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ABSTRACT

This paper proposes a machine learning method based on
Real Adaboost that jointly optimizes the content ID codes
and the decoding metric. Significant performance gains over
prior art are demonstrated for audio fingerprinting.

1. INTRODUCTION

Hash-based content identification (ID) is an emerging re-
search area. Applications include broadcast monitoring,
connected audio, content tracking, asset management, con-
textual advertisement, and last but not least, filtering for
user-generated content websites [1, 2]. Content ID technolo-
gies are currently deployed on sites such as YouTube and
Dailymotion and aims at identifying (automatically and in
real time) copyrighted uploaded content (audio and video).
Hash-based algorithms allow for real-time operation. Instead
of matching the content itself, one matches short fingerprints
extracted from it, using robust hashing methods.

An impressive variety of algorithms have already been de-
veloped for constructing signal processing primitives for ro-
bust hashes as well as efficient string matching algorithms.
Recently there have been attempts to formulate a scientific
framework for content ID, aiming at discovering the funda-
mental limits of content ID and ways to achieve them [3, 4].
On the algorithmic side, a promising hash design algorithm
called Symmetric Pairwise Boosting (SPB) has been devel-
oped and applied to audio and video ID [6, 7]. Our recent
paper [5] addressed the problem of optimizing the decod-
ing metric for a given content ID code; significant improve-
ments relative to [6, 7] were reported. This paper proposes
a much improved boosting method that exploits confidence
scores produced by weak learners, and explores joint design
of the encoder and decoding metric.

2. STATEMENT OF THE CONTENT ID PROBLEM

A content database is a collection of M elements (content
items) x(m) ∈ XN , m = 1, 2, · · · ,M , each of which is a
sequence of N frames {x1(m), x2(m), · · · , xN (m)}. Here
X is the set of possible values of a frame. A frame could be

a short video segment, a short sequence of image blocks, or
a short audio segment. Frames may be overlapping spatially,
temporally, or both. For instance, the audio fingerprinting pa-
per [6] uses overlapping time windows that are 2 sec long and
start every 185 ms; the temporal overlap is 15/16. A 3-minute
second song is represented by N = 1000 frames. It is de-
sired that the audio be identifiable from a short segment, say
5 sec long, corresponding to L = 16 frames. This is called
the granularity of the audio ID system [6]. Typically L� N .

The problem is to determine whether a given probe con-
sisting of L frames, y ∈ XL, is related to some element of
the database, and if so, identify which one. To this end, an
algorithm ψ(·) must be designed, returning the decision

ψ(y) ∈ {0, 1, 2, · · · ,M}

where ψ(y) = 0 indicates that y is unrelated to any of the
database elements.

Algorithm performance is evaluated using several met-
rics [1], including execution time, probability of false pos-
itives, probability of false negatives, robustness, granularity
(L), database size (linear in M ), and storage requirements
(linear in MN ).

3. STRUCTURED CONTENT ID CODES

In this paper, we restrict our attention to the following fairly
general class of content ID codes. The codes of [1, 6, 7],
among others, fall in this category.

Definition 3.1 A (M,N,L) content ID product code for a
size-M database populated with XN -valued content items,
and granularityL, is a pair consisting of a mapping φ : X →
F and a decoding function ψ : FL → {0, 1, · · · ,M},
such that (i) a content item x is encoded into a finger-
print f with components fi = φ(xi), 1 ≤ i ≤ N ; (ii) a
query y is encoded into a query fingerprint g with compo-
nents gi = φ(yi), 1 ≤ i ≤ L; (iii) the decoder returns
m̂ = ψ(φ(y1), · · · , φ(yL)).

Hence the mapping φ is applied independently to each
frame. It might be convenient to impose additional struc-
ture on the code. For instance, the mapping φ : X → F
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in [6, 7] is obtained by applying a set of J optimized filters
to each frame and quantizing each of the J real-valued filter
outputs to four levels. Hence F takes the form F = AJ with
A = {a, b, c, d}. In this case we view the fingerprint as an
array F = {Fij , 1 ≤ i ≤ N, 1 ≤ j ≤ J} and the probe
fingerprint as an array G = {Gij , 1 ≤ i ≤ L, 1 ≤ j ≤ J}.
We also write φ in vector form as φ = {φj , 1 ≤ j ≤ J}.

Frame overlap causes strong dependencies between suc-
cessive fingerprint components. The following section sum-
marizes material from [5].

4. FINGERPRINT MODELS

The simplest model for the original fingerprint is a memory-
less model pF(f) =

∏J
j=1

∏N
i=1 pF (fij) with marginal dis-

tribution pF .
In the event the probe is related to some element of the

database, we initially assume this relationship takes the fol-
lowing form. LetN0 be an integer in {0, 1, 2, · · · , N−L−1}
representing a time offset. We assume the degradation chan-
nel from X to Y is a stationary stochastic mapping. Hence so
is the channel from F to G.

The degradation channel is of the form p0(g|f , N0) =∏J
j=1

∏L
i=1W (gij |fi+N0,j) where W is the conditional

marginal of Gij given Fij . This model implies that the er-
rors on the fingerprint symbols are conditionally iid given F.
We refer to this as the order-0 (or memoryless) degradation
model.

4.1. Markov Model for Fingerprints

Assume that the process F is Markov, i.e.,

p(f) = p(f1)

N∏
i=1

p(fi+1|fi),

and the joint process (F,G) is homogeneous Markov, with

PG|F(g|f) = W (g1|f1)

L−1∏
i=1

V (gi+1|gi, fi+1, fi)

where V is a conditional pmf on F . This implies that the
process G is a Hidden Markov Model, with hidden state
(F,G) ∈ F2, transition kernel V , and deterministic observa-
tional model. However G is generally not Markov.

The metric matched to the channel is given by

d(f ,g) = − lnW (g1|f1)−
L−1∑
i=1

lnV (gi+1|gi, fi+1, fi). (1)

5. LEARNING-THEORETIC APPROACH

The paper [6] describes the following approach to audio fin-
gerprinting. A frameX is aNs×Nw image consisting of nor-
malized spectral subband centroids (NSSC) computed from

Ns subbands and Nw overlapping windows. Pixel X(n, k) of
this image represents the centroid of the k-th critical band in
a short-term power spectrum of the temporal signal, at time
instant n. Then a set of linear filters indexed by j ∈ J are ap-
plied to X , and the real-valued filter outputs are quantized to
four levels. This produces the quaternary fingerprint vector

Fj = φj(X) , Qj

 ∑
(n,k)∈R+

j

X(n, k)−
∑

(n,k)∈R−
j

X(n, k)


for j ∈ J , where R+

j and R−j are disjoint subsets of the im-
age domain Ω = {1, · · · , Ns}× {1, · · · , Nw}, and the scalar
quantizer Qj has four possible output values and is parame-
terized by three thresholds. Hence the alphabet for the finger-
print symbol F , {Fj , j ∈ J } is F = 4J . The fingerprint
mapping F = φ(X) = {φj(X), j ∈ J } is determined by
the choice of filters and quantizers.

A learning method dubbed symmetric pairwise boosting
(SPB) is used to select the filters and quantizers. First a train-
ing set T , {(Xt, Y t, Zt) ∈ X 2 × {±1}, t ∈ T } com-
prised of |T |/2 matching pairs and |T |/2 nonmatching pairs
is built, where a pair (Xt, Y t) ∈ X 2 is said to be matching if
the second audio signal is a distorted version of the first, and
a pair (Xt, Y t) ∈ X 2 is said to be nonmatching if the two au-
dio signals are independent. The binary variable Zt is equal
to 1 (resp. -1) if (Xt, Y t) is matching (resp. nonmatching).
Define the classifier hj : X 2 → {±1} as

hj(X,Y ) = 21{φj(X) = φj(Y )} − 1 (2)

and H as the class of feasible classifiers (indexed by the
choice of filter and quantizer). Note that hj(X,Y ) depends
on (X,Y ) ∈ X 2 only via (φj(X), φj(Y )) ∈ A2.

The SPB algorithm is an adaptation of the well-known
Discrete Adaboost classification algorithm of Freund and
Schapire [8] and is given in Table 1.

Upon completion of the algorithm, Adaboost would out-
put the boosted classifier

h(X,Y ) , sgn

∑
j∈J

αjhj(X,Y )

 . (3)

However note [6] does not use the boosted classifier, only the
filters and quantizers associated with each hj are used.

Given an audio signal X = {X1, · · · , XN} ∈ XN con-
sisting of N frames, the fingerprint sequence is obtained as
the sequence of N fingerprint vectors F = {F1, · · · , FN} ∈
FN where Fn = φ(Xn) for each 1 ≤ n ≤ N .

6. EXPONENTIAL LOSS FUNCTION

The Discrete Adaboost algorithm of Table 1 (with predic-
tor variable (X,Y ) and binary response variable Z) admits
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Initialization: define equal weights wt
j = 1/|T | for all j ∈ J

and t ∈ T .
Iterations: for all j ∈ J , do

1. Choose the binary classifier hj ∈ H that minimizes the
weighted classification error

ej = ET ,w[1{hj(X,Y ) 6= Z}]

,
∑
t∈T

wt
j1{hj(Xt, Y t) 6= Zt}.

2. Compute αj = log
1−ej
ej

.

3. Update the weights

wt
j+1 = wt

j exp{−αjZ
thj(X

t, Y t)}

4. Normalize the weights so that
∑

t∈T w
t
j = 1.

Table 1. Discrete Adaboost algorithm for optimizing φ

a known interpretation as an iterative procedure for fitting an
additive logistic regression model [9]

f(x, y) =
∑
j∈J

αjhj(x, y) (4)

under the exponential loss function

L(z, f(x, y)) = exp{−zf(x, y)}. (5)

Interestingly, this particular loss function is closely related to
the exponential bounds on probabilities of false positives and
false negatives developed in [3] which justifies its use in our
coding framework.

Unconstrained minimum. The minimum of E[e−Zf(X,Y )]
over all real-valued functions f : X 2 → R is obtained by
simple differentiation of the cost function and is half the log
posterior odds [9]

f∗(X,Y ) =
1

2
ln

P [Z = 1|X,Y ]

P [Z = −1|X,Y ]
.

It is easily verified that E[e−Zf∗(X,Y )] = 1.

7. JOINT OPTIMIZATION OF D AND φ

The unconstrained minimizer of the exponential loss function
Ee−Zf(X,Y ) is half the log posterior odds. If f is constrained
to be of the form f(X,Y ) = f̃(φ(X), φ(Y )), one might ask
how the functions φ : X → F and f̃ : F2 → R should be
designed. Thus, as an alternative to (4), we consider a richer
class of classification functions where (i) the range of the el-
ementary functions hj , j ∈ J is no longer constrained to be
{±1}, and (ii) these functions are combined in a fairly general
way. We therefore consider a broader class H of elementary
classifiers mapping X 2 to R.

Initialization: define equal weights wt
j = 1/|T | for all j ∈ J

and t ∈ T .
Iterations: for all j ∈ J , do

1. Choose the real-valued function hj ∈ H that minimizes
the cost function

ET ,w[e−Zhj(X,Y )] ,
∑
t∈T

wt
j e
−Zthj(X

t,Y t).

2. Update the weights

wt
j+1 = wt

j exp{−Zthj(X
t, Y t)}

3. Normalize the weights so that
∑

t∈T w
t
j = 1.

Table 2. Real Adaboost algorithm for optimizing φ

The following mathematical structure will be computa-
tionally convenient. First, each elementary classifier outputs
a real-valued confidence score determined by the choice of
a filter mask and quantizer, as in [6], but also by a function
ω : A2 → R to be determined. Then

hj(x, y) = ω(φj(x), φj(y)), ∀j ∈ J .

For instance, the SPB algorithm of [6] assumes the binary
function ω(a, b) = 21{a = b} − 1 given in (2).

We then learn the classification function

f(x, y) =
∑
j∈J

hj(x, y) =
∑
j∈J

ω(φj(x), φj(y)) (6)

from training data. The goal is to minimize the exponential
loss function E[e−Zf(X,Y )] over such f . The proposed min-
imization algorithm is a variant of Real Adaboost [9] and is
given in Table 2.

Note that, upon completion of the algorithm, Real Ad-
aboost would output the boosted classifier

h(X,Y ) , sgn

∑
j∈J

hj(X,Y )

 (7)

but this classifier will not be needed here.
The function hj can be interpreted as a logit transforma-

tion of a conditional probability:

hj(x, y) =
1

2
ln

pj(x, y)

1− pj(x, y)
, x, y ∈ X

where pj(x, y) = P̂w(Z = 1|x, y) = Êw[1{Z = 1}|x, y]

is the weak learner’s class probability estimate, sgn(hj(x, y))
is the weak learner’s classification, and |hj(x, y)| is a measure
of confidence in that classification.

This algorithm again performs a forward stagewise mini-
mization of the expected loss, where now f =

∑
j∈J hj .
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To gain further insights into the problem of optimally de-
signing ω, we first consider the fingerprint degradation chan-
nelW (g|f). Then the optimal decoding metric is the negative
loglikelihood. The optimal ω is given by

ω(f, g) = τ + lnW (g|f), f, g ∈ A. (8)

Since the optimal ω is a function of the channel W which
itself depends on the fingerprint mapping φ, we propose
the following iterative design. First intialize ω; a reasonable
choice would be (2), corresponding to the Hamming decoding
metric. Then alternate between the following two steps:

1. Given φ, estimate W,V from the training data and ob-
tain ω from (8).

2. Given ω, optimize φ using the Real Adaboost algorithm
of Table 2.

8. EXPERIMENTAL EVALUATION

We consider an audio fingerprinting scenario with a training
dataset T of size 100, 000 of which half are matched pairs
(Z = +1) and half are non-matched pairs (Z = −1). The fin-
gerprint pairs are generated at random using snippets (T = 3
sec) from a database of M = 500 songs from various musical
genres.

Matched pairs are generated by applying one of the fol-
lowing distortions: a) Octave equalization; b) Windows Me-
dia Audio (WMA) 64kps encoding; c) Sample rate change;
d) Bandpass filtering; e) Echo distortion or applying pairs of
the above distortions. Non-matched fingerprint pairs are gen-
erated at random from different songs in the database.

Each audio clip is divided into N = 8 frames with an
overlap factor of 15/16. The feature vector x ∈ X is derived
from the NSSC as described in Sec. 5. Subfingerprints are ob-
tained by applying J Viola-Jones filters to each NSSC image
and quantizing each filter output to 2 bits; we chose J = 8 in
our experiments. We use the Discrete Adaboost system of [6]
as a baseline against which our algorithm performance can
be compared. Performance gain of Real Adaboost is due to
better selection of weak learners.

First we use the filters and quantizers of [6] and apply
Step 1 of the alternating optimization algorithm of Sec. 7 to
estimate the channel law (W,V ) and infer the decoding met-
ric ω. Then we apply Step 2 of the algorithm and optimize
the filters and quantizers using our proposed Real Adaboost
algorithm.

Training a new set of filters using Real Adaboost incurs
additional computational cost. Real Adaboost increases the
computation time by only a small fraction: The boosting took
12 hours for Discrete Adaboost and 14.5 hours for Real Ad-
aboost using MATLAB on a Pentium IV processor. The in-
cremental cost is for accessing a look-up table for W at each
iteration. The decoding cost for a novel query which remains
unchanged from Discrete to Real Adaboost.
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Fig. 1. Performance Comparison for Discrete vs. Real Ad-
aboost for WMA filtering + Echo + MP3 distortion.

Performance is evaluated using an independent test
dataset of 150, 000 matched fingerprint pairs and 750, 000
non-matched pairs using the same distortion set. Fingerprint
decoding uses the first-order metric (1) derived from the
joint-Markov assumption of the fingerprint-distortion pro-
cess. A ROC performance curve is shown in Fig. 1. The first
two steps of the optimization produce large gains relative to
prior art, namely, a five-fold reduction of the false negative
rate. Repeating these two steps produces scant improvement
except at low false-positive rates.
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