machinery of composite gradient mapping, Nesterov developed several variants of proximal
gradient methods in [Nes07]. We use the non-accelerated primal-gradient version described in

8

Algorithms 1 and 2, which correspond to (3.1) and (3.2) in [Nes07], respectively. To use this
algorithm, we need to first choose an initial optimistic estimate Lmin for the Lipschitz constant Lf :

0 < Lmin ≤ Lf ,

and two adjustment parameters γdec ≥ 1 and γinc > 1. A key feature of this algorithm is the
adaptive line search: it always tries to use a smaller Lipschitz constant first at each iteration.

Each iteration of the proximal gradient method generates the next iterate in the form of

x(k+1) = Tλ,Mk
(x(k)),

where Mk is chosen by the line search procedure in Algorithm (1). The line search procedure starts
with an estimated Lipschitz constant Lk, and increases its value by the factor γinc until the stopping
criteria is satisfied. The stopping criteria for line search ensures

φλ(x
(k+1)) ≤ ψλ,Mk

(

x(k), x(k+1)
)

= ψλ,Mk

(

x(k), Tλ,Mk
(x(k))

)

≤ φλ(x
(k))− 1

2Mk

∥

∥gλ,Mk
(x(k))

∥

∥

2

2
, (13)

where the last inequality follows from Lemma 1. Therefore, we have the objective value φλ(x
(k))

decrease monotonically with k, unless the gradient mapping gλ,Mk
(x(k)) = 0. In the latter case,

according to Lemma 2, x(k+1) is an optimal solution.
The only difference between Algorithm 2 and Nesterov’s gradient method [Nes07, (3.2)] is that

Algorithm 2 has an explicit stopping criterion. This stopping criterion is based on the optimality
residue ωλ(x

(k+1)) being small. For the `1-LS problem, it can be computed with additional O(n)
flops given the gradient ∇f(x). For other problems, depending on the form of Ψ, this residue may
be hard to compute. But we can always use the alternative stopping criterion

∥

∥gλ,Mk
(x(k))

∥

∥

2
≤ ε̂.

According to Lemma 2, these two measures may differ by a factor (1 + SMk
(x(k+1))/Mk). So the

precision ε̂ may need to be reduced by a similar factor.
Since f has Lipschitz constant Lf , the inequality (12) implies that the line search procedure is

guaranteed to terminate if L ≥ Lf . Therefore, we have

Lmin ≤ Lk ≤Mk < γincLf . (14)

Although there is no explicit bound on the number of repetitions in the line search procedure,
Nesterov showed that the total number of line searches cannot be too big. More specifically, let Nk

be the number of operations x+ ← Tλ,L(x) after k iterations in Algorithm 2. Lemma 3 in [Nes07]
showed that

Nk ≤
(

1 +
ln γdec
ln γinc

)

(k + 1) +
1

ln γinc
max

{

ln
γincLf

γdecLmin
, 0

}

.

For example, if we choose γinc = γdec = 2, then

Nk ≤ 2(k + 1) + log2
Lf

Lmin
. (15)

Nesterov established the following iteration complexities of Algorithm 2 for finding an ε-optimal
solution of the problem (9):

9

• If φλ is convex but not strongly convex, then the convergence is sublinear, with an iteration
complexity O(1/ε) [Nes07, Theorem 4];

• If φλ is strongly convex, then the convergence is geometric, with an iteration complexity
O(log(1/ε)) [Nes07, Theorem 5].

A nice property of this algorithm is that we do not need to know a priori if the objective function
is strongly convex or not. It will automatically exploit the strong convexity whenever it holds. The
algorithm is the same for both cases.

For our interested case m < n, the objective function in Problem (1) is not strongly convex.
Therefore, if we directly use Algorithm 2 to solve this problem, we can only get the O(1/ε) iteration
complexity (even though fast local linear convergence was observed in [Nes07] when the solution
is sparse). Nevertheless, as explained in the introduction, we can use a homotopy continuation
strategy to enforce that all iterates along the solution path are sufficiently sparse. Under a RIP-like
assumption on A, this implies that the objective function is effectively strongly convex along the
homotopy path, and hence global geometric rate can be established using Nesterov’s analysis. Next
we explain conditions that characterize restricted strong convexity for sparse vectors.

2.3 Restricted eigenvalue conditions

We first define some standard notations for sparse recovery. For a vector x ∈ R
n, let

supp(x) = {j : xj 6= 0}, ‖x‖0 = |supp(x)|.

Throughout the paper, we denote supp(x̄) by S̄, and use S̄c for its complement. We use the
notations xS̄ and xS̄c to denote the restrictions of a vector x to the coordinates indexed by S̄ and
S̄c, respectively.

Various conditions for sparse recovery have appeared in the literature. The most well-known of
such conditions is the restricted isometry property (RIP) introduced in [CT05]. In this paper, we
analyze the numerical solution of the `1-LS problem under a slight generalization, which we refer
to as restricted eigenvalue condition.

Definition 1. Given an integer s > 0, we say that A satisfies the restricted eigenvalue condition
at sparsity level s if there exists positive constants ρ−(A, s) and ρ+(A, s) such that

ρ+(A, s) = sup

{

xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}

,

ρ−(A, s) = inf

{

xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}

.

Note that a matrix A satisfies the original definition of restricted isometry property with RIP
constant ν at sparsity level s if and only if ρ+(A, s) ≤ 1 + ν and ρ−(A, s) ≥ 1− ν. More generally,
the strong convexity of the objective function in (1), namely φλ(x), is equivalent to ρ−(A, n) > 0.
However, since we are interested in the situation of m < n, which implies that ρ−(A, n) = 0, we
know that φλ is not strongly convex. Nevertheless, for s < m, it is still possible that the condition
ρ−(A, s) > 0 holds. This means that if both x and y are sparse vectors, then φλ is strongly convex
along the line segment that connects x and y. Moreover, the inequality that characterize the
smoothness of the function, namely (12), could use a much smaller restricted Lipschitz constant
instead of the global constant Lf = ρ+(A, n). More precisely, we have the following lemma.

10

Lemma 3. Let f(x) = (1/2)‖Ax− b‖22. Suppose x and y are two sparse vectors such that

|supp(x) ∪ supp(y)| ≤ s

for some integer s < m. Then the following two inequalities hold:

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ ρ+(A, s)

2
‖y − x‖22, (16)

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ ρ−(A, s)

2
‖y − x‖22. (17)

Proof. For any x, y ∈ R
n, it is straightforward to verify that if f(x) = (1/2)‖Ax− b‖22, then

f(y)− f(x)− 〈∇f(x), y − x〉 =
1

2
‖A(y − x)‖22.

Since the assumption |supp(x)∪supp(y)| ≤ s implies ‖y−x‖0 ≤ s, we use the definition of restricted
eigenvalues to conclude

ρ−(A, s)‖y − x‖22 ≤ ‖A(y − x)‖22 ≤ ρ+(A, s)‖y − x‖22.

These lead to the two desired inequalities.

The inequality (16) represents restricted smoothness, and (17) represents restricted strong con-
vexity. A key feature of our PGH method is that sparsity along the whole solution path can be
enforced. Therefore the objective function in (1) becomes strongly convex along the solution path if
the sparse eigenvalues in Definition 1 are well behaved (i.e., they grow slowly when s is increased).
In such a situation, the PGH method exhibits geometric convergence along the homotopy path,
and the convergence rate depends on a restricted condition number, defined as

κ(A, s) =
ρ+(A, s)

ρ−(A, s)
. (18)

In particular, if the matrix A has RIP constant ν at sparsity level s, then κ(A, s) ≤ (1+ν)/(1−ν).

3 A proximal-gradient homotopy method

The key idea of the proximal-gradient homotopy (PGH) method is to solve (1) with a large regular-
ization parameter λ0 first, and then gradually decreases λ until the target regularization is reached.
For each fixed λ, we employ Nesterov’s proximal-gradient method described in Algorithms 1 and 2,
to solve problem (1) up to an adequate precision. Then we use this approximate solution to warm
start the PG method for the next value of λ.

Our proposed PGH method is listed as Algorithm 3. To make the presentation more clear, we
use λtgt to denote the target regularization parameter. The method starts with

λ0 = ‖AT b‖∞,

since this is the smallest value for λ such that the `1-LS problem has the trivial solution 0 (by
examining the optimality condition). Our method has two parameters η ∈ (0, 1) and δ ∈ (0, 1).
They control the algorithm as follows:

11

Algorithm 3: x̂(tgt) ← Homotopy(A, b, λtgt, ε, Lmin)

input: A ∈ R
m×n, b ∈ R

n, λtgt > 0, ε > 0, Lmin > 0
parameters: η ∈ (0, 1), δ ∈ (0, 1)

initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← Lmin

N ← bln(λ0/λtgt) / ln(1/η)c
for K = 0, 1, 2, . . . , N − 1 do

λK+1 ← ηλK
ε̂K+1 ← δλK+1

{x̂(K+1), M̂K+1} ← ProxGrad
(

λK+1, ε̂K+1, x̂
(K), M̂K

)

end

{x̂(tgt), M̂tgt} ← ProxGrad
(

λtgt, ε, x̂
(N), M̂N

)

return x̂(tgt)

• The sequence of values for the regularization parameter is determined as λK = ηKλ0 for
K = 1, 2, . . ., until the target value λtgt is reached.

• For each λK except λtgt, we solve problem (1) with a proportional precision δλK . For the
last stage with λtgt, we solve to the absolute precision ε.

As discussed in the introduction, sparse recovery by solving the `1-LS problem requires two
types of conditions: the regularization parameter λ is relatively large compared with the noise
level, and the matrix A satisfies certain RIP or restricted eigenvalue condition. It turns out that
such conditions are also sufficient for fast convergence of our PGH method. More precisely, we have
the following assumption:

Assumption 1. Suppose b = Ax̄ + z. Let S̄ = supp(x̄) and s̄ = |S̄|. There exist γ > 0 and
δ′ ∈ (0, 0.2] such that γ > (1 + δ′)/(1− δ′) and

λtgt ≥ 4max

{

2,
γ + 1

(1− δ′)γ − (1 + δ′)

}

‖AT z‖∞. (19)

Moreover, there exists an integer s̃ such that ρ−(A, s̄+ 2s̃) > 0 and

s̃ >
8
(

γincρ+(A, s̄+ 2s̃) + ρ+(A, s̃)
)

ρ−(A, s̄+ s̃)
(1 + γ)s̄. (20)

We also assume that Lmin ≤ γincρ+(A, s̄+ 2s̃).

As we will see later, the quantity δ′ in the above assumption is related to the parameter δ in
Algorithm 3, and γ defines a conic condition on x− x̄, i.e.,

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1,

which holds whenever ωλ(x) ≤ δ′λ. According to [ZH08], the above assumption implies that the
solution x?(λ) of (1) is sparse whenever λ ≥ λtgt; more specifically, ‖x?(λ)S̄c‖0 ≤ s̃ (here S̄c denotes
the complement of the support set S̄). In this paper, we will show that by choosing the parameters η
and δ in Algorithm 3 appropriately, these conditions also imply that all iterates along the solution
path are sparse. Our proof employs a similar argument as that of [ZH08]. Before stating the main
convergence results, we make some further remarks on Assumption 1.

12

• The condition (19) states that the λ must be sufficiently large to dominate the noise. Such
a condition is adequate for sparse recovery applications because recovery performance given
in (2) achieves optimal error bound under stochastic noise model by picking λ of the order
‖AT z‖∞ [CT07, ZH08, Zha09, BRT09, Kol09, vdGB09, Wai09]. Moreover, it is also necessary
because when λ is smaller than the noise level, the solution x?(λ) will not be sparse anymore,
which defeats the practical purpose of using `1 regularization.

• The existence of s̃ satisfying the conditions (20) is necessary and standard in sparse recovery
analysis. This is closely related to the RIP condition of [CT05] which assumes that there
exist some s > 0, and ν ∈ (0, 1) such that κ(A, s) < (1+ν)/(1−ν). In fact, if RIP is satisfied
with ν = 0.1 at s > d45(1 + γ)s̄e, then we may take γinc = 1.2 and s̃ = d22(1 + γ)s̄e so that
the condition (20) is satisfied. To see this, let s = s̄+ 2s̃ and note that

1 + ν

1− ν > κ(A, s̄+ 2s̃) ≥ ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)
≥ 1.2ρ+(A, s̄+ 2s̃) + ρ+(A, s̃)

)

2.2 ρ−(A, s̄+ s̃)
.

Therefore we have

s̃ = d22(1 + γ)s̄e ≥ 17.6
1 + ν

1− ν (1 + γ)s̄ > 8
1.2ρ+(A, s̄+ 2s̃) + ρ+(A, s̃)

ρ−(A, s̄+ s̃)
(1 + γ)s̄.

The RIP condition in the above example looks rather strong, especially when compared with
those established in the sparse recovery literature (e.g., [LM11] and references therein). We
note that these results are only concerned about the recovery property of the optimal solution
x?(λ), and it can be expected that stronger conditions (larger constants) are required for
maintaining restricted convexity for all intermediate iterates before converging to x?(λ).

In fact, in addition to the matrix A, our RIP-like condition (20) also depends on algorithmic
parameters γinc and δ (Theorem 2 assumes δ < δ′). For example, if we choose γinc = 2 (instead
of 1.2 in the above calculation), then we need RIP with ν = 0.1 at s > d61(1 + γ)s̄e as a
sufficient condition. We could also relax the range of δ′. For example, if we allow δ′ ∈ (0, 1)
in Assumption 1, then the constant in (20) needs to be increased from 8 to 16.

• If Lmin > γincρ+(A, s̄ + 2s̃), then we may simply replace γincρ+(A, s̄ + 2s̃) by Lmin in the
assumption, and all theorem statements hold with γincρ+(A, s̄ + 2s̃) replaced by Lmin. Nev-
ertheless in practice, it is natural to simply pick

Lmin = ρ+(A, 1) = max
i∈{1,...,n}

‖Ai‖22,

where Ai is the i-th column of A. It automatically satisfies the condition Lmin ≤ ρ+(A, s̄+2s̃).

Our first result below concerns the local geometric convergence of Algorithm 2. Basically, if
the starting point x(0) is sparse and the optimality condition is satisfied with adequate precision,
then all iterates along the solution path are sparse, and Algorithm 2 has geometric convergence.
To simplify the presentation, we use a single symbol κ to denote the restricted condition number

κ = κ(A, s̄+ 2s̃) =
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ 2s̃)
. (21)

13

Theorem 1. Suppose Assumption 1 holds for some δ′, γ and s̃. If the initial point x(0) in Algo-
rithm 2 satisfies

∥

∥x
(0)

S̄c

∥

∥

0
≤ s̃, ωλ(x

(0)) ≤ δ′λ, (22)

then for all k ≥ 0, we have

∥

∥x
(k)

S̄c

∥

∥

0
≤ s̃, φλ(x

(k))− φ?λ ≤
(

1− 1

4γincκ

)k
(

φλ(x
(0))− φ?λ

)

,

where φ?λ = φλ(x
?(λ)) = minx φλ(x).

Our next result gives the overall iteration complexity of the PGH method in Algorithm 3.
Roughly speaking, if the parameters δ and η are chosen appropriately, then the total number of
proximal-gradient steps for finding an ε-optimal solution is O(ln(1/ε)).

Theorem 2. Suppose that Assumption 1 holds for some δ′, γ and s̃, and the parameters δ and η
in Algorithm 3 are chosen such that

1 + δ

1 + δ′
≤ η < 1. (23)

Let N =
⌊

ln (λ0/λtgt) / ln η
−1
⌋

as in the algorithm. Then:

1. The condition (22) holds for each call of Algorithm 2. For K = 0, . . . , N − 1, the number of
proximal-gradient steps in each call of Algorithm 2 is no more than

ln

(

C

δ2

)

/

ln

(

1− 1

4γincκ

)−1

,

where C = 8γinc(1 + κ)2(1 + γ)κs̄. Note that this bound is independent of λK .

2. For K = 0, . . . , N − 1, the outer-loop iterates x̂(K) satisfies

φλtgt
(x̂(K))− φ?λtgt

≤ η2(K+1) 4.5 (1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
, (24)

and the following bound on sparse recovery performance holds

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm 3 terminates, the total number of proximal-gradient steps is no more than

(

ln(λ0/λtgt)

ln η−1
ln

(

C

δ2

)

+ lnmax

(

1,
λ2tgtC

ε2

))/

ln

(

1− 1

4γincκ

)−1

,

and the output x̂(tgt) satisfies

φλtgt
(x̂(tgt))− φ?λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ε.

14

We have the following remarks regarding these results:

• The precision ε in Algorithm 3 is measured against the optimality residue ωλ(x). In terms of
the objective gap, suppose ε0 > 0 is the target precision to be reached. Let

K0 =

⌈

1

2
ln

(

4.5 (1 + γ)λ20s̄

ρ−(A, s̄+ s̃)ε0

)/

ln η−1

⌉

− 1.

From the inequality (24), we see that if 0 ≤ K0 ≤ N − 1, then for all K ≥ K0,

φλtgt
(x̂(K))− φ?λtgt

≤ ε0.

If we let ε0 → 0 and run the PGH method forever, then the number of proximal-gradient
iterations is no more than O(ln(λ0/ε0)) to achieve an ε0 accuracy both on the gap of objective
value and on the optimality residue ωλ(·) ≤ ε0. This means that the PGH method achieves
a global geometric rate of convergence.

• When the restricted condition number κ is large, we can use the approximation

ln

(

1− 1

4γincκ

)−1

≈ 1

4γincκ
.

Then the overall iteration complexity can be estimated by O (κ ln (λ0/ε)), which is propor-
tional to the restricted condition number κ.

• Even if we solve each stage to high precision with ε̂K+1 = min(ε, δλK+1), the global conver-
gence rate is still near geometric, and the total number of proximal-gradient steps is no more
than O((ln(λ0/ε))

2).

Theorem 2 plus restricted strong convexity immediately implies that the approximate solu-
tions x̂(K) (and the last step solution x̂(tgt)) also converge to x?(λtgt) at a globally geometric rate.
A particularly interesting case is noise-free compressed sensing using the BP formulation (8), which
has the optimal solution x̄. For this problem, we can simply run Algorithm 3 with λtgt = 0 to
solve (8). While the convergence metrics such as objective value gap or optimality residue are
no longer informative in this case, Theorem 2 implies geometric convergence of the recovery error
‖x̂(K) − x̄‖2. More precisely, we have:

Corollary 1. Suppose b = Ax̄ and the assumptions stated in Theorem 2 hold. We can choose an
arbitrarily small λtgt > 0 in Algorithm 3, and after K outer iterations, we have

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

Note that part 1 of Theorem 2 implies that K outer iterations of Algorithm 3 requires no more
than O(K) proximal-gradient steps. This result can be interpreted as a global geometric rate of
convergence for solving the BP problem.

Finally we remark on the relationship between the choice of δ and Assumption 1. In Theorem 2,
we need δ < δ′ to satisfy the condition (23). In order to accomodate a larger δ, i.e., to allow less
accurate solutions at each stage of Algorithm 3, we can relax the interval for δ′ in Assumption 1.
As discussed in the remarks after Assumption 1, this would require a stronger RIP-like condition.

15

On the other hand, using a larger δ leaves the choice for the parameter η to be very close to 1, i.e.,
we have to reduce the regularization weight λ slowly, which means more homotopy stages.

As we will see from the numerical experiments in Section 5, the PGH method often demonstrates
best performance (measured by the total number of iterations to obtain a given accuracy) when
using relatively large δ and small η, which are unlikely to satisfy our assumptions for geometric
convergence at each stage. In fact, with a good warm-start point and a very loose stopping criterion
(i.e., ωλ(x) ≤ δλ), each intermediate stage only requires very small number of iterations, even with
a sublinear convergence rate. The overall performance of the method hinges on rapidly getting to
the linear convergence zone in the final stage, where significant number of iterations are performed
to reach the final high precision. From a pratical point of view, while linear convergence in the
final stage is critical, it may be too restrictive to for the intermediate stages. In particular, using
a large η (close to 1) often lead to an unnecessarily large number of iterations before reaching the
final stage.

4 Proofs of convergence results

The proofs of our convergence results are divided into the following subsections. In Section 4.1, we
show that under Assumption 1, if x(0) is sparse and ωλ(x

(0)) is small, then all iterates generated
by Algorithm 2 are sparse. In Section 4.2, we use the sparsity along the solution path and the
restricted eigenvalue condition to show the local geometric convergence of Algorithm 2, thus proving
Theorem 1. In Section 4.3, we show that by setting the parameters δ and η in Algorithm 3
appropriately, we have geometric convergence at each stage of the homotopy method, which leads
to the global iteration complexity O(log(1/ε)).

4.1 Sparsity along the solution path

First, we list some useful inequalities that are direct consequences of (19) and δ′ ∈ (0, 0.2]:

(1− δ′)λ− 4‖AT z‖∞ > 0 (25)

(1 + δ′)λ+ ‖AT z‖∞ ≤ 1.4λ (26)

λ+ ‖AT z‖∞ ≤ (1.4− δ′)λ (27)

(1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞

≤ γ. (28)

The following result means that if x is sparse, and it satisfies an approximate optimality condi-
tion for minimizing φλ, then φλ(x) is not much larger than φλ(x̄).

Lemma 4. Suppose that Assumption 1 holds for some δ′, γ and s̃, and λ ≥ λtgt. If x is sparse,
i.e., ‖xS̄c‖0 ≤ s̃, and it satisfies the approximate optimality condition

min
ξ∈∂‖x‖1

∥

∥AT (Ax− b) + λξ
∥

∥

∞
≤ δ′λ, (29)

then we have
‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1 (30)

and

‖x− x̄‖2 ≤
1.4λ
√
s̄

ρ−(A, s̄+ s̃)
(31)

16

and

φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
. (32)

Proof. Let ξ ∈ ∂‖x‖1 be a subgradient that achieves the minimum on the left-hand side of (29).
Then the approximate optimality condition leads to

(x− x̄)T
(

AT (Ax− b) + λξ
)

≤ ‖x− x̄‖1
∥

∥AT (Ax− b) + λξ
∥

∥

∞

≤ δ′λ‖x− x̄‖1.

On the other hand, we can use b = Ax̄+ z to obtain

(x− x̄)T
(

AT (Ax− b) + λξ
)

= (x− x̄)TAT
(

A(x− x̄)− z
)

+ λ(x− x̄)T ξ
= ‖A(x− x̄)‖22 − (x− x̄)TAT z + λ ξT (x− x̄)
≥ ‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ ξT (x− x̄).

Next, we break the inner product ξT (x− x̄) into two parts as

ξT (x− x̄) = ξT
S̄
(x− x̄)S̄ + ξT

S̄c(x− x̄)S̄c .

For the first part, we have (by noticing ‖ξ‖∞ ≤ 1)

ξT
S̄
(x− x̄)S̄ ≥ − ‖ξS̄‖∞‖(x− x̄)S̄‖1 ≥ − ‖(x− x̄)S̄‖1.

For the second part, we use the facts x̄S̄c = 0 and ξ ∈ ∂‖x‖1 to obtain

ξT
S̄c(x− x̄)S̄c = xT

S̄cξS̄c = ‖xS̄c‖1 = ‖(x− x̄)S̄c‖1.

Combining the inequalities above gives

‖A(x− x̄)‖22 − ‖AT z‖∞‖x− x̄‖1 − λ‖(x− x̄)S̄‖1 + λ‖(x− x̄)S̄c‖1 ≤ δ′λ‖x− x̄‖1.

Using ‖x− x̄‖1 = ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1 and rearranging terms, we arrive at

‖A(x− x̄)‖22 +
(

(1−δ′)λ− ‖AT z‖∞
)

‖(x− x̄)S̄c‖1 ≤
(

(1+δ′)λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1. (33)

By further using the inequalities (25) and (28), we obtain

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1,

which is the first desired result in (30).
Since by assumption ‖xS̄c‖0 ≤ s̃, we can use the restricted eigenvalue condition to obtain

ρ−(A, s̄+ s̃)‖x− x̄‖22 ≤ ‖A(x− x̄)‖22
≤

(

(1 + δ′)λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1
≤ 1.4λ‖(x− x̄)S̄‖1
≤ 1.4λ

√
s̄ ‖(x− x̄)S̄‖2

≤ 1.4λ
√
s̄ ‖x− x̄‖2,

17

where the second inequality is a result of (33), the third inequality follows from (26), and the fourth
inequality holds because |S̄| = s̄. This proves the second desired bound in (31).

Finally, since φλ is convex and AT (Ax− b) + ξ is a subgradient of φ at x, we have

φλ(x)− φλ(x̄) ≤ −
(

AT (Ax− b) + ξ
)T

(x̄− x) ≤ δ′λ‖x̄− x‖1.

From the inequality in (30), we have

‖x̄− x‖1 = ‖(x̄− x)S̄‖1 + ‖(x̄− x)S̄c‖1 ≤ (1 + γ)‖(x̄− x)S̄‖1.

Therefore,

φλ(x)− φλ(x̄) ≤ δ′λ(1 + γ)‖(x̄− x)S̄‖1 ≤ δ′λ(1 + γ)
√
s̄ ‖(x̄− x)S̄‖2,

which, together with (31), leads to the third desired result.

The following result means that if x is sparse, and φλ(x) is not much larger than φλ(x̄), then
both ‖x− x̄‖2 and ‖x− x̄‖1 are small.

Lemma 5. Suppose that Assumption 1 holds for some δ′, γ and s̃, and λ ≥ λtgt. Consider x such
that

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

then

max

{

1

2.8λ
‖A(x− x̄)‖22, ‖x− x̄‖1

}

≤ 1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

In fact, similar results holds under the condition ωλ(x) ≤ δ′λ, and are already proved in
Lemma 4. However, in the proximal gradient method, the optimality residue ωλ(x

(k)) may not
be monotonic decreasing, but the objective function φλ(x

(k)) is. So in order to establish the desired
results for all iterates along the solution path, we need to show them when the objective function
is sufficiently small, which is more involved.

Proof. For notational convenience, let

∆ =
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

We write the assumption φλ(x) ≤ φλ(x̄) + ∆ explicitly as

1

2
‖Ax− b‖22 + λ‖x‖1 ≤

1

2
‖Ax̄− b‖22 + λ‖x̄‖1 +∆. (34)

We can expand the least-squares part in φλ(x) as

1

2
‖Ax− b‖22 =

1

2
‖(Ax̄− b) +A(x− x̄)‖22

=
1

2
‖(Ax̄− b)‖22 +

1

2
‖A(x− x̄)‖22 + (x− x̄)TAT (Ax̄− b)

≥ 1

2
‖(Ax̄− b)‖22 +

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT (Ax̄− b)‖∞.

18

Plugging the above inequality into (34), and noticing Ax̄− b = z, we obtain

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ‖x‖1 ≤ λ‖x̄‖1 +∆.

Using the fact x̄S̄c = 0, we have

‖x‖1 = ‖xS̄c‖1 + ‖xS̄‖1 = ‖xS̄c − x̄S̄c‖1 + ‖xS̄‖1.

Therefore

1

2
‖A(x− x̄)‖22 − ‖x− x̄‖1‖AT z‖∞ + λ‖xS̄c − x̄S̄c‖1 ≤ λ (‖x̄S̄‖1 − ‖xS̄‖1) + ∆

≤ λ ‖x̄S̄ − xS̄‖1 +∆.

By further splitting ‖x− x̄‖1 on the left-hand side as ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1, we get

1

2
‖A(x− x̄)‖22 +

(

λ− ‖AT z‖∞
)

‖(x− x̄)S̄c‖1 ≤
(

λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1 +∆. (35)

Now there are two possible cases. In the first case, we assume

‖x− x̄‖1 ≤
∆

δ′λ
=

1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
. (36)

From (25), we know that
(

λ− ‖AT z‖∞
)

‖(x − x̄)S̄c‖1 is nonnegative, so we can drop it from the
left-hand side of (35) to obtain

1

2
‖A(x− x̄)‖22 ≤

(

λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1 +∆

≤ (1.4λ− δ′λ)‖(x− x̄)S̄‖1 +∆

≤ (1.4λ− δ′λ)1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
+

1.4δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)

=
1.42λ(1 + γ)λs̄

ρ−(A, s̄+ s̃)
,

where in the second inequality we used (27), and in the third inequality we used (36). This means
the claim holds.

In the second case, the assumption in (36) does not hold. Then ∆ < δ′λ‖x − x̄‖1 and (35)
implies

1

2
‖A(x− x̄)‖22 +

(

λ− ‖AT z‖∞
)

‖(x− x̄)S̄c‖1 ≤
(

λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1 + δ′λ‖x− x̄‖1.

Again we split ‖x− x̄‖1 as ‖(x− x̄)S̄‖1 + ‖(x− x̄)S̄c‖1 to obtain

1

2
‖A(x− x̄)‖22 +

(

(1− δ′)λ− ‖AT z‖∞
)

‖(x− x̄)S̄c‖1 ≤
(

(1 + δ′)λ+ ‖AT z‖∞
)

‖(x− x̄)S̄‖1. (37)

By further using the inequalities (25) and (28), we get

‖(x− x̄)S̄c‖1 ≤
(1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞

‖(x− x̄)S̄‖1 ≤ γ‖(x− x̄)S̄‖1. (38)

19

This means that if we define

γ′ =
‖(x− x̄)S̄c‖1√
s̄‖(x− x̄)S̄‖2

,

then γ′ ≤ γ (note that |S̄| = s̄). Moreover, we can use the restricted eigenvalue condition and the
assumption ‖xS̄C‖0 ≤ s̃ to obtain

1

2
ρ−(A, s̄+ s̃)‖x− x̄‖22 ≤ 1

2
‖A(x− x̄)‖22

≤
(

(1 + δ′)λ+ ‖AT z‖∞
)

(

‖(x− x̄)S̄‖1 − γ−1‖(x− x̄)S̄c‖1
)

≤
(

(1 + δ′)λ+ ‖AT z‖∞
)√

s̄(1− γ′/γ)‖(x− x̄)S̄‖2
≤ 1.4λ

√
s̄(1− γ′/γ) ‖(x− x̄)S̄‖2

≤ 1.4λ
√
s̄(1− γ′/γ) ‖x− x̄‖2,

where the second inequality follows from (37) and (28), the third inequality holds because of the
definition of γ′, and the forth inequality follows from (26). Hence

‖x− x̄‖2 ≤
2 · 1.4λ

√
s̄(1− γ′/γ)

ρ−(A, s̄+ s̃)
.

The above arguments also imply

1

2
‖A(x− x̄)‖22 ≤ 1.4λ

√
s̄ ‖x− x̄‖2 ≤

2 · 1.42λ2s̄
ρ−(A, s̄+ s̃)

≤ 1.42(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

where the last inequality holds because γ > 1. Finally, using the definition of γ′, we get

‖x− x̄‖1 ≤ (1 + γ′)
√
s̄ ‖(x− x̄)S̄‖2 ≤

2 · 1.4(1 + γ′)(1− γ′/γ)λs̄
ρ−(A, s̄+ s̃)

≤ 1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
,

where the last inequality follows by maximizing over γ′ achieved at γ′ = (γ − 1)/2. These prove
the desired bound.

The following lemma means that if x is sparse and φλ(x) is not much larger than φλ(x̄), then
Tλ,L(x) is sparse.

Lemma 6. Suppose that Assumption 1 holds for some δ′, γ and s̃, and λ ≥ λtgt. If x satisfies

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
, (39)

and L < γincρ+(A, s̄+ 2s̃), then
∥

∥

(

Tλ,L(x)
)

S̄c

∥

∥

0
< s̃.

Proof. Recall that Tλ,L can be computed by the soft-thresholding operator as in (6). That is,

(TL(x))i = sgn(x̃i)max

{

|x̃i| −
λ

L
, 0

}

, i = 1, . . . , n,

where

x̃ = x− 1

L
AT (Ax− b) = x− 1

L
ATA(x− x̄) + 1

L
AT z.

In order to upper bound the number of nonzero elements in (TL(x))S̄c , we split the truncation
threshold λ/L on elements of x̃S̄c into three parts:

20

• 0.175λ/L on elements of xS̄c ,

• 0.125λ/L on elements of (1/L)AT z, and

• 0.7λ/L on elements of (1/L)ATA(x− x̄).

By the assumption (19), we have ‖AT z‖∞ ≤ λ/8, hence
∣

∣{j : ((1/L)AT z)j > 0.125λ/L}
∣

∣ = 0.
Therefore,

∥

∥

(

TL(x)
)

S̄c

∥

∥

0
≤
∣

∣

{

j ∈ S̄c : |xj | > 0.175λ/L
}
∣

∣+
∣

∣

{

j :
∣

∣

(

ATA(x− x̄)
)

j

∣

∣ ≥ 0.7λ
}
∣

∣.

Note that

∣

∣{j ∈ S̄c : |xj | ≥ 0.175λ/L}
∣

∣ =
∣

∣{j ∈ S̄c : |(x− x̄)j | ≥ 0.175λ/L}
∣

∣

≤
∣

∣{j : |(x− x̄)j | ≥ 0.175λ/L}
∣

∣

≤ L(0.175λ)−1‖x− x̄‖1

≤ L

0.175λ

1.4(1 + γ)λs̄

ρ−(A, s̄+ s̃)
=

8L(1 + γ)s̄

ρ−(A, s̄+ s̃)
, (40)

where the last inequality follows from Lemma 5.
For the last part, consider S′ with maximum size s′ = |S′| ≤ s̃ such that

S′ ⊂ {j : |(ATA(x− x̄))j | ≥ 0.7λ}.

Then there exists u such that ‖u‖∞ = 1 and ‖u‖0 = s′, and 0.7s′λ ≤ uTATA(x− x̄). Moreover,

0.7s′λ ≤ uTATA(x− x̄) ≤ ‖Au‖2‖A(x− x̄)‖2 ≤
√

ρ+(A, s′)
√
s′

√

2 · 1.42(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

where the last inequality again follows from Lemma 5. Taking squares of both sides of the above
inequality gives

s′ ≤ 8 ρ+(A, s
′)(1 + γ)s̄

ρ−(A, s̄+ s̃)
≤ 8 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)
< s̃,

where the last inequality is due to (20). Since s′ = |S′| achieves the maximum possible value such
that s′ ≤ s̃ for any subset S′ of {j : |(ATA(x− x̄))j | ≥ 0.7λ}, and the above inequality shows that
s′ < s̃, we must have

S′ = {j : |(ATA(x− x̄))j | ≥ 0.7λ},
and thus

∣

∣{j : |(ATA(x− x̄))j | ≥ 0.7λ}
∣

∣ = s′ ≤
⌊

8 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)

⌋

.

Finally, combining the above bound with the bound in (40) gives

∥

∥

(

Tλ,L(x)
)

S̄c

∥

∥

0
≤ 8 (L+ ρ+(A, s̃))

ρ−(A, s̄+ s̃)
(1 + γ)s̄.

Under the assumption L < γincρ+(A, s̄+ 2s̃) and (20), the right-hand side of the above inequality
is less than s̃. This proves the desired result.

21

Recall that each iteration of Algorithm 2 takes the form x(k+1) = Tλ,Mk
(x(k)). According to (13),

the objective value φλ(x
(k)) is monotone decreasing. So if x(0) satisfies the condition (39), every

iterate x(k) satisfies the same condition. In order to show

‖(x(k))S̄c‖0 < s̃, ∀ k > 0,

we only need to note that the line-search procedure (Algorithm 1) always terminates with

Mk ≤ γincρ+(A, s̄+ 2s̃). (41)

Indeed, as long as
Mk ∈ [ρ+(A, s̄+ 2s̃), γincρ+(A, s̄+ 2s̃)],

Lemma 6 implies that
∥

∥

(

Tλ,L(x)
)

S̄c

∥

∥

0
< s̃ and the restricted smoothness property (16) implies the

termination of line-search.

4.2 Proof of Theorem 1

In this subsection, we show that for any fixed λ, the sequence
{

x(k)
}∞

k=0
generated by Algorithm 2

(without invoking the stopping criteria) has a limit and the local rate of convergence is geometric.
First, since the sub-level set {x : φλ(x) ≤ φλ(x

(0))} is bounded and φλ(x
(k)) is monotone

decreasing, the sequence
{

x(k)
}∞

k=0
is bounded. By the Bolzano-Weierstrass theorem, it has a con-

vergent subsequence and a corresponding accumulation point. Moreover, from the inequality (13)
and the fact that φλ(x) is bounded below, we conclude that

lim
k→∞

‖gλ,L(x(k))‖2 = 0.

By Lemma 2, this implies that any accumulation point of the sequence
{

x(k)
}∞

k=0
satisfies the

optimality condition, therefore is a minimizer of φλ.
Let x?(λ) denote an accumulation point of the sequence

{

x(k)
}∞

k=0
. As a consequence of

Lemma 6, any accumulation point is also sparse; In particular, we have ‖(x?(λ))S̄c‖0 ≤ s̃.
Now using the restricted strong convexity property (17), we have

f(x) ≥ f(x?) + 〈∇f(x?(λ)), x− x?(λ)〉+ ρ−(A, s̄+ 2s̃)

2
‖x− x?(λ)‖22. (42)

Since x?(λ) = argminx{f(x) + λ‖x‖1}, there must exists ξ ∈ ∂‖x?(λ)‖1 such that

∇f(x?(λ)) + λξ = 0. (43)

Since ξ ∈ ∂‖x?(λ)‖1, we also have

λ‖x‖1 ≥ λ‖x?(λ)‖1 + 〈λξ, x− x?(λ)〉. (44)

Adding the two inequalities (42) and (44) and using (43), we get

φλ(x)− φλ(x?(λ)) ≥
ρ−(A, s̄+ 2s̃)

2
‖x− x?(λ)‖22, ∀x : ‖xS̄c‖0 ≤ s̃. (45)

Since any accumulation point satisfies ‖xS̄c‖0 ≤ s̃, we conclude that x?(λ) is a unique accumu-
lation point, in other words, the limit, of the sequence

{

x(k)
}∞

k=0
.

22

Next we show that under the assumptions in Lemma 6, especially with x(0) satisfying (39),
Algorithm 2 has a geometric convergence rate. We start with the stopping criteria in the line
search procedure:

φλ(x
(k+1)) ≤ ψλ,Mk

(x(k), x(k+1))

≤ min
x

{

f(x) +
Mk

2
‖x− x(k)‖22 + λ‖x‖1

}

= min
x

{

φλ(x) +
Mk

2
‖x− x(k)‖22

}

.

where the second inequality follows from the convexity of f . We can further relax the right-hand side
of the above inequality by restricting the minimization over the line segment x = αx?(λ)+(1−α)x(k),
where α ∈ [0, 1]. This leads to

φλ(x
(k+1)) ≤ min

α

{

φλ
(

αx?(λ) + (1− α)x(k)
)

+
Mk

2
‖α(x(k) − x?(λ))‖22

}

≤ min
α

{

αφλ(x
?(λ)) + (1− α)φλ(x(k)) +

α2Mk

2
‖x(k) − x?(λ)‖22

}

= min
α

{

φλ(x
(k))− α

(

φλ(x
(k))− φλ(x?(λ))

)

+
α2Mk

2
‖x(k) − x?(λ)‖22

}

Since the conclusion of Lemma 6 implies that ‖x(k)
S̄c
‖0 ≤ s̃ for all k ≥ 0, we can use the “restricted”

strong convexity property (45) to obtain

φλ(x
(k+1)) ≤ min

α

{

φλ(x
(k))− α

(

1− αMk

ρ−(A, s̄+ 2s̃)

)

(

φλ(x
(k))− φλ(x?(λ))

)

}

.

The minimizing value is α = ρ−(A, s̄+ 2s̃)/(2Mk), which gives

φλ(x
(k+1)) ≤ φλ(x

(k))− ρ−(A, s̄+ 2s̃)

4Mk

(

φλ(x
(k))− φλ(x?(λ))

)

.

Let φ?λ = φλ(x
?(λ)). Subtracting φ?λ from both side of the above inequality gives

φλ(x
(k+1))− φ?λ ≤

(

1− ρ−(A, s̄+ 2s̃)

4Mk

)

(

φλ(x
(k))− φ?λ

)

≤
(

1− ρ−(A, s̄+ 2s̃)

4γincρ+(A, s̄+ 2s̃)

)

(

φλ(x
(k))− φ?λ

)

,

where the second inequality follows from (41). Therefore, we have

φλ(x
(k))− φ?λ ≤

(

1− 1

4γincκ

)k
(

φλ(x
(0))− φ?λ

)

,

where κ is the restricted condition number defined in (21). Note that the above convergence rate
does not depend on λ.

23

4.3 Proof of Theorem 2

In Algorithm 3, x̂(K) denotes an approximate solution for minimizing the function φλK
. A key idea

of the homotopy method is to use x̂(K) as the starting point in the proximal gradient method for
minimizing the next function φλK+1

. The following lemma shows that if we choose the parame-

ters δ and η appropriately, then x̂(K) satisfies the approximate optimality condition for λK+1 that
guarantees local geometric convergence.

Lemma 7. Suppose x̂(K) satisfies the approximate optimality condition

ωλK
(x̂(K)) ≤ δλK

for some δ < δ′. Let λK+1 = ηλK for some η that satisfies

1 + δ

1 + δ′
≤ η < 1. (46)

Then we have
ωλK+1

(x̂(K)) ≤ δ′λK+1.

Proof. If ωλK
(x̂(K)) ≤ δλK , then there exists ξ ∈ ∂‖x̂(K)‖1 such that

∥

∥∇f(x̂(K)) + λKξ
∥

∥

∞
≤ δλK .

Then we have

ωλK+1
(x̂(K)) ≤

∥

∥

∥
∇f(x̂(K)) + λK+1ξ

∥

∥

∥

∞

=
∥

∥

∥
∇f(x̂(K)) + λKξ + (λK+1 − λK)ξ

∥

∥

∥

∞

≤
∥

∥

∥
∇f(x̂(K)) + λKξ

∥

∥

∥

∞
+ |λK+1 − λK | · ‖ξ‖∞

≤ δλK + (1− η)λK .

Since the condition (46) implies δλK + (1− η)λK ≤ δ′λK+1, we have the desired result.

Lemma 8. Suppose that Assumption 1 holds for some δ′, γ and s̃. Let λ ≥ λtgt, and assume that x
satisfies

ωλ(x) ≤ δ′λ.
Then for all λ′ ∈ [λtgt, λ], we have

φλ′(x)− φλ′(x?(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

Proof. Let ξ(λ) = argminξ∈∂‖x‖1 ‖∇f(x) + λξ‖∞. Thus ωλ(x) = ‖∇f(x) + λξ(λ)‖∞. By the con-
vexity of φλ′ , we have

φλ′(x)− φλ′(x?(λ′)) ≤ 〈∇f(x) + λ′ξ(λ), x− x?(λ′)〉
≤ (‖∇f(x) + λξ(λ)‖∞ + λ− λ′)‖x− x?(λ′)‖1
= (ωλ(x) + λ− λ′) ‖x− x?(λ′)‖1. (47)

Since ωλ′(x?(λ′)) = 0 < δ′λ′, by Lemma 4, we have

‖x?(λ′)− x̄‖1 ≤ (1 + γ)
√
s̄ ‖x?(λ′)− x̄‖2 ≤

2(1 + γ)λ′s̄

ρ−(A, s̄+ s̃)
.

24

Similarly, because of the assumption ωλ(x) ≤ δ′λ, we have

‖x− x̄‖1 ≤ (1 + γ)
√
s̄ ‖x− x̄‖2 ≤

2(1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

Therefore, we have

‖x− x?(λ′)‖1 ≤ ‖x− x̄‖1 + ‖x̄− x?(λ′)‖1 ≤
2(1 + γ)(λ+ λ′)s̄

ρ−(A, s̄+ s̃)
.

Now we obtain from (47) that

φλ′(x)− φλ′(x?(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

This proves the desired result.

Now we are ready to give an estimate of the overall complexity of the homotopy method. First,
we need to bound the number of iterations within each call of Algorithm 2.

Using Lemma 2, we can upper bound the measure for approximate optimality as

ωλ(x
(k+1)) ≤

(

1 +
SMk

(x(k))

Mk

)

∥

∥gλ,Mk
(x(k))

∥

∥

2

≤
(

1 +
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ 2s̃)

)

∥

∥gλ,Mk
(x(k))

∥

∥

2

= (1 + κ)
∥

∥gλ,Mk
(x(k))

∥

∥

2
,

where the second inequality follows from

SMk
(x(k)) ≤ ρ+(A, s̄+ 2s̃), Mk ≥ ρ−(A, s̄+ 2s̃),

which are direct consequences of the line-search termination criterion, the restricted smoothness
property (16) and the restricted strong convexity property (17).

In order to bound the norm of gλ,Mk
(x(k)), we use the inequality (13) and Theorem 1 to obtain

∥

∥gλ,Mk
(x(k))

∥

∥

2

2
≤ 2Mk

(

φλ(x
(k))− φλ(x(k+1))

)

≤ 2Mk

(

φλ(x
(k))− φ?λ

)

≤ 2γinc ρ+(A, s̄+ 2s̃)

(

1− 1

4γincκ

)k
(

φλ(x
(0))− φ?λ

)

,

where φ?λ = φλ(x
?(λ)) = minx φλ(x), and in the last inequality we used (41). Recall that κ is the

restricted condition number defined in (21). Therefore, in order to satisfy the stopping criteria

ωλ(x
(k+1)) ≤ δλ,

it suffices to ensure

(1 + κ)

√

2γincρ+(A, s̄+ 2s̃)

(

1− 1

4γincκ

)k
(

φλ(x(0))− φ?λ
)

≤ δλ,

25

which requires

k ≥ ln

(

2γinc(1 + κ)2ρ+(A, s̄+ 2s̃)

δ2λ2

(

φλ(x
(0))− φ?λ

)

)

/

ln

(

1− 1

4γincκ

)−1

.

We still need to bound the gap φλ(x
(0)) − φ?λ. Since Lemma 7 implies that ωλ(x

(0)) ≤ δ′λ, we
can obtain the following inequality directly from Lemma 8 by setting λ′ = λ and x = x(0):

φλ(x
(0))− φ?λ ≤

4(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Therefore, the number of iterations in each call of Algorithm 2 is no more than

ln

(

8γinc(1 + κ)2(1 + γ)s̄

δ2
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)

)

/

ln

(

1− 1

4γincκ

)−1

.

To simplify presentation, we note that

C = 8γinc(1 + κ)2(1 + γ)s̄κ ≥ 8γinc(1 + κ)2(1 + γ)s̄
ρ+(A, s̄+ 2s̃)

ρ−(A, s̄+ s̃)
.

Thus the previous iteration bound is no more than

ln

(

C

δ2

)

/

ln

(

1− 1

4γincκ

)−1

.

This proves Part 1 of Theorem 2. We note that this bound is independent of λ.
In the homotopy method (Algorithm 3), after K outer iterations for K ≤ N − 1, we have from

Lemma 7 that ωλK+1
(x̂(K)) ≤ δ′λK+1. The sparse recovery performance bound

‖x̂(K) − x̄‖2 ≤ 2ηK+1λ0
√
s̄/ρ−(A, s̄+ s̃)

follows directly from Lemma 4 and λK+1 = ηK+1λ0. Moreover, from Lemma 8 with λ′ = λtgt,
λ = λK+1, and x = x̂(K), we obtain

φλtgt
(x̂(K))− φ?λtgt

≤ 2(1 + γ)(λK+1 + λtgt)(δ
′λK+1 + λK+1 − λtgt)s̄

ρ−(A, s̄+ s̃)
.

Next, we use δ′ < 1 and maximize (λK+1 + λtgt)(2λK+1 − λtgt) over λtgt to obtain

φλtgt
(x̂(K))− φ?λtgt

≤
4.5(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
= η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
.

This proves Part 2 of Theorem 2.
In Algorithm 3, the number of outer iterations, excluding the last one for λtgt, is

N =

⌊

ln(λ0/λtgt)

ln(1/η)

⌋

.

The last iteration for λtgt uses an absolute precision ε instead of the relative precision δλtgt. There-
fore, the overall complexity is bounded by

(

ln(λ0/λtgt)

ln(1/η)
ln

(

C

δ2

)

+ lnmax

(

1,
λ2tgtC

ε2

))/

ln

(

1− 1

4γincκ

)−1

.

Finally, when the PGH method terminates, we have ωλtgt
(x̂(tgt)) ≤ ε. Therefore we can apply

Lemma 8 with λ = λ′ = λtgt and x = x̂(tgt) to obtain the last desired bound in Part 3.

26

5 Numerical experiments

In this section, we present numerical experiments to supports our theoretical analysis. First, we
illustrate the numerical properties of the PGH method by comparing it with several other methods.
More specifically, we implemented the following methods for solving the `1-LS problem:

• PG: Nesterov’s proximal gradient method with adaptive line search (Algorithm 2).

• PGH: our proposed PGH method described in Algorithm 3.

• ADG: Nesterov’s accelerated dual gradient method, i.e., Algorithm (4.9) in [Nes07].

• ADGH: the PGH method in Algorithm 3, but with PG replaced by ADG.

We generated a random instance of (1) with dimensions m = 1000 and n = 5000. The entries of
the matrix A ∈ R

m×n are generated independently with the uniform distribution over the interval
[−1,+1]. The vector x̄ ∈ R

n was generated with the same distribution at 100 randomly chosen
coordinates (i.e., s̄ = |supp(x̄)| = 100). The noise z ∈ R

m is a dense vector with independent ran-
dom entries with the uniform distribution over the interval [−σ, σ], where σ is the noise magnitude.
Finally the vector b was obtained as b = Ax̄ + z. In our first experiment, we set σ = 0.01 and
choose λtgt = 1. For this particular instance we have roughly ‖AT z‖∞ = 0.411. To start the PGH
method, we have λ0 = ‖AT b‖∞ = 483.4.

Figure 1 illustrates various numerical properties of the four different methods for solving this
random instance. We used the parameters γinc = 2 and γdec = 2 in all four methods. For the
two homotopy methods (whose acronyms end with the letter H), we used the parameters η = 0.7
and δ = 0.2. In the first four subfigures (a)-(d), the horizontal axes show the cumulative count
of inner iterations (total number of proximal-gradient steps). For the two homotopy methods, the
vertical line segments in the subfigures (a), (c) and (f) indicate switchings of homotopy stages
(when the value of λ is reduced by the factor η) — they reflect the change of objective function or
the optimality residue for the same vector x(k).

Figure 1(a) shows the objective gap φλ(x
(k))−φ?λtgt

versus the total number of iterations k. The
PG method solves the problem with the target regularization parameter λtgt directly. For the first
350 or so iterations, it demonstrated a slow sublinear convergence rate (theoretically O(1/k)), but
converged rapidly for the last 30 iterations with a linear rate. Referring to Figure 1(b), we see that
the slow convergence phase of PG is associated with relatively dense iterates (with ‖x(k)‖0 ranging
from 5,000 to several hundreds), while the fast linear convergence in the end coincides with sparse
iterates with ‖x(k)‖0 around one hundred. In contrast, the PGH method maintains sparse iterates
(always less than 300) along the whole solution path, and converges much faster.

Figure 1(c) shows the optimality residues of different methods versus the number of iterations k.
They demonstrate similar trends as the objective function gap, but clearly they oscillate along the
solution path and do not decrease monotonically. Figure 1(d) plots the local Lipschitz constants
returned by the line search procedure at each iteration. We see that the adaptive line-search method
settles with much smaller Mk when the iterates are sparse. There is a striking similarity between
the final stages of the PG method and the PGH method. However, the PGH method avoids the
slow sublinear convergence by maintaining sparse iterates along its whole solution path.

Also plotted in Figure 1 are numerical characteristics of the ADG and ADGH methods. We see
that the ADGmethod is much faster than the PG method in the early phase, which can be explained
by its better convergence rate, i.e., O(1/k2) instead of O(1/k) for PG. However, it stays with the

27

0 100 200 300 400 500
10

−10

10
−5

10
0

PG
PGH

ADG
ADGH

k

φ
λ
(x

(k
))
−
φ
? λ
t
g
t

(a) Objective gap.

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

PG
PGH

ADG
ADGH

k

‖x
(k
) ‖

0

(b) Sparsity along solution path.

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

10
2

PG
PGH

ADG
ADGH

k

ω
λ
(x

(k
))

(c) Optimality residues.

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

PG
PGH

ADG
ADGH

k

M
k

(d) Line search results.

10
0

10
1

10
2

0

5

10

15

20

25

30

PGH
ADGH

λ0/λK
(e) Number of iterations for each λK .

0 500 1000 1500 2000
10

−10

10
−5

10
0

PG
PGH

ADG
ADGH

A or AT multiplications

φ
λ
(x

(k
))
−
φ
? λ
t
g
t

(f) Number of matrix-vector multiplications.

Figure 1: Solving a random instance of the `1-LS problem. Problem sizes: m = 1000, n = 5000,
s̄ = 100, and λtgt = 1. Entries of A ∈ R

m×n were generated with independent uniform distributions
over [−1,+1], and ‖z‖∞ = 0.01. Algorithmic parameters: γinc = 2, γdec = 2, η = 0.7, and δ = 0.2.

28

0 20 40 60 80 100
10

−10

10
−5

10
0

δ = 0.1
δ = 0.2
δ = 0.8

k

φ
λ
(x

(k
))
−
φ
? λ
t
g
t

(a) Objective gap.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

δ = 0.1
δ = 0.2
δ = 0.8

k

‖x
(k
) ‖

0

(b) Sparsity along solution path.

Figure 2: Performance of the PGH method by varying δ while keeping η = 0.7.

sublinear rate even when the iterates x(k) becomes very sparse. The reason is that ADG cannot
automatically exploit the local strong convexity as PG does, so it eventually lagged behind when
the iterates became very sparse (see discussions in [Nes07]). In the method ADGH, we combine the
homotopy continuation strategy with the ADG method. It improves a lot compared with ADG,
but still does not have linear convergence and thus is much slower than the PGH method.

Figure 1(e) shows the number of proximal-gradient steps performed at each homotopy stage
(corresponding to each λK) of the two homotopy methods. We see that the final stage of the PGH
method took 19 inner iterations to reach the absolute precision ε = 10−5, and all earlier stages
took only 1 to 4 inner iterations to reach the relative precision δλK . We note that the number of
inner iterations at each intermediate stage stayed relatively constant, even though the tolerance
for the optimality residue decreases as δλk = ηKδλ0. This is predicted by Part 1 of Theorem 2.
The ADGH method, which employs the ADG method for solving each stage, took more number of
inner iterations at each stage. This again reflects its lack of capability of exploiting the restricted
strong convexity.

The number of inner iterations is not the whole story for evaluating the performance of the
algorithms. Figure 1(f) shows the objective gap versus the total number of matrix-vector multi-
plications with either A or AT . Evaluating the objective function f(x(k)) costs one matrix-vector
multiplication, and evaluating the gradient ∇f(x(k)) costs an additional multiplication. The esti-
mate in (15) states that each proximal-gradient step in the PG method needs on average two calls
of the oracle. But one of them is done in the line search procedure, and it requires only the function
value. Therefore each inner iteration on average costs roughly three matrix-vector multiplications.
On the other hand, each iteration of the ADG method on average costs eight matrix-vector multipli-
cations [Nes07]. These factors are confirmed by comparing the horizontal scales of the Figures 1(a)
and 1(f). We found that the number of matrix-vector multiplications is a very precise indicator for
the running time of each algorithm. From this perspective, the advantage of the PGH method is
more pronounced.

Next we conducted experiments to test the sensitivity of the PGH method with respect to the
choices of parameters δ and η. Figure 2 shows the objective gap and sparsity of the iterates along
the solution path for different δ while keeping η = 0.7. We see that when δ is reduced from 0.2

29

0 20 40 60 80 100
10

−10

10
−5

10
0

η = 0.2
η = 0.5
η = 0.8

k

φ
λ
(x

(k
))
−
φ
? λ
t
g
t

(a) Objective gap.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

η = 0.2
η = 0.5
η = 0.8

k

‖x
(k
) ‖

0

(b) Sparsity along solution path.

Figure 3: Performance of the PGH method by varying η while keeping δ = 0.2.

to 0.1, the iterates became slightly more sparse, hence the convergence rate at each stage can be
slightly faster due to better conditioning. However, this was countered by more iterations at each
stage required by reaching more stringent precision, and the overall number of proximal-gradient
steps increased. On the other hand, increasing δ to 0.8 made the intermediate stages faster by
requiring loose precision. However, this comes at the cost of less sparse iterates, and the final stage
suffers a slow sublinear convergence in the beginning.

Figure 3 shows the numerical behaviors of the PGH method by varying η while keeping δ = 0.2.
We see relatively big variations of the sparsity of the iterates, but these did not affect much of
the overall iteration count. The intermediate stages may suffer from slow convergence with less
sparsity, but they only need to be solved to a very rough precision. It is more important to start the
last stage with a sparse vector and enjoy the fast convergence to the final precision (see discussions
at the end of Section 3).

5.1 Comparison with SpaRSA and FPC

As mentioned in the introduction, similar approximate homotopy/continuation methods have been
studied for the `1-LS problem. Here we compare the PGH method with two most relevant ones:
sparse reconstruction by separable approximation (SpaRSA) [WNF09], and fixed point continuation
(FPC) [HYZ08]. In particular, the same proximal gradient method (5) is used in each iteration of
both SpaRSA and FPC. Their continuation strategies are both based on reducing λ by a constant
factor at each stage.

SpaRSA uses Barzilai-Borwein (spectral) method for choosing Lk at each step. More specifically,
at each iteration the parameter Lk is initialized as

Lk =

∥

∥A
(

x(k) − x(k−1)
)∥

∥

2

2

‖x(k) − x(k−1)‖22
,

then it is increased by a constant factor until an acceptance criterion is satisfied. When both x(k)

and x(k−1) are sparse, say |supp(x(k)) ∪ supp(x(k−1))| ≤ s for some integer s, then the above Lk

30

0 10 20 30 40 50 60 70
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

PGH η = 0.7
PGH η = 0.2
SpaRSA-MC
FPC-BB

k

φ
λ
(x

(k
))
−
φ
? λ
t
g
t

(a) Objective gap.

10
0

10
1

10
2

10
3

0

5

10

15

20

25

PGH η = 0.7
PGH η = 0.2
SpaRSA-MC
FPC-BB

λ0/λK
(b) Number of inner iterations for each λK .

Figure 4: Comparison with SpaRSA and FPC.

satisfies
ρ−(A, s) ≤ Lk ≤ ρ+(A, s).

According to Section 2.3, such a line search method is able to exploit the restricted strong convexity,
similar as the PGH method. However, the line-search acceptance criterion of SpaRSA is different
from PGH, and they also have different stopping criteria for each homotopy stage. Global geometric
convergence of either SpaRSA or FPC has not been established.

In our numerical experiments, we used the monotone version of SpaRSA with continuation,
which we call SpaRSA-MC. For FPC, we used a more recent implementation by the authors of
[HYZ08] that also employs Barzilai-Borwein line search, which is called FPC-BB. In fact FPC-BB
solves the equivalent problem

minimize
x

‖x‖1 +
µ

2
‖Ax− b‖22

where µ = 1/λ. Moreover, it further scales the matrix A so that the maximum singular value is at
most 1. In Figures 4 and 5, the results of FPC-BB are plotted after we reversed the scalings in order
to compare with other methods. Default options were used in both methods. SpaRSA-MC reduces
the value of λ roughly with an factor η = 0.2, and FPC-BB has an equivalent factor η = 0.25. For
meaningful comparison, we also present the results for PGH with η = 0.2, in addition to its default
value η = 0.7. The same relative precision δ = 0.2 was used in both cases for PGH.

Figure 4 shows the numerical results of different algorithms on the same random instance studied
in Figure 1. They demonstrate similar numerical properties, and SpaRSA-MC is especially similar
to PGH with η = 0.2. The numbers of iterations at each continuation stage depend on the specific
stopping criteria used in different algorithms. In Figure 4(b), the small number of iterations in the
final stage of FPC-BB is a result of the relatively loose precision specified in its default options,
which is also reflected in Figure 4(a). According to Figure 3(b), the aggressive decreasing factors η
used in SpaRSA and FPC can lead to less sparse iterates along the solution path, thus relatively
slower convergence at the intermediate stages. But their overall iteration counts are comparable to
PGH with η = 0.7.

31

0 1000 2000 3000 4000 5000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

PG
PGH η = 0.7
SpaRSA-M
SpaRSA-MC
FPC-BB
FPC-BB-HA
ADG
ADGH

k

φ
λ
(x

(k
))
−
φ
? tg
t

Figure 5: Comparison of different methods for solving a non-sparse random instance.

We also conducted experiments with random problem instances where the vector x̄ is not
sufficiently sparse. Figure 5 shows the objective gap of different methods when solving a random
problem instance generated similarly as the one studied in Figure 1. The only difference is that
here the vector x̄ has 500 nonzero elements. In this case, all methods demonstrate sub-linear
convergence. SpaRSA-M is the monotone version of SpaRSA without continuation. FPC-BB
terminated prematurely because its default accuracy for its stopping criterion is too low. FPC-
BB-HA is the result after we set a much higher accuracy in calling the FPC-BB method. It looks
that the same higher accuracy is used in all the homotopy stages, so the number of inner iterations
increased for each stage. We see that the algorithms with homotopy continuation still perform
better than their single-stage counterparts, but the improvements are less impressive. Instead, the
accelerated gradient methods ADG and ADGH outperform other methods by a big margin.

5.2 Basis pursuit

Finally we present an experiment of solving the basis pursuit (BP) problem (8) using PGH, and
compare it with FPC and SpaRSA. In this experiment, the matrix A is a partial FFT matrix. More
specifically, we choosem = 10, 000 rows at random from the n×n FFTmatrix with n = 216 = 65536.
The vector x̄ ∈ R

n has nonzero entries at only s̄ = 1000 randomly chosen coordinates, and they
were generated independently from the normal distribution with zero mean and unit variance. Then
we set b = Ax̄ in the BP problem (i.e., this is the noise-free case with z = 0).

In this case, since A is a matrix with complex numbers, we need to replace all the real transpose
in the algorithms with Hermitian transpose, and replace the soft-thresholding operator in (7) with

soft(xi, α) =
max{|xi| − α, 0}

max{|xi| − α, 0}+ α
,

where |xi| denotes the modulus of the complex number xi [WNF09].
The solution to the BP problem (8) can be obtained by letting λ→ 0 in the `1-LS problem (1).

In order to use the PGH method, we set λtgt = 10−10. The same parameter was also used in calling
SpaRSA-MC and FPC-BB. Figure 6 shows the numerical results. Again we observe remarkable

32

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

PGH η = 0.7
PGH η = 0.2
SpaRSA-MC
FPC-BB

k

φ
λ
(x

(k
))

(a) Objective value. Note that φ?λ → 0 as λ→ 0.

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

PGH η = 0.7
PGH η = 0.2
SpaRSA-MC
FPC-BB

k

‖x
(k
)
−
x̄
‖ 2

(b) Recovery error.

10
0

10
2

10
4

10
6

10
8

10
10

0

5

10

15

20

25

30

35

40

itr

PGH η = 0.7
PGH η = 0.2
SpaRSA-MC
FPC-BB

λ0/λK
(c) Number of inner iterations

Figure 6: Basis pursuit via homotopy continuation: an example with partial FFT matrix.

resemblance between these methods in Figure 6(a). However, in Figure 6(b), we see the recovery
error of SpaRSA-MC stayed at the level 10−3 while its objective function in Figure 6(a) converged
to zero faster than other methods. This is caused by the fixed accuracy at each stage used by
SpaRSA, and can be easily fixed by using a relative accuracy (proportional to the regularization
weight λ) as used by PGH and FPC.

This example also demonstrates the advantage of PGH and other approximate homotopy con-
tinuation methods over the exact homotopy path-following methods [OPT00a, OPT00b, EHJT04].
Figure 6(b) shows that high-precision recovery can be obtained by PGH in less than 150 iterations
(which corresponds to roughly 450 matrix-vector multiplications). This is much more efficient than
using the exact homotopy path-following methods, which need to track at least 1000 breakpoints.
In addition, their computational cost at each break point is much higher than a matrix-vector
multiplication.

33

6 Conclusion and discussions

This paper studied a proximal-gradient homotopy method for solving the `1-regularized least
squares problems, focusing on its important application in sparse recovery. For such applications,
the objective function is not strongly convex; hence the standard single-stage proximal gradient
methods can only obtain relatively slow convergence rate. However, we have shown that under suit-
able conditions for sparse recovery, all iterates of the proximal-gradient homotopy method along
the solution path are sparse. With this extra sparsity structure, the objective function becomes
effectively strongly convex along the solution path, and thus a geometric rate of convergence can be
achieved using the homotopy approach. Our theoretical analysis are supported by several numerical
experiments.

We commented in the numerical experiments that accelerated gradient methods cannot auto-
matically exploit restricted strong convexity. As discussed in [Nes04, Section 2.2] and [Nes07], they
need to explicitly use the strong convexity parameter, or a non-trivial lower bound of it, to obtain
geometric convergence. In order to exploit restricted strong convexity in the `1-LS problem with
m < n, accelerated gradient methods need an extra facility to come up with an explicit estimate of
the restricted convexity parameter on the fly. Nesterov gave some suggestions along this direction
in [Nes07], and strategies such as periodic restart have been studied recently [GLW09, BCG11].
However, an in-depth investigation on this matter is beyond the scope of this paper.

References

[ANW11] A. Agarwal, S. N. Negahban, and M. J. Wainwright. Fast global convergence of gradient
methods for high-dimensional statistical recovery. Technical Report arXiv:1104.4824v1,
arXiv, 2011.

[BBC11] S. R. Becker, J. Bobin, and E. J. Candès. NESTA: A fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[BCG11] S. R. Becker, E. J. Candès, and M. C. Grant. Templates for convex cone problems
with applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

[BDE09] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Review, 51(1):34–81, 2009.

[BDF07] J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Two-step iterative shrink-
ing/thresholding algorithms for image restoration. IEEE Transactions on Image Pro-
cessing, 16(12):2992–3004, 2007.

[BRT09] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37:1705–1732, 2009.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[CDS98] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

34

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, February 2006.

[CT05] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203–4215, December 2005.

[CT06] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: uni-
versal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–
5425, December 2006.

[CT07] E. J. Candes and T. Tao. The dantzig selector: statistical estimation when p is much
larger than n (with discussion). Annals of Statistics, 35:2313–2404, 2007.

[CW05] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting.
SIAM Journal on Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

[DDM04] I. Daubechies, M. Defriese, and C. De Mol. An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413–1457, 2004.

[DET06] D. L. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on Information Theory,
52(1):6–18, January 2006.

[DMA97] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Journal of
Constructive Approximation, 13(1):57–98, 1997.

[Don06] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, April 2006.

[DT08] D. L. Donoho and Y. Tsaig. Fast solution of `1-norm minimization problems when the
solution may be sparse. IEEE Transactions on Information Theory, 54(11):4789–4812,
November 2008.

[EHJT04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression (with
discussion). Annals of Statistics, 32:407–499, 2004.

[GLW09] M. Gu, L.-H. Lim, and C. J. Wu. ParNes: A rapidly convergent algorithm for accurate
recovery of sparse and approximately sparse signals. Preprint. arXiv:0911.0492, 2009.

[HYZ08] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization:
Methodology and convergence. SIAM Journal on Optimization, 19(3):1107–1130, 2008.

[KKL+07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method
for large-scale `1-regularized least squares. IEEE Journal on Selected Topics in Signal
Processing, 1(4):606–617, December 2007.

[Kol09] V. Koltchinskii. The dantzig selector and sparsity oracle inequalities. Bernoulli, 15:799–
828, 2009.

35

[LM11] S. Li and Q. Mo. New bounds on the restricted isometry constant δ2k. Applied and
Computational Harmonic Analysis, 31(3):460–468, 2011.

[LT92] Z.-Q. Luo and P. Tseng. On the linear convergence of descent methods for convex es-
sentially smooth minimization. SIAM Journal on Control and Optimization, 30(2):408–
425, 1992.

[MB06] N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with
the lasso. Annals of Statistics, 34:1436–1462, 2006.

[Nes83] Y. Nesterov. A method for solving a convex programming problem with convergence
rate O(1/k2). Soviet Mathematics - Doklady, 27(2):372–376, 1983.

[Nes96] Y. Nesterov. Long-step strategies in interior-point primal-dual methods. Mathematical
Programming, 76:47–94, 1996.

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

[Nes05] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Program-
ming, 103(1):127–152, 2005.

[Nes07] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
discussion paper 2007/76, Center for Operations Research and Econometrics, Catholic
University of Louvain, Belgium, September 2007.

[NT09] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–321,
2009.

[OPT00a] M. Osborne, B. Presnell, and B. Turlach. A new approach to variable selection in least
squares problems. IMA Journal of Numerical Analysis, 20:389–404, 2000.

[OPT00b] M. Osborne, B. Presnell, and B. Turlach. On the lasso and its dual. Journal of
Computational and Graphical Statistics, 9(2):319–337, 2000.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 58:267–288, 1996.

[Tro04] J. A. Tropp. Greedy is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

[Tro06] J. A. Tropp. Just relax: convex programming methods for identifying sparse signals in
noise. IEEE Transactions on Information Theory, 52:1030–1051, 2006.

[Tse08] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Manuscript submitted to SIAM Journal on Optimization, 2008.

[TVW05] B. A. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection.
Technometrics, 47:349–363, 2005.

36

[TW10] J. A. Tropp and S. J. Wright. Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE, 98(6):948–958, 2010.

[vdBF08] E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):980–912, 2008.

[vdGB09] S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for
the lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

[Wai09] M. J. Wainwright. Sharp thresholds for noisy and high–dimensional recovery of sparsity
using `1–constrained quadratic programming (lasso). IEEE Transactions on Informa-
tion Theory, 55:2183–2202, 2009.

[WNF09] S. J. Wright, R. D. Nowad, and M. A. T. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, July 2009.

[WYGZ10] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruc-
tion based on shrinkage, subspace optimization and continuation. SIAM Journal on
Scientific Computing, 32(4):1832–1857, 2010.

[YOGD08] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for
`1-minimization with applications to compressed sensing. SIAM Journal on Imaging
Science, 1(1):143–168, 2008.

[ZH08] C.-H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high–
dimensional linear regression. Annals of Statistics, 36:1567–1594, 2008.

[Zha09] T. Zhang. Some sharp performance bounds for least squares regression with l1 regu-
larization. Annals of Statistics, 37:2109–2144, 2009.

[ZY06] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine
Learning Research, 7:2541–2567, 2006.

37

