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Abstract.

This paper explores the dynamical range of the WINDMI model [Horton and

Doxas, 1998]. Such low-dimensional models provide us with the tools to understand

the relationships of simple physical quantities within the magnetosphere (such as

energy deposition, macroscopic currents, cross-tail voltage, etc.) without the necessity

of coping with the more complete but unwieldy models (MHD or particle codes, for

example). The model is highly versatile: certain regions of the parameter space support

stable fixed points, while others contain periodic states that exhibit period doubling,

and sometimes chaos. States in each of these regimes (stable, periodic, chaotic) are

investigated for their ability to accurately describe the observed properties of the

magnetosphere-ionosphere system. A brief discussion of applications of this model to

current space physics problems is included.
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1. Introduction

In this paper we explore the dynamical states possible in the WINDMI model

of Horton and Doxas [1998]. The WINDMI model follows a long tradition, begun

with Lorenz [1963] for atmospheric dynamics, of projecting a set of partial differential

equations (PDEs) onto a relatively small set of moments in order to study the dynamical

properties of a system. We thus obtain a finite set of ordinary differential equations, or

ODEs. The idea of such low-dimensional (or low-order) models is to capture as much

of the dynamical behavior of the system as possible without resorting to solving the

full PDEs. Indeed, a direct solution of the PDEs often obscures the exact relationships

between the different physical quantities involved. The numerical methods by which one

solves PDEs directly (i.e. MHD) also involve projecting onto ODEs, but require a very

large number of them. However, the direct solution of the PDEs does provide detailed

spatial resolution not possible in low-order models.

The WINDMI model is derived from an analysis of the physical processes present

in the magnetosphere-ionosphere system, together with careful considerations of the

energy-balance relations. The resulting six ODEs provide physically meaningful values

for the major energy sub-components of the global magnetosphere. The preservation

of such energy relations has been shown to be important in low-order dynamical

systems [Treve and Manley, 1982; Thiffeault and Horton, 1996]; it ensures, for instance,

that solutions of the set of ODEs remain bounded for all times. Our low-order model

has a fixed, mean configuration that forms the basis functions for the electromagnetic

fields. Due to their complex shape, the usual sine and cosine basis functions (as used in

the aforementioned studies) are not suitable. Instead we use the well-known distributed

current systems of the magnetosphere and allow time-dependent amplitudes of these new

basis functions. The formal justification for the method is given in Padhye and Horton

[1999], based on a variation of the action of the electromagnetic particle Lagrangian

that leads to the ODEs.

A model state (choice of parameters) should be able to describe the behavior

observed in the ionosphere and magnetosphere. We qualitatively categorize the states

possible in the WINDMI model, and assess their relationship with observations.

The report is composed as follows: Section 2 outlines the low-dimensional model

and derives its dimensionless form, which expresses the relevant parameter space most

succinctly. The fixed points and spectral linear stability of the system are analyzed in

Section 3. In Section 4, a brief review is given of the types of nonlinear states possible,

and in Section 5, a survey of the different forcing dependent model states is presented.

Section 6 summarizes the principal findings.
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2. The low-dimensional model

The six-dimensional nonlinear dynamics model is derived from the major energy

components of the magnetosphere coupled to the night-side ionosphere through region-1

currents. The details of the derivation are not presented here, but can be found in

Horton and Doxas [1998] or more completely in Smith [1999]. Part of the system is

related to the Faraday loop model of Klimas et al. [1992]. The major components of the

model are the cross tail potential drop V , the current I in the magnetotail current loop

around the upper magnetospheric lobe, the region-1 current I1, the potential Vi across

the ionosphere connecting the nightside region-1 current system, the plasma pressure P

in the central plasma sheet of the magnetosphere, and the parallel streaming kinetic

energy K‖ from the central plasma sheet. As derived in Horton and Doxas [1998], with

fifteen free parameters, the model is as follows:

L
dI

dt
= Vsw − V + M

dI1

dt
(1)

C
dV

dt
= I − I1 − Ips − ΣV (2)

3

2

dP

dt
= Σ

V 2

Ω
− u0 K‖

1/2Θ(I)P (3)

dK‖

dt
= IpsV − K‖

τ‖
(4)

Li
dI1

dt
= V − Vi + M

dI

dt
(5)

Ci
dVi

dt
= I1 − Σ0Vi (6)

where Vsw is the driver, proportional to the solar wind-cross tail electric field, and

Ips = αP 1/2 (7)

Σ0 = Σi + γ(I1Vi)
1/2 (8)

Θ(I) =
1

2

[

1 + tanh
(

I − Ic

∆I

)]

. (9)

To simplify the analysis, we assume that Vsw is constant and therefore one of our parame-

ters. The parameter state is thus given by µ(15) = {Vsw, L, C, Σ, L1, Ci, Σi, γ,M, α, Ω, u0, Ic, ∆I, τ‖}.
As with the model derivation, the derivation of the model parameters from physical

parameters can be found in Horton and Doxas [1996, 1998] and Smith [1999]. In general,

they correspond to space averages of physical parameters in the moment equations from

which the model was derived, like the volume of the plasma sheet or the ion gyroradius,

or to ratios of parameters integrated over the magnetotail or the plasma sheet.

Before embarking on a study of the types of behavior this model exhibits,

we will choose a judicious scaling of our dynamical variables. This has two main
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benefits. The first is that we can choose the scales so that the typical magnitude

of the dynamical variables are comparable. This facilitates numerical integration by

eliminating unnecessary roundoff error. The second benefit is that by doing so we isolate

the dimensionless parameters of the system, which are a more concise representation

of the state of the system. With such a large parameter space, any reduction of the

number of parameters is welcome.

We start by including natural scalings into each of the variables, to be determined

later. So, for example, the lobe current, I, would become SII
′, where SI is the current

scaling with units of [I] and I ′ is dimensionless. The time derivative of the lobe current

would likewise become (SI/St) dI ′/dt′. We then rewrite the equations such that all

scalings and other coefficients appear on the right hand side. Relabel primed terms as

un-primed, and choose four of the new coefficients to fix (in this case to one). We can

eliminate four coefficients because we have four scalings, SI , SV , SP , and St. Note that

the energy scale is redundant with the time, current and voltage scales, and not a new

degree of freedom, since SK ∝ SISV St. Thus, from our original fifteen free parameters,

we should end up with only eleven in the “essential system”.

Since we are trying to equalize the differences of pressure and energy density, we

set the scalings such that the coefficients in the pressure and kinetic energy equations

are equal to one, except for the coefficient inside the hyperbolic tangent. From previous

experience we know that the lobe current fixed point is usually just below the inversion

point of the hyperbolic tangent, so we also set SI = Ic to make the dimensionless current

about one. This leaves us with the dimensionless system given by

İ = a1 (Vsw − V ) + a2 (V − Vi) (10)

V̇ = b1(I − I1)− b2P
1/2 − b3V (11)

Ṗ = V 2 −K‖
1/2P

1

2
{1 + tanh[d1(I − 1)]} (12)

K̇‖ = P 1/2V −K‖ (13)

İ1 = a2 (Vsw − V ) + f1 (V − Vi) (14)

V̇i = g1I1 − g2Vi − g3I1
1/2Vi

3/2 (15)

We have combined equations 1 and 5 to eliminate the time derivatives on the right-hand

side. These equations contain all of the essential dynamical information of the system,

and we refer to them as the dimensionless system. The scalings that give us this system

(in terms of the physical model parameters) are as follows:

St = τ‖ (16)

SI = Ic (17)

SK =
9

4u2
0τ‖

2
(18)
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SP =

[

33Σ

23Ωα2u4
0τ‖

5

]1/2

(19)

SV =

[

35Ω

25Σα2u4
0τ‖

7

]1/4

(20)

The relationships between the physical and dimensionless equations and coefficients

are explored in more detail in the Appendix. For the dimensionless system, the

state of the system is determined by the total parameter space which is now

µ(11) = {Vsw, a1, a2, b1, b2, b3, d1, f1, g1, g2, g3}, including the assumed constant driving.

2.1. Sample parameter states of the model

It is not appropriate to discuss the survey of model states before first discussing

attractors, stability, and fixed points. However, discussion of these topics will benefit

from the use of explicit examples. We therefore give a very brief description of the four

parameter states used throughout the body of this work. The model parameters defining

these sample states are given in Table 1. Each of these states is an example of a class

of states with certain distinguishable characteristics. An extensive study was made of

the physical region of parameter space, where all parameters have physically reasonable

values, and the following classes of dynamics were observed: 1) states always having

one stable fixed point regardless of forcing; 2) states which are stable at low forcing and

high forcing, and have a limit cycle without period doubling or chaos at mid-forcing;

3) like class (2), but having period doubling and chaos in the unstable region; and 4)

unstable at low forcing, stable at high forcing. These features are all described in detail

for the chosen sample states in the following sections.

2.2. Applications of the model

The WINDMI model affords the possibility of understanding truly global aspects

of magnetospheric physics not possible in any other type of model in a very simple

way, nor from the local, point measurements of spacecraft. Furthermore, it is very

straightforward to develop a simple code implementing this model. The purpose of

this report is to thoroughly detail the dynamical aspects of the model and differentiate

classes of parameters, but in this section we remind the reader of the model’s potential

and applications.

Previous publications (in which the model was derived) demonstrated the success

with which the auroral index, AL, could be predicted with this model. It was chosen

for comparison because of the direct connection of the model with the region-1 current

system and the fact that this is one of only a few global indices available. It is difficult

to compare the model with local, point measurements because all quantities in the

model are global. Because those early papers were primarily deriving the model, what
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was not included was a careful analysis of the global energy pathways used during

those substorms, and where and when the energy is stored throughout the event.

This is the strong suit of the model—being able to directly track energy through the

global magnetosphere—and work is underway to study the global energy properties of

substorms using measured magnetospheric data to drive the model.

The model in its present state considers all magnetotail current physics to be

projected onto the chosen distributed current systems. Work improving the model

currently centers around the inclusion of two more important current systems into the

“basis” set: the ring current and inner magnetosphere, and region-2 currents. It will

not be necessary to actually include a ring current, but only the loss to the ring current

of energy in the tail. This would allow a direct study of ring current injection from a

global point of view. In its present form, we must infer ring current injection from the

large amount of energy implied to leave the system on the earthward side, erroneously

in the ionosphere. Preliminary work suggests that the inclusion of such a loss term

would not significantly alter the dynamics presented in this paper.

The ionospheric dissipation is now modeled using the formulation of Robinson et

al. [1988]. It would be a simple matter to exchange this for another model, and test the

validity of each.

While more of an application to MHD models than for WINDMI, an interesting

physics issue could be addressed by adding diagnostics to a global MHD code for the

energy sub-components contained in this model which would allow direct comparison.

Note that the WINDMI model contains physics beyond the MHD model in terms of a

finite divergence of the heat flux and the off-diagonal momentum stress tensor.

It should be possible to estimate the dimensionless parameter values for planets

with energetically significant magnetospheres, which would provide a useful perspective

on the substorm/storm problem. In addition, it may be useful to ask what laboratory

scale parameters could represent the Earth’s geotail with time scales compared to those

of electronic diagnostic equipment.

Finally, the WINDMI model could be used as an external global framework within

which to evaluate the implications of the micro-instabilities of collisionless tearing

modes and kinetic ballooning modes in the geotail. The threshold conditions and the

growth rates of such instabilities can be used to construct a detailed parameterization

of the rapid unloading parameters (Ic, ∆I) as well as influencing τ‖. Over one hundred

articles on the details of such geotail instability theories have appeared in the past thirty

years of space physics research. A central difficulty with these works has been to assess

their global consequences. While there may be some attempt to embed these kinetic

stability theory results in global MHD codes, this task looks difficult, even conceptually.

The use of switches in the WINDMI model and its future upgrades would appear to

provide a clear path for the evaluation and comparison of such local stability theory
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thresholds and growth rates. Stated from another perspective, the WINDMI model may

provide the method for formulating precisely the inverse problem of determining what

properties the local, small scale instabilities must have to be consistent with the global

electrodynamics of the driven-damped nightside magnetosphere.

3. Fixed points and linear stability

The fixed points of the system are the set of positions where the time derivatives

are all zero. If the initial value is on the fixed point, the system stays there indefinitely.

There are, however, two types of fixed points—stable and unstable. A stable fixed point

is one where a small perturbation stays near the fixed point, while an unstable fixed

point is one where a small perturbation grows exponentially away from the fixed point.

Unstable fixed points are studied in more detail in Section 5.

Using Equations 10–15, the fixed points for all but the lobe current are:

V0 = Vsw (21)

Vi0 = Vsw (22)

I10 =
g2
3

2g2
1

V 3
sw +

g2

g1

Vsw ±
g3

2g2
1

V 2
sw

√

4g1g2 + g2
3V

2
sw (23)

P0 =

[

V 3
sw

1
4
{1 + tanh[d1(I0 − 1)]}2

]2/5

(24)

K‖0
=

[

V 4
sw

1
2
{1 + tanh[d1(I0 − 1)]}

]2/5

(25)

The equation for the lobe current, I0, is transcendental, and must be solved numerically.

The relation between the lobe current and the forcing is:

I0 −
b3

b1

Vsw −
(

g2
3

2g2
1

V 3
sw +

g2

g1

Vsw ±
g3

2g2
1

V 2
sw

√

4g1g2 + g2
3V

2
sw

)

−b2

b1

[

V 3
sw

1
4
{1 + tanh[d1(I0 − 1)]}2

]1/5

= 0 (26)

Note that there are always two fixed points of the system because of the two solutions

for I10, given by Equation 23. So far as we have explored, one of these roots is always

unstable but does not have an independent attractor. We ignore it for the remainder of

this study. The plot of the left hand side of Equation 26 is shown in Figure 1 for the

parameters in state S1, listed in column 1 of Table 1, and for a forcing of Vsw = 2. (This

is approximately 130 kV for state S1 and the scalings given Equations 16–20.) The root

of the lobe current is where this curve crosses zero, and thus equals the left hand side of

the equation. It is clear that there is one and only one root for lobe current for a given

root of the ionospheric current (branch of Equation 23).
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The fixed points for all of the states listed in Table 1 at a forcing of Vsw = 2 are

given in Table 2. As an example of the effect of forcing on the values of the fixed point,

the stable fixed point of the system for state S1 (column 1 of Table 1) is plotted versus

the forcing function in Figure 2. From this can be seen that the voltage coordinates

of the fixed point increases linearly with forcing, but all other variables increase faster

than linearly.

It is important to note that the values of the fixed point depend on the forcing

and on a subset of only seven of the ten model parameters, {b1, b2, b3, d1, g1, g2, g3}. The

remaining parameters, {a1, a2, f1}, are not relevant to the position of the fixed point,

but will determine the rate of approach to the fixed point.

The spectral stability of the system at a given fixed point is found by first linearizing

about that fixed point, and then considering a perturbation of the form eλt from the

fixed point. To linearize the system we substitute for each of the variables its small

deviation about the fixed point: X → X0 + δX, and then keep only the terms that

are of order δX, using Taylor series expansion where necessary. Substituting this into

Equations 10–15 and assuming the form δX ∝ eλt, we find

λδI = (a2 − a1)δV − a2δVi (27)

λδV = b1δI − b1δI1 −
1

2
b2P

−1/2
0 δP − b3δV (28)

λδP = 2V0δV − 1

2
K‖

1/2
0
{1 + tanh [d1(I0 − 1)]} δP

−1

4
K‖

−1/2
0

P0 {1 + tanh [d1(I0 − 1)]} δK‖

−1

2
K‖

1/2
0

P0sech
2 [d1(I0 − 1)] δI (29)

λδK‖ =
1

2
V0P

−1/2
0 δP + P

1/2
0 δV − δK‖ (30)

λδI1 = (f1 − a2)δV − f1δVi (31)

λδVi =
(

g1 −
1

2
g3I1

−1/2
0 Vi

3/2
0

)

δI1 −
(

g2 +
3

2
g3I1

1/2
0 Vi

1/2
0

)

δVi , (32)

where λ is the spectral eigenvalue and terms of order (δX)2 are neglected. This is an

eigenvalue problem,

λ δX = A · δX (33)

where the matrix A is given by the coefficients in Equations 27 through 32, the vector

δX is the perturbation array δX = (δI, δV, δP, δK‖, δI1, δVi), and the eigenvalue is λ.

Note that since A is real, complex eigenvalues must occur in conjugate pairs.

A stable fixed point is one where the real parts of all the eigenvalues (λn, n = 1 . . . 6)

are negative—that is, the solution always decays to the fixed point (the fixed point is

an attractor). A fixed point is unstable if the real part of at least one of the eigenvalues
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is greater than zero. The system then evolves away from the fixed point, and nonlinear

effects become important. For physically relevant states, the nonlinear terms must

eventually saturate the instability, and the system will settle on a new attractor. A

state that fails to saturate in this manner (i.e., diverges to infinity) usually indicates

that the model is no longer physically relevant in that regime. Typical attractors that

the system can settle on (other than fixed points) are limit cycles, quasiperiodic orbits,

or chaotic attractors, which are explained in detail in Section 4.

Using the state S4 given in Table 1, the real and imaginary parts of the eigenvalues

for a sequence of forcing values are given in Figure 3. The Hessenberg-QR algorithm

was used to solve for the eigenvalues in Equation 33, and the power method for the

eigenvectors. Newton–Raphson bisecton was used to solve for the fixed points. The

system in this state is (spectrally) unstable at low forcing, but stable at high forcing.

4. Review of attractors

We now discuss the different kinds of attractors on which the system can settle. We

loosely define an attractor as a submanifold in phase space where the motion takes place,

after initial transients have disappeared. Examples of several varieties of dynamical

states are described in the present section. It is by no means an exhaustive treatment

of nonlinear behavior—for that the reader should consult a more comprehensive treatise

on nonlinear systems, such as the book by Seydel [1994] or the review by Eckmann and

Ruelle [1985].

4.1. Fixed Points

If all of the eigenvalues of the linear analysis are negative, the attractor of the

system is a fixed point, and all sufficiently nearby states decay onto that fixed point.

This state was discussed in detail in Section 3. While the remaining parts of this section

discuss interesting behavior on attractors, fixed points are only interesting in their decay

onto the attractor. When the driving force is changing with time, this manifests itself as

a kind of low-pass filter (attenuation of high-frequency modes in the Fourier transform),

where the system does not move immediately onto the new fixed point for the new value

of driving, but decays onto it at a characteristic rate. We call this behavior fixed-point

tracking [Smith, 1999].

4.2. Limit Cycles

In a limit cycle, the variables execute periodic motion about the fixed point on a

fixed orbit. But unlike a harmonic oscillator (real part of λ equals zero) where every

perturbation is on its own orbit, a limit cycle has only one orbit to which all initial

perturbations decay. Thus the limit cycle is a one-dimensional attractor. Regardless of
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the initial condition, the system decays onto that one orbit. An example of a simple

limit cycle is shown in Figure 4 in three parts. The time series shows several periods

of one variable, then there is a phase plot of one variable versus another, and finally a

Fourier spectrum of the first variable. In both the time series and the Fourier spectra,

the system is clearly periodic. Note that in the Fourier spectrum there is very low

background and sharp peaks with smooth regions in between (due to the finite resolution

of the time series).

When forcing (Vsw) is constant, the system is said to be autonomous (the equations

of motion do not explicitly depend on time). In that case, if the phase plot reconnects

then the system is periodic. However, if forcing varies with time, the system is

nonautonomous, and a phase plot that closes does not guarantee periodicity. It could be

that the same path is followed, but the speed along the orbit changes nonperiodically.

A route often followed by chaotic systems, with respect to the variation of a

bifurcation parameter, is to go from a stable fixed point to a limit cycle, and then undergo

a cascade of period doublings culminating in chaos. A period doubling bifurcation

occurs when, upon a change in the value of some parameters, the fundamental frequency

of a limit cycle is halved. In other words, it must go around twice to return to its

starting point, where it had been going around once. The orbit is still periodic, but the

fundamental frequency is halved. A period doubling bifurcation of the above limit cycle

(Figure 4) is shown in Figure 5.

4.3. Quasiperiodic Orbits

A limit cycle executes a single orbit and connects to itself. Another possible

situation is for the system to have characteristic frequencies that are not a rational

multiple of each other. If the system executes orbits on a 2-torus (the surface of a

perfect donut in three dimensions), there are two frequencies involved: the toroidal

frequency and the poloidal frequency. If the ratio of the frequencies is not a rational

number, the orbit never connects to itself: the entire torus is covered by the orbit. This

state is called quasiperiodic. It is often very difficult to distinguish a chaotic attractor

from a quasiperiodic orbit just from looking at a time series. If the Fourier spectrum

is used instead, it is clear when the signal is quasiperiodic or chaotic (compare to the

chaotic spectrum in Section 4.4 below). An example of a quasiperiodic spectrum is

shown in Figure 6.

4.4. Chaotic Attractors

What distinguishes a limit cycle from a chaotic attractor is that the chaotic

attractor cannot be placed on a surface. The 2-torus of Section 4.3 can be mapped

entirely onto a two-dimensional surface, hence its name. A chaotic attractor (continuing
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to use examples in 3-space) on the other hand, while bounded (not exploring the entire

3-space), is larger than a two-dimensional surface. It is characterized by a non-integer

“fractal dimension.” The Lorenz attractor, for example, has fractal dimension between

2 and 3 [Lorenz, 1963; Eckmann and Ruelle, 1985]. Since the signal is inherently not

periodic, its Fourier spectrum has a strong broadband plateau on which the periodic

part of the signal resides, as depicted schematically in Figure 7. A chaotic signal is also

strongly dependent on initial conditions.

5. Survey of model states

The main advantages of this model over a data-derived or empirical model is that it

is based on basic physics, and the results are physically interpretable. So, for example,

while it is obvious that one can easily obtain an unstable critical point by setting a2 > 1,

we reject this possibility: the state a2 > 1 (equivalent to having the reduced mutual

inductance m > 1 in physical parameters) is unphysical since the mutual inductance

must be less than the square root of the product of the two self inductances. We are

concerned only with the regions of parameter space that are physically meaningful.

In characterizing the states of the model presented here, use was made of all of

the characteristics of attractors described in Section 4. No irrational tori (quasiperiodic

orbits) were found, but examples of the other states are given. As mentioned, a typical

state of a system can be driven into different regimes using an adjustable parameter

of the system. A parameter used to cause the system to enter a different regime (as

described above) is called a bifurcation parameter. The obvious choice in our case is

to use the driving function, Vsw. The states presented here were chosen because the

system entered several of the regimes described above in a reasonable range of forcing.

But the reader should keep in mind that the system is scalable and can be driven in

exactly the same state with different sets of physical parameters, if chosen to satisfy the

relations in Equations A15–A19 in the Appendix. There are four free parameters in the

dimensionless scaling.

The obvious place to start looking for different states is with the parameters derived

from physical principles, taken from Horton and Doxas [1998] and shown as state S1

with the corresponding dimensionless parameters in Table 1. The next two examples

are derived from the parameters in Horton and Doxas [1996]. They have an unstable

fixed point in the middle of our forcing range of 0 < Vsw < 10. These are states S2 and

S3. State S2 has period doubling, but apparently no chaos, while state S3 does have a

large chaotic region. The last example state is derived from S1; in state S4 the system

starts in a singly periodic state whose frequency increases with forcing, and enters a

small amplitude chaotic state only briefly before becoming stable for strong forcing.
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5.1. S1: Fixed Point

This state has all of its parameters derived from reasonable physical estimates of

the quantities they are trying to approximate, and is the only state used in Horton and

Doxas [1998]. The distinguishing feature of this state is that it is stable independent

of forcing. Conversely, most parameter sets chosen randomly have an unstable fixed

point at low to medium forcing. Figure 2 shows how each of the parameters tracks with

the value of the forcing function (in physical units). This is the key to understanding

this state, or one like it which is globally stable. Whatever the current state of the

system, it always approaches the stable fixed point. As the forcing is increased or

decreased, the system tries to track the fixed point as it moves through phase space

according to Figure 2. So depending on the response time of the system, which linearly

is determined by the eigenvalue with the most positive real part, the system may behave

in a manner that is only slightly more complicated than a low pass filter. This brings

to mind the results of previous solar wind-magnetosphere coupling studies [Smith and

Horton, 1998; Blanchard and McPherron, 1993], where a low pass filter model was found

to adequately describe the variation observed in the AL index. Though not taking

advantage of the full potential of this model, a state of this nature should be seriously

considered as a candidate for magnetospheric modeling. Even in this state, one can still

make use of the physical interpretation not previously available using filters.

5.2. S2: Mid-forcing period doubling

This is an example of a state with a simple limit cycle. For low values of the forcing

function, the fixed point is stable. As the forcing is increased beyond 2.9, the fixed point

becomes unstable and bifurcates to a singly periodic limit cycle. While the frequency

of the oscillation changes with increasing forcing, the system does not bifurcate further.

Above Vsw = 6.3 the steady state regains stability. Figure 8 shows a bifurcation diagram

generated by plotting, for each forcing level, the values of the cross-tail potential when

the derivative of the cross-tail potential is zero. This includes both the positive and

negative turning points (second derivative), so that if one were to plot these linearly

versus forcing, the full-scale oscillation of the response to constant driving would be

shown by the upper and lower bounds. However, Figure 8 is not plotted linearly because

the full scale variation is much smaller than the value of the fixed point about which

it oscillates and such a plot would be indistinguishable from a plot of the fixed point

versus forcing. Instead, the value of the fixed point is subtracted from the values of the

turning points, and the result is divided by the fourth power of the fixed point value at

that level of forcing. (This scaling also exhibits more clearly the period doubling and

chaos for state S3, below.) From Figure 8 it is clear where the bifurcation from a stable

fixed point to a period-one oscillation occurs.
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5.3. S3: Mid-forcing chaotic attractor

State S3 is rich in its properties. It is obtained by a simple one parameter

modification from state S2: parameter g3 is set to zero. It was later found that this

was an extreme condition, and any value of g3 under 3.5 was equivalent. Taking a

quick glance at the value of g3 in state S1 is even more revealing. This parameterizes

the contribution of the nonlinear part of the ionospheric conductance. It is therefore

interesting to note that a higher fraction of the conductance being caused by the

nonlinear component of the ionospheric conductivity tends to stabilize the system.

The bifurcation diagram for S3 is shown in Figure 9, and the chaotic regions can

be identified by the dense vertical bands near the middle of the forcing range. They

appear so because the system is not periodic, and does not cross the V = V0 plane at

the same place every time around, but instead sweeps out a region of V (remember that

it is still bounded). The region with an unstable fixed point occurs for 2.7 < Vsw < 9.6,

and is intermittently chaotic and multi-periodic for 3.9 < Vsw < 6.7. A region to note is

between 5.0 < Vsw < 5.7, where the system goes through period halving cascades from

chaos to a period five system, goes spontaneously back into chaos, then spontaneously

into a period-three system, then spontaneously into period-one system. While in the

period-three or period-five states, the phase diagram for the system does not change,

only the frequency scale changes in the Fourier spectrum. Another feature is that in the

range 5.7 < Vsw < 9.6 the system undergoes a period doubling/halving cascade with

only a very narrow chaotic region near Vsw ∼ 8.2.

A sampling of time series, Fourier spectra, and phase diagrams for various forcing

values are given in Figures 10–14. In Figure 10 it can be seen in the Fourier spectrum

(note that it is plotted on a log scale here) that the time series consists only of harmonics

of a fundamental frequency. The fact that the spectrum is not composed of delta

functions but instead has a width to the peaks is caused by the finite sampling of the

output. In Figure 11 the period doubling is unmistakable in the time series, the phase

plot and the spectrum. It takes two cycles where it had previously taken only one, and

the spectrum shows a growing set of peaks at the harmonics of half the fundamental

frequency of Figure 10. Figure 12 shows the eventual cascade into chaos. Note that

the orbit never connects in the phase plot, although it is still bounded. The spectrum

is clearly not composed of a few distinct frequencies, but instead has an elevated

broadband structure—so much so that the periodic structure is nearly masked in the

spectrum. An example of the interesting region where a spontaneous period-three mode

occurs is shown in Figure 13. The period-three structure is apparent in all three panels.

The final periodic state of the system before returning to a stable fixed point is shown

in Figure 14. It is a period-one state, but differs in shape and frequency from that in

Figure 10.
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As in state S2, it is important here to note that although the system does posses

some very interesting nonlinear properties, including chaos, the peak-to-peak magnitude

of that variation is never more than a few percent of the total value of the variable.

This means that the primary feature of the system in this state (S3) is not the chaotic

attractor, but the value of the fixed point itself. The system behaves largely the same

as in state S1, where the fixed point wasn’t unstable. The system tracks the fixed point,

with the limit cycles and attractors accounting for only a few percent of the variation in

the signal.

5.4. S4: Driven periodicity

Some of the properties of state S4 have already been explored, namely in Figure 3,

showing the eigenvalues with largest real part for a sequence of forcing values. This

figure can be seen to correspond to the bifurcation diagram in Figure 15, having a region

from 0 to 2.1 where the fixed point is unstable. In most of that region, the system is in

a limit cycle, having its period-doubling cascade and chaos compressed into a narrow

region of forcing, 2.0 < Vsw < 2.1, and too small to be seen in the figure.

Of course, the absence of chaos does not mean that there is nothing interesting

in this state. In fact, this is a state where the full scale variation (in the region where

the fixed point is unstable) is important, at least for low forcing. The variation of the

amplitude of the limit cycle versus the fixed point value gradually rises from 25% at

Vsw = 0.05 to about 75% at Vsw = 1.5, and then drops smoothly to zero as it approaches

the point where the fixed point regains stability, at around Vsw = 2.1. This means that

the chaotic region, as in the other states, does not differ appreciably from the fixed

point value. However, there is a periodic (limit cycle) region at lower forcing where the

system executes large-scale oscillations while under constant forcing.

The frequency of oscillation rises with forcing in the periodic state, from about

0.05 (one every six hours in physical units) at Vsw = 0.05 through 0.5 (one per thirty

minutes) at Vsw = 1.5. Figure 16 shows the time series for the region-1 current, I1, for

four values of forcing: 0.05, 0.75, 1.5, and 2.0. The change in frequency as well as in

amplitude can be seen in each panel of the figure.

These are characteristics that might be desirable. It would mean that for mild

forcing, the magnetosphere-ionosphere system would produce periodic “substorms,”

increasing in frequency and magnitude as forcing went up. But for strong forcing, the

substorms would appear to be a smaller energy pathway than the steady unloading

from the “storm.” This a plausible scenario for magnetosphere-ionosphere dynamics.

This does not, however, mean that we must represent storms by the fixed-point-tracking

behavior in this model. In all likelihood, a typical storm would be near, but not above,

the threshold to stability. That would mean that most of the energy loaded into the
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magnetotail is directly unloaded, but that short time-scale substorm-like unloading

occurs simultaneously.

The fact that all of the states become stable at strong forcing should not be

surprising—the magnetosphere in that state needs to unload its energy constantly,

without time for any sort of recovery. (Of course, it is also possible that the

magnetosphere is never driven so strongly.)

6. Summary

The WINDMI model is shown to have the versatility of supporting many different

magnetospheric states analogous to the magnetospheric states known as: (1) the ground

state, (2) steady-state convection, (3) periodic sequence of substorms [Farrugia et

al., 1993], (4) isolated substorms [Blanchard and McPherron, 1993], and (5) storms.

These model states change with respect to solar wind forcing through a sequence of

bifurcations. In noting the wide range of behavior observed, it should be pointed out

that all of the model states presented here (S1 through S4) are relatively close to each

other in parameter space. However, as with the Rayleigh–Bénard convection problem,

there are scaling laws that allow a wide range of physical parameters to yield the

same scaled state. This scaling suggests that other planets with strong magnetic fields

may have magnetic storms and substorms not unlike those at Earth but occurring on

different space-time scales.

A property possessed by the first three model states explored in this study was the

tracking of the fixed point: the decay of any initial state to an attractor near, or on,

the fixed point. This may correspond to steady convection at low forcing, or possibly a

storm at strong forcing. For state S1, the attractor is a fixed point, and for states S2 and

S3, the oscillations of the attractor about the fixed point are of negligible magnitude;

thus they also track the fixed-point to a good approximation. This means that the

model provides theoretical support for the heuristic arguments made in previous studies

showing the applicability of low-pass filters to the solar wind–magnetosphere coupling

problem. Only the fourth state presented has large-scale oscillations, but it still has the

fixed point tracking property at strong forcing. This is important because it means that

no matter what parameters are used in the model, the attractor at strong forcing is

always a stable fixed point.

State S4 gives us a possible elucidation of the controversial current issue of the

relationship between storms and substorms. Consistent with observations, we find that

depending on the rate of rise of the cross tail electric field, a storm may or may not be

preceded by substorms. This does not mean that storms are made up of substorms.

Rather, it means that both storms and substorms are different facets of the same

magnetospheric state (S4), depending on the strength of the solar wind forcing.



17

Appendix: Relationship between the physical and

dimensionless models

To see how the dimensionless system relates to the physical system of equations

given by the scalings in Equations 16–20, we consider some examples. First, note that

a set of dimensionless parameters is unique, while a set of physical parameters has four

additional parametric degrees of freedom to describe the same dynamics. Therefore our

comparisons are done by fixing four of the physical parameters while matching the rest

to the unique dimensionless system. Our base state for comparison, U1, is listed in the

first column of Table A1 and Table A2 and consists of all dimensionless parameters

equal to one except for the mutual inductance parameter, a2. This is because there is a

physical constraint on the mutual inductance,

M = m
√

LL1, 0 < m < 1 (A1)

which does not allow us to define a dimensionless system with a2 = 1 and finite

corresponding physical parameters. Note that in the tables the relative mutual

inductance, m, is used instead of M , the absolute mutual inductance. And keep in mind

that the corresponding physical parameters are not unique. Several other states are

given in the tables that display some of the relationships between the two systems of

parameters, and are discussed in this section. Given the scalings chosen so that the four

coefficients in the pressure and parallel energy equations go to one as described in the

text, the dimensionless parameters can be related to the physical parameters using the

following relations

a1 =

[

35Ω

25Σα2u4
0τ‖

3Ic
4L4

]1/4
1

1−m2
(A2)

a2 =

[

35Ω

25Σα2u4
0τ‖

3Ic
4L2L2

1

]1/4
m

1−m2
(A3)

b1 =

[

25Σα2u4
0τ‖

11Ic
4

35ΩC4

]1/4

(A4)

b2 =

[

2αΣτ‖
3

2ΩC2

]1/2

(A5)

b3 =
Στ‖
C

(A6)

d1 =
Ic

∆I
(A7)

f1 =

[

35Ω

25Σα2u4
0τ‖

3Ic
4L4

1

]1/4
1

1−m2
(A8)
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g1 =

[

25Σα2u4
0τ‖

11Ic
4

35ΩC4
i

]1/4

(A9)

g2 =
Σiτ‖
Ci

(A10)

g3 =

[

35Ωγ8Ic
4τ‖

25Σα2u4
0C

8
i

]1/8

(A11)

In particular, it should be noted that eight of the ten dimensionless parameters have

simple relationships with the physical parameters, involving only one parameter or the

unique combination of two or three. The first three are:

d1 = d1(∆I) (A12)

g2 = g2(Σi) (A13)

g3 = g3(γ) (A14)

while the next five are only slightly more complicated:

a1 = a1(L |
√

LL1(1−m2)/m2 = const.) (A15)

f1 = f1(L1 |
√

LL1(1−m2)/m2 = const.) (A16)

a2 = a2(m | L(1−m2) = const. and L1(1−m2) = const.) (A17)

b2 = b2(α | αu2
0 = const.) (A18)

b3 = b3(Σ | Σ

Ω
= const.) (A19)

Equation A17 is illustrated with examples U2 and U4. Note that in the tables,

corresponding parameter changes are highlighted. So in the current examples, U2 and

U4, the parameters a2, L, L1, and m are highlighted. State U3 demonstrates the

even simpler relation in Equation A12. The last three examples explore a little of the

more complicated relationships involving dimensionless parameters b1 and g1. State

U5 shows what happens when changing only b1 and g1 by the same amount, while U6

and U7 show the inverse relation while changing only C or Ci. State U5 shows the

complicated dependence of the physical parameters on b1 and g1, involving changes in

nine parameters! Conversely, changing only C or Ci has an effect on three dimensionless

parameters.

Also of interest are the relations between the physical system and the dimensionless

system in the values of the fixed points. First we note that the parameters for the

physical-parameter system corresponding to the states given in Table 1 are given in

Table A3. These parameters correspond to the scalings given in Equations 16–20, and

these states were discussed in detail in Section 5. The values of the fixed points of the

states given in these tables are given in dimensionless units in Table 2 and in physical
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units in Table A4. The equations for the fixed points in physical units in terms of

physical model parameters are

V0 = Vsw (A20)

Vi0 = Vsw (A21)

I10 = Σ0Vsw +
1

2
γ2V 3

sw ±
1

2
γV 3/2

sw

√

γ2V 3
sw + 4Σ0Vsw (A22)

P0 =







Σ2V 3
sw

[

1
2

+ 1
2
tanh

(

I0−Ic

∆I

)]2
u2

0Ω
2ατ







2/5

(A23)

K0 =





Σα2τ 2V 4
sw

1
2

[

1 + tanh
(

I0−Ic

∆I

)]

u0Ω





2/5

(A24)

and have units of Volts (V and Vi), Amperes (I and I1), Pascals (P ), and Joules (K‖).

The equation for the lobe current fixed points is

0 = I0 − ΣVsw −
(

1

2
γ2V 3

sw + Σ0Vsw +
1

2
γV 3/2

sw

√

γ2V 3
sw + 4Σ0Vsw

)

−
(

α4Σ2V 3
sw

u2
0Ω

2τ

)1/5 {
1

2

[

1 + tanh
(

I0 − Ic

∆I

)]}−2/5

(A25)

and (still) must be solved numerically.
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Figure 1. Equation for the roots of the lobe current.

Figure 2. Relative values of the fixed points with respect to forcing for state S1.
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Figure 3. Eigenvalues with the largest real part for state S4 as a function of forcing Vsw.

Note the different scales for the positive and negative y axes.
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Figure 4. Example of a simple periodic limit cycle.
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Figure 5. Period doubling of a limit cycle.
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Figure 6. Spectrum for an irrational frequency torus. Note the two irrational primary

frequencies.
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Figure 7. Spectrum for a chaotic attractor. The dominant feature is broadband noise.

Figure 8. Bifurcation diagram for S2. See the end of section 5.2 for a discussion of the

normalization of the vertical axis.
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Figure 9. Bifurcation diagram for S3. The five vertical slices are shown in more detail

in Figures 10–14. See the end of section 5.2 for a discussion of the normalization of the

vertical axis.

Figure 10. State S3 at Vsw = 3.0.

Figure 11. State S3 at Vsw = 3.7. Note the period doubling from Figure 10.
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Figure 12. State S3 at Vsw = 4.91.

Figure 13. State S3 at Vsw = 5.6.

Figure 14. State S3 at Vsw = 7.4.
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Figure 15. Bifurcation diagram for S4.

Figure 16. Ionospheric current for state S4 at different levels of forcing.
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Table 1. Reference States in Dimension-

less Coordinates

S1 S2 S3 S4

a1 0.0467 0.247 0.247 0.0467

a2 0.00426 0.0391 0.391 0.00426

b1 44.8 10.8 10.8 44.8

b2 12.3 0.0752 0.0752 12.3

b3 3.33 1.06 1.06 3.33

d1 35 2200 2200 35,000

f1 0.156 2.47 2.47 0.156

g1 537 1080 1080 537

g2 4 4 4 4

g3 1210 37.9 3.79 121

Table 2. Fixed Points of the System in

Dimensionless Coordinates for Vsw=2

S1 S2 S3 S4

I0 41.08 0.9975 0.9975 1.00007

V0 2 2 2 2

P0 2.297 12496. 12946. 2.316

K0 3.031 223.6 227.6 3.044

I10 40.51 0.0222 0.008319 0.4341

Vi0 2 2 2 2
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Table A1. Dimensionless Reference States for Model Compar-

ison. The values in parentheses in each column of this table

correspond to the values in parentheses in the same column of

Table A2, denoting where there are relationships between the

dimensionless and the physical parameters.

U1 U2 U3 U4 U5 U6 U7

a1 1 1 1 1 1 1 1

a2 0.9999 (0.95) 0.95 (0.05) 0.05 0.9999 0.9999

b1 1 1 1 1 (10) 1 (10)

b2 1 1 1 1 1 1 (10)

b3 1 1 1 1 1 1 (10)

d1 1 1 (1000) 1000 1 1 1

f1 1 1 1 1 1 1 1

g1 1 1 1 1 (10) (10) 1

g2 1 1 1 1 1 (10) 1

g3 1 1 1 1 1 (10) 1

Table A2. Physical Reference States for Model Comparison. See caption of Table A1. Note

that the units are the same as in Table A3 and were omitted for space reasons.

U1 U2 U3 U4 U5 U6 U7

L 9230 (18.9) 18.9 (1.85) (3.99) 9230 9230

C 542,000 542,000 542,000 542,000 (25,100) 542,000 (54,200)

Σ 542 542 542 542 (25.1) 542 542

L1 9230 (18.9) 18.9 (1.85) (3.99) 9230 9230

Ci 542,000 542,000 542,000 542,000 (25,100) (54,200) 542,000

Σi 542 542 542 542 (25.1) 542 542

γ 0.371 0.371 0.371 0.371 (0.000545) 0.371 0.371

m 0.9999 (0.95) 0.95 (0.05) 0.05 0.9999 0.9999

Ic 1.84×107 1.84×107 1.84×107 1.84×107 1.84×107 1.84×107 1.84×107

∆I 1.84×107 1.84×107 (1.84×104) 1.84×104 1.84×107 1.84×107 1.84×107

u0 6×10−11 6×10−11 6×10−11 6×10−11 (1.29×10−10) 6×10−11 6×10−11

τ‖ 1×103 1×103 1×103 1×103 1×103 1×103 1×103

α 1.14×1012 1.14×1012 1.14×1012 1.14×1012 (2.46×1011) 1.14×1012 1.14×1012

Ω 1.6×1024 1.6×1024 1.6×1024 1.6×1024 1.6×1024 1.6×1024 1.6×1024
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Table A3. Reference States of the WINDMI Model (in Physical

Coordinates)

S1 S2 S3 S4 Units

L 40 10 10 40 H

C 12,000 5×104 5×104 12,000 F

Σ 40 53 53 40 mho

L1 12 1 1 12 H

Ci 1000 500 500 1000 F

Σi 4 2 2 4 mho

γ 8×10−4 2×10−5 <2×10−6 8×10−5 mho /
√

AV

m 0.05 0.5 0.5 0.05

Ic 35×106 22×106 22×106 35×106 A

∆I 1×106 1×104 1×104 1×103 A

u0 6×10−11 6×10−10 6×10−10 6×10−11 J−1/2 s−1

τ‖ 1000 1000 1000 1000 s

α 1.14×1012 8×1010 8×1010 1.14×1012 C/Pa0.5

Ω 1.6×1024 1.6×1025 1.6×1025 1.6×1024 m3

Table A4. Fixed Points of the System (in Physical Coor-

dinates) for Vsw=100 kV. Note the difference of 25 orders of

magnitude between P0 and K0.

S1 S2 S3 S4

I0, A 6.57×108 2.20×107 2.20×107 3.50×107

V0, V 1×105 1×105 1×105 1×105

P0, Pa 1.18×10−10 3.95×10−8 4.21×10−8 4.37×10−10

K0, J 1.24×1015 1.59×1015 1.64×1015 2.38×1015

I10, A 6.41×108 746000 230000 7.18×106

Vi0, V 1×105 1×105 1×105 1×105


