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ABSTRACT
We present a way to add user’s background knowledge to for-
mal concept analysis. The type of background knowledge we
deal with relates to relative importance of attributes in the
input data. We introduce AD-formulas which represent this
type of background knowledge. The background knowledge
serves as a constraint. The main aim is to make extraction
of clusters from the input data more focused by taking into
account the background knowledge. Particularly, only clus-
ters which are compatible with the background knowledge
are extracted from data. As a result, the number of ex-
tracted clusters becomes smaller, leaving out non-interesting
clusters. We present illustrative examples and results on en-
tailment of background knowledge such as efficient testing
of entailment and a complete systems of deduction rules.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—relation systems; H.2.8 [Data-
base Management]: Database Applications—data min-
ing ; I.5.3 [Artificial Intelligence]: Clustering; F.4.1 [Ma-
thematical Logic and Formal Languages]: Mathemat-
ical Logic

General Terms
Algorithms, Theory, Human Factors

Keywords
formal concept analysis, background knowledge, attribute
dependencies, entailment, completeness

1. INTRODUCTION AND PRELIMINARIES

1.1 Problem Description and Paper Content
The paper presents a contribution to formal concept anal-

ysis (FCA). We investigate a way to extend the basic set-
ting of FCA by taking into account a particular type of
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user’s background knowledge regarding the input data. The
main benefit of adding the background knowledge is that
instead of extracting all clusters, the number of which can
be quite large, our approach allows to extract only those
clusters which are compatible with the background knowl-
edge. As a result, the user gets only “interesting” clusters
(those compatible with background knowledge) instead of
being overwhelmed by a large number of both “interesting”
and “non-interesting” clusters. In addition to that, our ap-
proach lends itself to theoretical analysis. As an example, we
present results related to reasoning with background knowl-
edge. We show that entailment can be efficiently tested and
that there is a complete set of Armstrong-like inference rules
for our type of background knowledge. As a result, for in-
stance, redundancy can be removed from the background
knowledge specified by a user.

The paper is organized as follows. Sections 1.2 and 1.3
present preliminaries on formal concept analysis and related
approaches, respectively. Section 2 describes our approach.
First, we present the rationale and informal description.
Second, we present technical details and results regarding
entailment, its testing, and Armstrong-like rules. Section 3
provides examples. Section 4 presents conclusions and out-
lines some directions of future research.

1.2 Preliminaries from FCA
In this section, we survey basic notions from formal con-

cept analysis (FCA). FCA is a method of knowledge ex-
traction from data tables describing relationships between
objects and attributes [3, 7]. The input data table is repre-
sented by a triplet 〈X, Y, I〉, where X and Y are non-empty
sets of objects (table rows) and attributes (table columns),
and I is a binary relation between X and Y indicating
whether object x ∈ X has attribute y ∈ Y or not. In the
former case, 〈x, y〉 ∈ I and the corresponding table entry
contains 1, in the latter case, 〈x, y〉 6∈ I and the entry con-
tains 0. An example of such table is in Table 1 which we use
for illustration in our paper. A (formal) concept in 〈X, Y, I〉
is a pair 〈A, B〉 of a set A ⊆ X of objects (so-called extent)
and a set B ⊆ Y of attributes (so-called intent) such that
A is the set of all objects which have all attributes from B,
and B is the set of all attributes shared by all objects from
A. This can be expressed using arrow operators ↑ and ↓ by
A↑ = B and B = A↓ where

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

Alternatively, formal concepts can be described as maximal
rectangles in the table which contain 1s. Formal concepts
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Table 1: Input data table

genus habitat size fur color
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Cheetah 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1
Cougar 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0
Jaguar 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1

Lion 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0
Panther 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1

Serval 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1
Tiger 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1

Wildcat 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1

can be partially ordered by a subconcept-superconcept hi-
erarchy defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or,
equivalently, B2 ⊆ B1). The set B(X, Y, I) of all formal
concepts in 〈X, Y, I〉, i.e.

B(X, Y, I) = {〈A, B〉 |A ⊆ X, B ⊆ Y, A↑ = B, B = A↓}
equipped with ≤ is called a concept lattice of 〈X, Y, I〉.
B(X, Y, I) represents a collection of hierarchically ordered
clusters extracted from the input data. Various applications
of FCA can be found in [3] and in the references therein.

1.3 Related Approaches
The idea of using background knowledge appears in vari-

ous forms in artificial intelligence. Using background knowl-
edge for constraining purposes has recently been studied in
several papers, see e.g. [4, 12]. In formal concept analysis,
particularly, a type of background knowledge has been stud-
ied in [6, 11]. There, the authors use attribute implications
(see later) for the purpose of attribute exploration and both
the type of the background knowledge and the aims are dif-
ferent from ours. The present paper is a continuation of [1]
where the idea of attribute dependency formulas and their
role in serving as a constraint was introduced.

2. AD-FORMULAS, ENTAILMENT,
AND ARMSTRONG-LIKE RULES

2.1 AD-formulas
Motivation In the basic setting of FCA, the input data

consists of a table 〈X, Y, I〉 describing the objects, attributes,
and their relationship. The concept lattice is then computed
from this data. Such data does not capture background
knowledge which a user may have regarding the data. Ex-
tracting formal concepts and the concept lattice associated
to 〈X, Y, I〉 without taking the background knowledge into
account means, in fact, ignoring the background knowledge.
This can result in extraction of a large number of formal
concepts including those which seem artificial to the user
because they are not congruent with his background knowl-
edge.

A particular type of background knowledge which we deal
with in this paper is relative importance of attributes. Such
type of background knowledge is commonly used in hu-
man categorization/clustering. For instance, when catego-

rizing books for the purpose of inclusion in a sales cata-
logue, one might consider the field subject of a book more
important than the type of book. Accordingly, we expect
to form categories of books based on the subject, such as
“Engineering”, “Computer Science”, “Mathematics”, “Bi-
ology”, etc., and only after that, within these categories,
we might want to form smaller categories based on the
type of reader such as “Engineering/textbook”, “Engineer-
ing/research monograph”, etc. In such a case, our back-
ground knowledge tells that attributes describing the sub-
ject (“Engineering”, “Computer Science”, . . . ) are more im-
portant than attributes describing the type of book (“text-
book”, “research monograph”). The background knowledge
depends on the purpose of categorization. For a different
purpose, it can be appropriate to use different type of back-
ground knowledge. For instance, one could consider the
type of book more important than the subject. Correspond-
ingly, we would get categories “textbook”, “research mono-
graph” and their subcategories “textbook/Engineering”,
“textbook/Computer Science”, etc. Therefore, while the
input data is given (books and their attributes), the back-
ground knowledge which guides the categorization is pur-
pose dependent.

The relative importance of attributes serves as a con-
straint in categorization/clustering. Namely, it excludes po-
tential clusters which do not respect the background knowl-
edge. For instance, with subject more important than type,
category “textbook” consisting of all textbooks (irrelevant
of the subject) does not exist (is not formed in the process of
categorization), because it is not congruent with background
knowledge (does not satisfy the corresponding constraint
saying that subject is more important than type). Contrary
to that, categories “Engineering”, “Engineering/textbook”,
“Computer Science”, “Computer Science/textbook” are con-
gruent with the background knowledge.

Background knowledge can not only eliminate categories
which are not suitable for a given purpose, it also can elim-
inate unnatural categories. As an example, not taking into
account that book binding is less important than book sub-
ject and book type, one would end up with categories “pa-
perback” and “hardbound” which, however logically correct,
do not make much sense in a useful categorization of books.

The concept of AD-formula The informal ideas de-
scribed above can be approached in the framework of FCA
as follows.

Definition 1. An attribute-dependency formula (shortly,
an AD-formula) over Y is an expression

A v B,

where A, B ⊆ Y . A v B is true in M ⊆ Y , written M |=
A v B, if we have:

if A ∩M 6= ∅ then B ∩M 6= ∅. (1)

A formal concept 〈C, D〉 ∈ B(X, Y, I) satisfies A v B iff
D |= A v B. 2

Example 1. Let us take a closer look at Table 1 which
we use as our working example and to which we return in
detail in Section 3. Table 1 describes selected felines (ob-
jects) and their characteristics (attributes). Each row of the
table is a record of characteristics of a species of felines.
The attributes can be divided into four groups: a biological
genus (Acinonyx, Felis, Leptailurus, and Panthera), natural
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habitat of the species (attributes representing continents),
size of its body (small/medium/large), fur pattern (fur with
stripes and/or spots), and color in which the species may
appear. Thus, the input table consists of 8 objects and 17
attributes. A table like this may be constructed by a bi-
ologist who wishes to use the information contained in the
table to form clusters of species with common properties.
This task is, in fact, an application of formal concept anal-
ysis.

The corresponding concept lattice B(X, Y, I) contains,
among others, the formal concept 〈C, D〉 with

C = {Cheetah, Jaguar, Panther, Serval, Tiger, Wildcat},
D = {yellow}.

Note that this formal concept represents a category/cluster
of all felines with yellow fur. However, for a biologist, such
a category may seem unnatural (there is no such a concept
as “felines with yellow fur” for a biologist). This is because
whenever the biologist considers the color of fur for the pur-
pose of categorization, he always considers other attributes
which are more important, such as “being a species which
belongs to the Panthera genus”. That is, the biologist con-
siders genus more important than color. This background
knowledge can be expressed by means of the AD-formula

{black, sandy, white, yellow} v (2)

{Acinonyx, Felis, Leptailurus, Panthera}.
The above formal concept 〈C, D〉 does not satisfy this AD-
formula because

{black, sandy, white, yellow} ∩ {yellow} 6= ∅
but

{Acinonyx, Felis, Leptailurus, Panthera} ∩ {yellow} = ∅.
That is, while attribute “yellow” is used in the description
(intent) D, of the formal concept 〈C, D〉, none of the more
important attributes specified by AD-formula (2) is. On the
other hand, formal concept 〈C, D〉 with

C = {Jaguar, Panther, Tiger}, D = {Panthera, yellow}.
satisfies (2). This formal concept corresponds to the cat-
egory of species within genus Panthera which can appear
yellow. 2

The set of all formal concepts from B(X, Y, I) which sat-
isfy a given set T of AD-formulas is denoted by BT (X, Y, I),
i.e.

BT (X, Y, I) = {〈C, D〉 ∈ B(X, Y, I) |
for every A v B ∈ T : D |= A v B}.

Remark 1. (i) In [1], AD-formulas were introduced as ex-
pressions of the form

y v y1 t · · · t yn,

i.e., {y} v {y1, . . . , yn} in the present notation. The present
extension to formulas of the {z1, . . . , zm} v {y1, . . . , yn} is
not essential. Namely, as can be easily shown, a formal
concept 〈C, D〉 satisfies {z1, . . . , zm} v {y1, . . . , yn} if and
only if 〈C, D〉 satisfies every {zi} v {y1, . . . , yn}.

(ii) In an AD-formula A v B, A and B are usually col-
lections of attributes of the same kind such as in (2). This
makes is possible to attach an apt meaning to A v B such
as “color is less important than genus”.

(iii) (1) is just the condition of validity of dependencies
considered in Knowledge Spaces [5] where M is interpreted

as a set of questions an individual can answer and A v B
being true in M means that if that individual fails in an-
swering all questions from A then he fails in answering all
questions from B. Our aims and the subsequent develop-
ment of AD-formulas are different from those in [5]. 2

In [1], we presented results and examples related to ex-
pressive capability of AD-formulas. In the subsequent sec-
tions, we pay attention to entailment and inference over AD-
formulas.

2.2 Entailment and its efficient checking
Background knowledge specified by a user by means of

AD-formulas may be redundant. For instance, suppose the
background knowledge consists of (2) and AD-formulas

{black, sandy, white, yellow} v (3)

{Africa, America, Asia, Europe}
{Africa, America, Asia, Europe} v (4)

{Acinonyx, Felis, Leptailurus, Panthera}.
That is, (2), (3), and (4) say “color is less important than
genus”, “color is less important than habitat”, and “habitat
is less important than genus”. Intuitively, (2) is redundant
because it is entailed by (3) and (4). One may wish to re-
move such redundancy because it makes the description of
background knowledge less comprehensible. Below, in addi-
tion to making the notion of entailment precise, we present
results which lead to an efficient algorithm for testing en-
tailment and removal of redundancy.

Definition 2. A set M ⊆ Y is called a model of a set T
of AD-formulas if, for each A v B ∈ T , M |= A v B.
Let Mod(T ) denote the set of all models of T . A v B
semantically follows from T (T semantically entails A v B)
if, for each M ∈ Mod(T ), M |= A v B. 2

The following theorem shows a first technical insight.

Theorem 1. Let T be a set of AD-formulas. Then Mod(T )
is an interior system, i.e. Mod(T ) is closed under arbitrary
unions.

By virtue of Theorem 1, for each set T of AD-formulas, we
can consider the associated interior operator IT : 2Y → 2Y

defined by IT (M) =
S
{N ∈ Mod(T ) |N ⊆ M}. Clearly,

we have Mod(T ) = {M ⊆ Y |M = IT (M)}. Furthermore,
for every M ⊆ Y , IT (M) is the greatest model of T which
is included in M . The following algorithm shows a way to
compute IT (M) given T and M .

Algorithm 1.

Input: set T of AD-formulas, M ⊆ Y
Output: IT (M)

set N to M
while there is A v B ∈ T such that N 6|= A v B:

choose A v B ∈ T and y ∈ A such that
y ∈ N and B ∩N = ∅

remove y from N
return N

The next theorem shows a crucial property. Namely, test-
ing entailment can be performed by checking validity in a
single model: T entails A v B iff A v B is true in the great-
est model of T which is contained in the complement B of B.
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Note that testing entailment using a single model is known
in other areas too, see e.g. [7] for attribute implications or
[9] for logic programming.

Theorem 2. Let T be a set of AD-formulas, A v B be
an AD-formula. Then the following are equivalent.

(i) T |= A v B,

(ii) IT (B) |= A v B,

(iii) A ∩ IT (B) = ∅.

Thus, Algorithm 1 and Theorem 2 give us the following
algorithm:

Algorithm 2.

Input: set T of AD-formulas and AD-formula A v B
Output: true if T |= A v B, false otherwise.

compute IT (B) using Algorithm 1
if A ∩ IT (B) = ∅:

return true
else:

return false

2.3 Complete systems of deduction rules
The next issue related to entailment and reasoning with

AD-formulas is the question of whether there is a complete
system of deduction rules. We present a positive answer by
showing a system of Armstrong-like rules. We use deduction
rules of the form

A1 v B1, . . . , An v Bn

A v B
. (5)

These rules will be used in proofs in the usual way. That
is, having AD-formulas which match the “input part” of the
rule, i.e. A1 v B1, . . . , An v Bn, we can infer, in a single
step, the AD-formula corresponding to the “output part”,
i.e. A v B. In particular, we will use the following system
of deduction rules:`

Ref
´

A v A,`
Wea

´ A v B

A v B ∪ C
,

`
Cut

´ A v B, C v A ∪D

C v B ∪D
,

for each A, B, C, D ⊆ Y . The notions of a proof and prov-
ability are defined the usual way. That is, a proof of an
AD-formula A v B from a set T of AD-formulas is a se-
quence ϕ1, . . . , ϕn of AD-formulas such that ϕn = A v B
and each ϕi either is from T or can be inferred from some
preceding formulas ϕj , j < i, using some of the deduction
rules

`
Ref

´
–

`
Cut

´
. An AD-formula A v B is provable from

a set T of AD-formulas if there is a proof of A v B from T ;
in this case, we write T ` A v B. The following assertion is
a completeness theorem for reasoning with AD-formulas.

Theorem 3 (completeness).
`
Ref

´
–

`
Cut

´
is a sound

and complete system of deduction rules. That is, for any set
T of AD-formulas and an AD-formula A v B, we have

T ` A v B iff T |= A v B.

In words, A < B is entailed by T iff A < B can be ob-
tained from T by rules

`
Ref

´
–

`
Cut

´
.

Figure 1: Hierarchy of All Conceptual Clusters

Proof. Sketch (due to lack of space): Let T ` A v
B and let ϕ1, . . . , ϕn be the proof of A v B. It can be
shown that a sequence ϕ1, . . . , ϕn of AD-formulas is a proof
from T using rules (R), . . . , iff the corresponding sequence
(ϕ1)

AI, . . . , (ϕn)AI of attribute implications is a proof from
TAI using rules (R)AI, . . . . Here, (· · · )AI denotes replacing
all AD-formulas in (· · · ) by the corresponding attribute im-
plications [7]. For example, (A v B)AI = B ⇒ A,

`
Ref

´
AI,`

Wea
´
AI,

`
Cut

´
AI become

A ⇒ A
,

B ⇒ A

B ∪ C ⇒ A
,

B ⇒ A, A ∪D ⇒ C

B ∪D ⇒ C
,

etc. Now,
`
Ref

´
AI,

`
Wea

´
AI,

`
Cut

´
AI are the well-known

Armstrong rules of reflexivity, weakening, and cut, respec-
tively, see [10], which are known to be complete w.r.t. se-
mantics of attribute implications (alternatively, one can use
the semantics of functional dependencies), see [10] and [7].
Therefore, (ϕ1)

AI, . . . , (ϕn)AI being a proof of (A v B)AI

from TAI using
`
Ref

´
AI,

`
Wea

´
AI,

`
Cut

´
AI is equivalent to

TAI |= (A v B)AI. The latter can be shown to be equivalent
to T |= A v B.

Note that due to the relationships to attribute implica-
tions, we can automatically retrieve further sound deduc-
tion rules over AD-formulas from the well-known rules for
attribute implications (or, equivalently, functional depen-
dencies) such as`
Add

´ B v A, C v A

B ∪ C v A
,

`
Pro

´ A ∪B v C

A v C
,

`
Tra

´ A v B, B v C

A v C
.

3. EXAMPLES
Consider again the data from Table 1. The correspond-

ing concept lattice B(X, Y, I) contains 35 conceptual clusters
(formal concepts) and is depicted in Figure 1. As shown in
Example 1, not including any background knowledge results
in having formal concepts such as the one corresponding to
category of felines with yellow fur. Suppose we impose con-
straints by adding background knowledge using the following
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C1

C2C3 C4

C5C6

C7C8

C9

C10C11

C12 C13C14

C15

Figure 2: Constrained Hierarchy of Clusters I

AD-formulas:

{stripes, spots, black, sandy, white, yellow} v
{small, medium, large},

{small, medium, large} v
{Acinonyx, Felis, Leptailurus, Panthera},

{small, medium, large} v {Africa, America, Asia, Europe}.
They say that fur color and pattern are less important than
size, size is less important than genus, and size is less im-
portant than habitat. No preference is asserted between
habitat and genus, nor between fur color and pattern. The
corresponding constrained concept lattice BT (X, Y, I) con-
sists of 15 conceptual clusters (the names of attributes are
abbreviated):

C1 = 〈X, ∅〉,
C2 = 〈{Cougar, Jaguar, Wildcat}, {Am}〉,
C3 = 〈{Cheetah, Lion, Panther, Serval, Wildcat}, {Af}〉,
C4 = 〈{Cougar, Jaguar, Lion, Panther, Tiger}, {Pa}〉,
C5 = 〈{Tiger}, {Pa, As, la, st, wh, ye}〉,
C6 = 〈{Cougar, Jaguar}, {Pa, Am, la}〉,
C7 = 〈{Cougar}, {Pa, Am, la, sa}〉,
C8 = 〈{Jaguar}, {Pa, Am, la, sp, bl, ye}〉,
C9 = 〈{Lion, Panther}, {Pa, Af}〉,

C10 = 〈{Lion}, {Pa, Af, la, sa}〉,
C11 = 〈{Panther}, {Pa, Af, As, me, sp, ye}〉,
C12 = 〈{Serval}, {Le, Af, sm, st, sp, sa, ye}〉,
C13 = 〈{Wildcat}, {Fe, Af, Am, As, Eu, sm, st, sp, bl, sa, ye}〉,
C14 = 〈{Cheetah}, {Ac, Af, me, st, sp, ye}〉,
C15 = 〈∅, Y 〉.
The hierarchy of these clusters is depicted in Figure 2. As
one can see, the new hierarchy is much easier to comprehend
than the original one and it does not contain “artificial clus-
ters” like the previous one. If we return to Figure 1, the
black nodes represent clusters which are omitted in Figure 2
while the white ones represent clusters which are present in
Figure 2. The hierarchy in Figure 2 contains two clusters
which are trivial: C1 (cluster of all animals) and C15 (clus-
ter of no animals). These two borderline clusters may be
omitted in the diagram.

One of the benefits of adding background knowledge to re-
duce the concept lattice is its interactive character. Namely,

C1

C4

C5

C7C8

C10C11

C12 C13C14

C15

Figure 3: Constrained Hierarchy of Clusters II

if user supplies AD-formulas and the structure is still too
large, he/she can specify further restrictions which may help
to further reduce the structure. For illustration, suppose we
add the following AD-formula to the previous ones:

{Af, Am, As, Eu} v {bl, sa, wh, ye}. (6)

The AD-formula says that if a specification of a continent is
present, then the specification of color must also be present
in the concept description (intent). Using this AD-formula
as an additional constraint, we arrive to 11 formal concepts
as clusters. Each object (table row) induces one cluster—
category of the corresponding species. In addition to that,
there is cluster C4 (cluster of all “Panthera felines”), which
appears in the data and is compatible with the background
knowledge. The situation is depicted in Figure 3. From Fig-
ure 3, we can see that some clusters such as C6 (cluster of all
“large Panthera felines from America”) are no longer present
in the hierarchy because they do not satisfy the constraint
represented by (6).

Removing redundant AD-formulas can improve the read-
ability of background knowledge. Background knowledge
bases represented by AD-formulas may be collected from
different sources, by different people, and during a longer
period of time. In addition, if we take into account the
number of attributes, which can be large, it is likely that
the “same information” will be captured by different groups
of rules in the knowledge base. This leads to a redundancy
which is undesirable because it impairs comprehensibility of
the background knowledge. We now demonstrate how Al-
gorithm 2 can be used to remove redundant AD-formulas.
As an example, consider background knowledge consisting
of the following AD-formulas over attributes a, . . . , g:

{a, b} v {c}, {c, d} v {a}, {c, e} v {a, d},
{f, g} v {a, c}, {d, f} v {b, c}, {g} v {e, f}.

The AD-formula {f, g} v {a, c} is redundant. In other
words, {f, g} v {a, c} follows from the other AD-formulas.
Following Algorithm 2, we take the complement of {a, c}
and compute the greatest model of the rest of the formulas
which is smaller than or equal to the complement of {a, c}.
Then, we conclude that {f, g} v {a, c} is entailed by the
rest of the formulas, and therefore redundant, iff {f, g} is
disjoint with the computed model.
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The complement of {a, c} is {b, d, e, f, g}. Denote the
complement by N . We now compute the greatest model
according to Algorithm 1. Taking the first AD-formula
{a, b} v {c}, we see b ∈ N ∩ {a, b}, but c 6∈ N , i.e. b is
to be removed from N . The second formula {c, d} v {a}
makes d removed from N = {d, e, f, g} because d ∈ N and
a 6∈ N . The third formula {c, e} v {a, d} makes e removed
from N = {e, f, g} because {a, d} ∩N = ∅. The fourth for-
mula is omitted because it is the formula for which we test
redundancy. The fifth formula {d, f} v {b, c} makes f re-
moved from N = {f, g} because f ∈ N and {b, c} ∩N = ∅.
Finally, the last formula {g} v {e, f} causes g to be removed
from N = {g} because g ∈ N and {e, f} ∩ N = ∅. There-
fore, we have arrived to N = ∅, i.e. N ∩ {f, g} = ∅, which,
according to Theorem 2 means that {f, g} v {a, c} follows
from the other AD-formulas.

4. REMARKS AND FUTURE RESEARCH
We showed that AD-formulas provide us with an easy-to-

understand and theoretically and computationally tractable
way to add background knowledge into FCA. The approach
is relationally based and thus avoids ad-hoc assignment of
weights to attributes which is an approach usually used for
modeling attribute importance.

Due to limited scope, we presented only illustrative exam-
ples. Two of our ongoing projects where background knowl-
edge via AD-formulas plays important role are: 1. Devel-
opment of a conceptual clustering system of machine parts.
2. Development of a system for on-line shops which pro-
vides the customer with a conceptual view of the products,
grouped into categories, based on user preferences which
play the role of background knowledge. Experience with
these projects supports our claim that adding background
knowledge to FCA yields a flexible and user-friendly cate-
gorization tool.

Future research will focus on further methodological and
theoretical development of using background knowledge in
FCA as well as on real-world applications of FCA with back-
ground knowledge.

5. ACKNOWLEDGMENTS
The authors’ second affiliation is with Dept. Computer

Science, Palacky University, Olomouc, Czech Republic. Sup-
ported by grant No. 1ET101370417 of GA AV ČR, by grant
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