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ABSTRACT
With the emergence of new applications, e.g., computational bi-
ology, new software engineering techniques, social networks, etc.,
more data is in the form of graphs. Locating occurrences of a query
graph in a large database graph is an important research topic. Due
to the existence of noise (e.g., missing edges) in the large database
graph, we investigate the problem of approximate subgraph index-
ing, i.e., finding the occurrences of a query graph in a large database
graph with (possible) missing edges. The SAPPER method is pro-
posed to solve this problem. Utilizing the hybrid neighborhood unit
structures in the index, SAPPER takes advantage of pre-generated
random spanning trees and a carefully designed graph enumeration
order. Real and synthetic data sets are employed to demonstrate
the efficiency and scalability of our approximate subgraph index-
ing method.

1. INTRODUCTION
Graph data has appeared in many recent applications, ranging

from bioinformatics, software engineering to social networks. Man-
aging, processing, and analyzing these graph data becomes an ur-
gent practical problem. Subgraph query is one of the most fun-
damental procedures in managing graphs. In many applications,
e.g., biological networks, graphs are large with thousands or tens
of thousands of vertices and millions of edges. A subgraph query
is to identify the occurrences of the query subgraph in the database
graph.

Although subgraph query has been studied previously [24], the
basic assumption is that the networks of interest are perfectly clean.
In order to qualify an occurrence of a query subgraph q, all edges
of the query graph have to occur in the database graph G. In other
words, the occurrence has to be exact. However, noise commonly
exists in many applications or the approximate matches themselves
are more interesting. For example:

1. A challenging problem in the computational biology is to an-
notate, index and search subgraphs in large networks generated
with high throughput experiments. Specifically, the problem is
to search for well characterized pathways/patterns in a less stud-
ied model organism [7]. Subgraph Indexing is useful in querying

for pathways/patterns from well studied model organisms in other
unfamiliar organisms with known protein-protein interaction net-
works where vertices and edges represent proteins and interactions,
respectively. However, due to possible errors in data collection and
different thresholds used in experiments, the data are highly noisy.
Missing interactions are common and it is very difficult to clean the
data. By discovering and analyzing the approximate matches, biol-
ogists would generate solid hypotheses for future studies in under-
standing and identifying pathways/patterns in not so well studied
model organisms.

2. In object-oriented programming, developers and testers han-
dle multiple objects of the same or different classes. The object
dependency graph of a program run, where each vertex is an ob-
ject and each edge is an interaction between two objects through a
method call or a field access, helps developers and testers under-
stand the flow of the program and identify bugs. The patterns to be
queried that are confirmed by the developers as typical object us-
ages can be used to automatically detect the locations in programs
that deviate from them (that is similar to the pattern but not exactly
the same) [8]. Hence, by retrieving the approximate occurrences of
a typical pattern, developers and testers can quickly locate where
the possible bugs are.

In this paper, we investigate the problem of discovering the oc-
currences of a query graph q in G. The query graph may contain
dozens of vertices. Subgraph indexing has been studied before [24,
19, 9]. In previous work, to qualify an occurrence of q in G, all
edges of q have to occur. On the other hand, we are studying the
subgraph indexing problem in the context of noises, e.g., missing
edges. Therefore, in this paper, an approximate match model is
developed. In this model, the edge edit distance (i.e., the number
of edge modifications needed to transform one graph to another) is
used to qualify an occurrence of q. If the edge distance between
the query graph q and a subgraph q′ of G is no more than some
threshold θ, then q′ is considered as an approximate occurrence
of q. This approximate matching model takes into account miss-
ing edges in the database graph G. Note that we do not consider
the approximate matches with additional edges to the query graphs
because such matches are always contained by the matches of the
query graphs.

We do not consider label mismatches because the number of
possible candidate graphs with label mismatches to a given query
graph can be huge. For example, let us assume the size of the query
graph is n and the number of vertex labels in the database graph is
m, then the total number of candidate graphs with only two label
mismatches is n× (n− 1) × (m − 1)2 even without considering
any missing edges.

There is a very straightforward solution for approximate query
matching. We can first find all graphs whose edge edit distance to
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q is no more than θ. Next, for each of these graphs q′, the exact
occurrences of q′ in G can be discovered. In this way, the approx-
imate subgraph matching can be reduced to the problem of exact
subgraph matching and previous existing methods, e.g., GADDI
[24] can be applied. However, this approach has two shortcomings.
First, the exact subgraph matching itself is a very difficult prob-
lem since subgraph isomorphism is known to be an NP-hard prob-
lem. Secondly, there could be potentially a large number of graphs
whose edge edit distance is no more than θ away from q (Denote
these graphs as AI(q, θ)). For instance, if q has m edges, then the
number of graphs in AI(q, θ) could be O(mθ), which could be
very large. Thus, it is crucial to devise an efficient way to process
the group of queries.

In this paper, we aim to solve the above two problems. To ef-
ficiently identify the occurrences of one subgraph, a novel index-
ing structure, hybrid neighborhood unit (HNU), is devised. Let
Ni(v,G) be the set of vertices u in G such that there exists an
i-edge path in G that connects u and v. For each vertex v in
the database graph G, HNU stores the degree of v and the la-
bels of v, v’s neighbors (N1((v,G)), and v’s neighbors’ neighbors
(N2(v,G)). In most cases, N1(v,G) is a relatively small set, but
N2(v,G) could be large. For a graph with average degree d, there
could be d2 vertices in N2(v,G). During the query time, when
matching one vertex u in q to a vertex v in G, we need to find out
whether the labels in N2(u, q) are a subset of those in N2(v,G),
which could be costly if these sets are large. To efficiently deter-
mine the set relationship, the bloom filter [3] data structure is used
to represent the labels in N2(v,G). The bloom filter is an L-bit
vector which can be used to determine whether one set is a subset
of another. It has the following advantages. It is time efficient and
space compact. Moreover, it has no false negatives and only a small
rate (≤ 1%) of false positives. Therefore, the vertices in the query
graph q can be efficiently matched to the vertices in G with a high
accuracy.

To improve the efficiency of processing a set of subgraph queries
(graphs in AI(q, θ)), we make the following observation. Although
there could be mθ graphs in AI(q, θ), these graphs are highly over-
lapped. Therefore, it is beneficial to query the overlapping parts
first since they have the greatest pruning power, i.e., can be used
in many of graphs in AI(q, θ). As a result, the spanning trees of
q are used for the query first because (i) many graphs in AI(q, θ)
contain some spanning tree of q and (ii) the time to identify a tree
in G is quite small. Based on the matches of the spanning trees, we
can map vertices in q to vertices in G.

The graph occurrences have a similar property as the Apriori
Property [2] because an occurrences of a supergraph has to con-
tain an occurrence of a subgraph. Therefore, finding the matches
of graphs in AI(q, θ) is similar to that of discovering frequent pat-
terns. As a result, a depth-first enumeration order similar to that of
FP-tree [10] is constructed for matching graphs in AI(q, θ) so that
previous discovered occurrences of a graph q′ can be used for the
matching of later enumerated supergraphs of q′.

The remainder of this paper is organized as follows. Section 2
is the related work and section 3 is the preliminaries. We present
how to preprocess the database and construct the index in section 4.
Section 5 describes the query processing. The experiment results
are presented in section 6. Last, the final conclusion is drawn in
section 7.

2. RELATED WORK
These days graph database research has attracted great attention,

related works of subgraph indexing for approximate graph match-
ing include subgraph isomorphism algorithms, graph indexing and

subgraph indexing, approximate subgraph matching and graph sim-
ilarity search.

The first category of related research lies in subgraph isomor-
phism algorithms. Ullmann [20] proposed a subgraph matching
algorithm based on a state space search method with backtrack-
ing. However, this algorithm is prohibitively expensive for query-
ing against a large graph. Cordella [6] proposed a new subgraph
isomorphism algorithm for large graphs. These algorithms do not
utilize any index structure by preprocessing the database graphs.

Many index-based graph matching and searching schemes have
been proposed to find where the query graph occurs in the graph
databases [4, 12, 18, 22, 23, 9], which can be further divided into
the graph indexing and subgraph indexing. In graph indexing, e.g.,
gIndex[22], TreePi[23], FG-Index[4], the graph database consists
of a set of small graphs. The graph indexing aims to find all database
graphs that contain or are contained by a given query graph. On the
other hand, in the subgraph indexing e.g., GraphGrep [9], TALE
[19], GADDI [24], the goal is to index a very large database graph,
so that we can find all or a subset of the matches of a given query
graph efficiently in the very large database graph. The proposed
method, SAPPER, also deals with subgraph indexing in a very large
database graph, and thus falls into this category.

Recently, a number of algorithms are proposed which support
approximate graph matching or similarity search through different
means [7, 11, 12, 19, 21, 15, 9, 16]. C-Tree[11] organizes database
graphs in a tree based structure, where interior nodes are graph
closures, and leaf nodes are database graphs. The design of its
data structure enables it to perform similarity queries efficiently. In
TALE [19], important nodes are matched first and then the match
is progressively extended. The method is very effective and fast in
approximately finding matches in a large graph. In G-Hash [21],
wavelet graph matching kernels are applied along with a hashing
scheme. In [15], a top-k query scheme is proposed to find the most
similar k answers. However, most of these algorithms are not de-
signed for finding all approximate matches for the query graph with
a given threshold in a very large graph. In [16], the authors aim to
find the database graphs that are similar to the query graph. Since
the database graphs and the query graph are all small, they trans-
form the approximate graph matching to the SET-COVER problem.

Another category of research related to the subgraph matching is
graph alignment [14, 17]. Instead of matching subgraphs in a large
database graph, these methods aimed to align a pair of biological
graphs. In the problem studied in this paper, the size of the query
graph may be much smaller than that of the database graph. Thus,
the graph alignment method may not be directly applicable.

3. PRELIMINARIES
In this section, we introduce the fundamental definitions used in

this paper and give the formal problem statement. We investigate
the approximate graph matching methods for undirected and un-
weighted labeled graphs. Without a loss of generality, it is easy to
extend our methods to directed and weighted labeled graphs.

DEFINITION 1. A labeled graph G is a five element tuple G =
{V, E,ΣV ,ΣE , LG} where V is a set of vertices and E ⊆ V × V
is a set of edges. ΣV and ΣE are the sets of vertices and edge
labels, respectively. The labeling function LG defines the mappings
V → ΣV and E → ΣE .

DEFINITION 2. The edge edit distance from graph g1 to g2 is
defined as the minimum number of added edges required to trans-
form g1 into g2. We denote the edge edit distance as Dedit(g1, g2).



Figure 1: An Example of the Edge Edit Distance

Figure 2: The Database Graph, Query Graph and Matches

For example, in Figure 1, by adding two edges to g1, we can
transform g1 to g2. This leads to Dedit(g1, g2) = 2. Edge edit dis-
tance is not symmetric, i.e., ∀g1, g2, Dedit(g1, g2) �= Dedit(g2, g1).
When a graph ga is not possible to be transformed to another graph
gb by adding edges, we have Dedit(ga, gb) = +∞.

DEFINITION 3. Given a database graph G, a connected query
graph q, and an integer θ as threshold, a connected subgraph s
of G is defined as an approximate match of q in G if and only if
Dedit(s, q) ≤ θ; any graph isomorphic to s is defined as approx-
imately isomorphic to q. The set of graphs approximately isomor-
phic to q is denoted as AI(q, θ). If the edge edit distance from an
approximate match m to q is exactly zero, m is an exact match of
q in G.

Apparently, the set of approximate matches of any query graph is
the superset of the set of exact matches of the same query graph.

In this paper, two restrictions on the approximate match are im-
posed: (i) the approximate match has to be connected and (ii) only
edge additions are considered, but not the edge deletions. A brief
discussion on approximate matches without these two restrictions
is presented in the appendix.
Problem Statement: We aim to solve the following two problems.
(1) Given a large database graph G, we want to construct an in-
dex. (2) Given a query graph q and a threshold integer θ, we want
to efficiently find all matches of graphs that are approximately iso-
morphic to q in G with the help of the indexed information. Our
goal is not to find some of the matches to the graphs in AI(q, θ),
but to find all matches to the graphs in AI(q, θ). The word ”ap-
proximate” refers to the matches of graphs that are approximately
isomorphic to the query graph.

In Figure 2, given the query graph and threshold θ = 1, two
distinct approximate matches exist in the database graph. The edge
edit distance from the left approximate match to the query graph
is one, while it is zero for the right match, which is also an exact
match.

Before presenting the approximate subgraph indexing method,
we will introduce the subgraph matching property which will be
used extensively later in this paper.

PROPERTY 1. Given a query graph q and a database graph G,
for any exact match g of q in G, let q′ be a subgraph of q, g must
contain a match of q′ in G.

Figure 2 also illustrates this property: the right exact match in
database graph contains any match of a subgraph q′ of the query
graph q. This property is similar to the Apriori property in the
frequent pattern mining [2]. With this property, we can devise an
algorithm that searches the matches of a subgraph first. By refining
these matches, we can build the matches for larger subgraphs.

The processing of graph queries in our paper can be divided into
two major steps. In the first step we construct the index from the
database graph. The hybrid neighborhood unit (HNU) is used to
store the useful local information for each vertex. In the second
step, approximate matches of the query graph q are identified.

4. HYBRID NEIGHBORHOOD UNIT INDEX
In GraphGrep [9], the effectiveness of paths is first revealed,

while in TALE [19], neighboring unit proves to be a compact and
powerful index unit. In GADDI [24], neighboring distances based
index shows its strength in graph matching in a single large graph.
Taking the usefulness of these three models into account, we cre-
ate a new index unit, called hybrid neighborhood unit (HNU). For
each vertex v in G, let Ni(v,G) be the set of vertices u in G such
that there exists a path of i edges between u and v. For example,
N1(v,G) is the set of vertices that are adjacent to v in G. For
the database graph G, we construct the HNU for each vertex v in
G. The HNU of v includes four parts: the label v, the degree of
v, the labels of vertices in N1(v,G) and the labels of vertices in
N2(v,G). The first three parts are easy to compute and efficient to
store. However, the last part could be too large. For a graph with
the average degree of d, |N2(v,G)| could be O(d2). The bloom
filter [3] is used to store the labels in N2(v,G).

A bloom filter B is an L-bit vector and a set of m independent
hash functions {f1, f2, . . . , fm}. It is used to determine whether an
element x is a member of a set X . Each of the m hash functions fi
maps an element into an integer between 1 and L. Initially, all bits
in B are set to 0. If fi maps an element in X into the integer k, then
the kth bit in B (B[k]) is set to 1. After mapping every element in
X with m hashing functions, some bit in B is 1 while others are 0.
To determine whether x is in X , x is mapped to m integers with the
m independent hash functions. Assume that fi(x) = ki. If x ∈ X ,
then B[ki] has to be 1 for all ki (1 ≤ i ≤ m). If ∃ki, B[ki] = 0,
then x can not be a member of X . There is no false negative in
the bloom filter. However, there could be false positive, i.e., if all
mapped bits of x are 1 in B, then there is still a chance that x is
not a member of X . The error rate depends on L, |X| (number
of elements in X), and m. The optimal number of independent
hash functions is approximately 0.7 × L/|X|. In addition, if the
positive error rate is set to 1%, then L/|X| should be 9.6 [5]. Since
X are the labels of vertices in N2(v,G), |X| can be approximated
by d2 where d is the average degree of a vertex in G. Without a
loss of the generality, we choose L and m to be 
9.6d2� and 7,
respectively to ensure the false positive rate no more than 0.01. If
a lower false positive rate is needed, each time we add about 4.8
bits per element to the length of the bloom filter, the false positive
rate is reduced by ten times. In the HNU of vertex v, the labels
of N2(v,G) are collected and an L-bit bloom filter is built during
index construction time.

The time complexity to obtain the first three parts of the HNU is
O(d) for each vertex while the bloom filter takes O(d2 ×m+ L)
time to build. Since L is in the order of d2, the time complexity of
bloom filter construction can be simplified as O(md2). Thus, the



total index construction time for all vertices in G is O(md2×|VG|)
where |VG| is the number of vertices in G.

5. SAPPER QUERY PROCESSING
In this section, we introduce the approximate subgraph match-

ing algorithm, namely SAPPER. During the query of a subgraph q
in G, SAPPER consists of four main steps: vertex matching, con-
structing random spanning trees of q, generating a matching order
of graphs in AI(q, θ), and the final graph matching. SAPPER first
finds candidate matches of each vertex vq ∈ q to vertices in G
based on the HNUs. Next, we randomly generate a set of span-
ning trees of q. The matches of the spanning trees are discovered
based on the vertices match. The spanning tree matches are used for
matching the approximate graphs. Since there are multiple graphs
need to be matched, an order on matching these graphs is deter-
mined. Finally, matches of all these graphs are discovered.

5.1 Vertex Matching
For each vertex vq in the query subgraph q, we search for its

matches in G based on the HNUs. A vertex vG in G is a match of
vq if all the following conditions are satisfied: 1) The label of vq
is the same as that of vG. 2) The degree of vq is less than or equal
to that of vG. 3) The labels of vertices in N1(vq , q) is a subset
of those of N1(vG, G). 4) The labels of vertices in N2(vq, q) is
a subset of those of N2(vG, G). In the last step, the bloom filter
B is employed. Each label in N2(vq, q) is hashed via the m hash
functions and check whether the corresponding bits in B of vG
are 1. After this step, each vq is associated with a set of matched
vertices in G, denoted as M(vq).

The total time complexity in this step is O(d2m|V (q)||V (G)|)
where d, m, |V (q)|, and |V (G)| are the maximum of the average
degree of G and q, the number of hash functions for the bloom
filter, the number of vertices in q, and the number of vertices in
G, respectively. There are some false positives in the fourth step
due to the bloom filter. The total false positive rate is 1− (1− e)l

where e and l are the false positive rate of determining whether
one element is in the bloom filter and the number of distinct labels
in N2(vq , q), respectively. This is because if any label out of the
l labels is reported as a false positive by the bloom filter of vG,
then vG is a false positive match of vq . If e and l are 0.01 and 10,
then the total false positive rate is less than 0.1. Since the vertex
matching is to find a candidate set of matches for a vertex in q, the
false positive rate is well in the tolerance.

5.2 Random Spanning Tree Generation and
Matching

Although matches for vertices have been discovered, these matches
are determined based on the local information (within a 2-edge dis-
tance). It is possible that some of these matches are false posi-
tives. Therefore, more information needs to be used to prune the
matches. Since our ultimate goal is to find matches for all graphs
in AI(q, θ), it is desirable to use the global information existing in
a large number of the graphs of AI(q, θ). All graphs in AI(q, θ)
are θ or less edge edit distance away from q, and hence they are
heavily overlapped. Therefore, spanning trees of q will be used
for the global information because graphs in AI(q, θ) would share
many spanning trees. In addition, we want each edge in q to have
the same probability to be selected into a spanning tree. This could
ensure that each graph in AI(q, θ) would contain a similar number
of spanning trees, and thus have a similar amount of pruning power.

A random spanning tree T of q has the following property: each
edge e in q has the same probability to be selected into T [1]. For
a graph q with vertices V (q) and edges E(q), a random spanning

tree T of q is constructed via a random walk. A random walk on q
is a discrete-time Markov chain with the following transition prob-
abilities from a vertex v to another vertex w: P (v,w) = 1/dv (dv
is the degree of vertex v) if there is an edge from v to w. Otherwise,
P (v, w) = 0. Initially, a vertex v0 ∈ V (q) is randomly chosen as
the starting point and the spanning tree T only contains vertex v0.
The random walk starts at v0. An edge (v, w) is randomly chosen
based on the probability P . If w is not in T , edge (v, w) and w are
inserted into T. Otherwise, no edge will be added into T . Next the
walk is repeated on w. This process terminates until T includes all
vertices of Vq . The formal random tree construction algorithm is
described in Algorithm 1 in Appendix and an example is depicted
in Figure 3. In the example, at time step t0, T only includes v0 and
no edge. In t1 time stamp, the edge (v0, v1) and v1 are added into
T and T contains vertices v0, v1, and one edge. At the time stamp
t2, no edge or vertex is added into T since the random walk is back
to v0. At t3, the edge (v0, v2) and vertex v2 are added into T and a
spanning tree is formed.
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Figure 3: The Random Spanning Tree Generation

A tree generated by this random walk algorithm is a uniform
random spanning tree, i.e., the probability of a spanning tree t of a
graph q to be generated by Algorithm 1 is 1/TN(q), where TN(q)
is the number of distinct spanning trees of q. This can be proved
by showing that the set of trees constructed by a random walk has a
stationary distribution proportional to the degree of the vertex from
which it starts. The detailed proof was presented in [1].

In this step, we generate |V (q) + 1| random spanning trees so
that (1) each edge has 85% probability to be included in at least
one of the spanning trees and (2) the complexity is still not too
large. A vertex v in q is randomly chosen as the prime vertex. For
each generated spanning tree T , we find its matches in G based on
the vertices match. The matching starts from the prime vertex v in
T and tries to match v’s neighbors in T . For example, let’s assume
that v’s matches in G are M(v) = {u1, u2} and v is connected
to v1 in T . Then we try to see whether v1 matches to any neigh-
bor of u1 or u2 in G. In other words, we want to see whether any
neighbor of u1 or u2 is in M(v1). If v1 only could be matched to
some neighbor of u1, but not any neighbor of u2, we know that u2

could not be a match to v for the occurrence of T in G and hence,
u2 could be removed from the match for v of T . The process con-
tinues until all matches of T are located. The matching process is
performed in a depth-first traversal manner. Since the tree is a very
special form of a graph, the match of a tree in G is rather efficient
and simple. Due to the space limitations, we omit the details of
tree matching in this paper. After the matching process for T , the
prime vertex v has a set of matched vertices in G for T . M(v, Ti)
is denoted as the set of vertices in G that could be matched to the
prime vertex v for the query graph Ti. For example, in Figure 5, v



has label 3 in the query graph, then M(v, T1) = {5, 10} (circled
by the solid ellipses), where 5 and 10 are the ids of the mapped
vertices of v in the two matches of the spanning tree T1. Since
there are |V (q) + 1| spanning trees, there are |V (q) + 1| sets of
M(v, Ti). These matched sets of v serve as the starting point for
the later graph matching.

Given a query graph q, and threshold θ, there are approximately(|E(q)|
θ

)
subgraphs of q of |E(q)| − θ edges. After generating

|V (q)|+1 spanning trees, a subgraph of q with |E(q)|−θ edges has
the probability P to contain at least one of these random spanning
trees, where P is

P = 1− (1− (
|E(q)| − θ

|E(q)| )|V (q)|−1)|V (q)|+1.

For instance, if q consists of 10 vertices and 20 edges and θ is 2, P
would be larger than 0.995. This means that most of these graphs
could utilize the match information of the spanning trees.

5.3 Query Graph Enumeration Order
Since there are many graphs in AI(q, θ), we need devise an

order on enumerating these graphs. This problem is similar to
that of frequent pattern mining in the data mining field. There
are two main approaches to enumerate patterns in frequent pattern
mining: breadth-first enumeration and depth-first enumeration. In
the bread-first enumeration [2], all patterns (graphs) with i items
(edges) are first enumerated. Based on the occurrences (matches)
of these pattern (graphs), their super-patterns (super graphs) with
one extra item (edge) are enumerated and so on. In the depth-first
pattern (graph) enumeration [10], one pattern (subgraph) is gener-
ated first, if it has sufficient occurrences (matches), one item (edge)
is added into the pattern (subgraph), and the occurrences (matches)
of the new pattern is searched and so on. It has been shown that
the depth-first enumeration has an advantage over the breadth-first
search because in a depth-first search, (1) pattern generation is sim-
pler and more efficient, (2) the match of a pattern can be directly
built on its predecessor, and (3) many patterns are not enumerated.
Based on this knowledge, we devise a depth-first enumeration of
our graphs in AI(q, θ).

We assign a unique id to each edge in q and a lexicographical
order is assumed on these edge ids. Assume that there are z edges
in q, whose ids are e1 < e2 < · · · < ez according to the lexico-
graphical order. (We will discuss how to assign the lexicographi-
cal order shortly.) Thus, each graph in AI(q, θ) can be uniquely
represented by a sequence of edges (sorted according to the lexico-
graphical order of the edges). The order of two distinct graphs q′

and q′′ in AI(q, θ) can be determined based on their correspond-
ing edge lists. Let edge lists of q′ and q′′ be e′1, e

′
2, . . . , e

′
i and

e′′1 , e
′′
2 , . . . , e

′′
j . respectively. If one sequence is a prefix of another,

e.g., q′ is a prefix of q′′, then we define q′ < q′′. Otherwise, there
exists an integer k (k ≤ i and k ≤ j) such that e′k �= e′′k , then
the order of q′ and q′′ can be determined as follows. Let k be the
smallest integer such that e′k �= e′′k . q′ < q′′ if and only if e′k < e′′k .

By defining the lexicographical order of graphs, the graphs in
AI(q, θ) can be enumerated in a depth-first manner from the lex-
icographically smallest to the lexicographically largest. First, the
edge sequence (graph) with the smallest lexicographical order q1
is enumerated, which is e1, e2, . . . , el (l = |E(q)| − θ). If q1 has
at least one match, then an edge with the smallest lexicographical
order after el is appended into q1 to form a new graph q2 as de-
scribed in Algorithm 2 in Appendix. (This procedure is illustrated
as next in Figure 4.) This process continues on q2 until no edge can
be appended into q2 or there is no match for q2. In such a case,
it is not necessary to enumerate any edge sequences containing q2

as a prefix. The enumeration process will resume from the lexi-
cographically smallest graph that does not contain q2 and is larger
than q2. This procedure is described in Algorithm 3 in Appendix.
(This procedure is illustrated as jump in Figure 4.)

Let’s take a look at an example. Assume that q consists of four
edges e1 < e2 < e3 < e4 and θ = 2. The lexicographically
smallest graph in AI(q, θ) is (e1, e2). If (e1, e2) has at least one
match, then e3 is appended and (e1, e2, e3) will be enumerated
next. In the case of (e1, e2, e3) has no match, then any sequence
whose prefix is (e1, e2, e3) will not be enumerated, namely the se-
quence (e1, e2, e3, e4). Next, the lexicographically smallest graph
that does not contain (e1, e2, e3) as a prefix and is larger than
(e1, e2, e3) is enumerated, which is (e1, e2, e4). Figure 4 shows the
enumeration order of graphs in this example. The graphs are enu-
merated from a top-down and left-to-right fashion. In this method,
each graph in AI(q, θ) will be enumerated or reached at most once.
Thus, at most AI(q, θ) graphs will be enumerated under this method.

e1e2

e 1e 2e 3 e 1e 2e 4

e 1e 2e 3e 4

next

pruned

e 1e 3

jump

e 1e 3e 4

e 1e 4 e 2e 3 e 2e 4 e 3e 4

e 2e 3e 4

next next next

jump jump jump jump

Figure 4: The Enumeration Order

Although any lexicographical order among edges will work, our
goal is to prune the graphs in AI(q, θ) as early as possible. As a
result, it is beneficial to search the graphs with the smallest number
of matches first so that it can prune the graphs in AI(q, θ) the most.
Therefore, the lexicographical order of edges is set according to
the number of matches of each edge. ei < ej if edge ei occurs
less times in G than ej . If two edges have the same number of
occurrences/matches, than an order is assigned arbitrarily.

5.4 Graph Matching
After determining the enumeration order of query graphs, we

continue to match these graphs in the enumeration order. When
matching a graph q1, there are two cases: q1 is connected and q1 is
not connected. In the case that q1 is not connected, it is not neces-
sary to find matches of q1 since we are only interested in connected
query graphs. However, it is possible that some supergraph of q1
is connected. Thus, we pretend there is a match of q1 (without
searching for the matches of q1), and continue to enumerate the
supergraphs of q1 by appending an edge to q1.

In the second case that q1 is connected, we need to find matches
of q1 in G. The matching process can be divided into two cases
again according to q1, (1) we have not yet searched any prefix of
q1 and (2) we have found match(es) of some prefix of q1. In the
first subcategory, since q1 is very likely to contain at least one pre-
generated spanning tree. Thus, the matching of q1 often could start
from the spanning trees. In the rare scenario that q1 does not con-
tain any randomly generated spanning tree, the match has to start
from the vertex matches without the help of the spanning trees. The
vertices are matched in a depth-first order. To match a database
graph vertex vg and a query graph vertex vq , we require that (1)
vg is in M(vq) and (2) for each edge adjacent to vq in q (vq, uq),
there exists a vertex ug such that the edge label of (vg, ug) is the
same as (vq , uq) and ug is matched to uq . This process is similar



to other existing graph matching algorithms, e.g., GADDI [24] and
hence we will not present it here due to the space limitations.

When q1 contains at a least one spanning trees, the following
procedure is employed. First, the spanning trees contained by q1
will be identified via the edges in q1 and those contained in the
spanning trees. Assume q1 contains r spanning trees T1, T2, . . . , Tr.
Each match of q1 has to contain at least one occurrence of T1, T2,
. . . , and Tr. Therefore, the matched vertices of the prime ver-
tex v for q1 should be in M(v, Ti) for all 1 ≤ i ≤ r. Thus,
M(v, q1) = ∩r

i=1M(v, Ti) will serve as the starting point for find-
ing the matches of q1 in G. Based on the match set of M(v, q1),
we search for the matches of q1’s neighbors and so on. After find-
ing the matches of q1. For each match of q1 in G, we keep the
mapping from the vertices in the match of q1 to vertices in q1. Fig-
ure 5 shows an example of matching q1 based on the matches of
the spanning trees. We can see that M(v, T1) = {5, 10} (circled
by the solid ellipses) and M(v, T2) = {8, 10} (circled by the dot-
ted ellipses). The intersection of the two sets is {10}, which is the
starting point to match q1.
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Figure 5: Matching q1 based on the matches of the spanning
trees q1 contains

In the second sub-category, matches of some of q1’s prefix have
been discovered. Let q2 be the longest prefix of q1 such that the
matches of q2 have been identified. Also denote that e1, e2, . . . , ei

be the edges in q1, but not in q2. For each match of q2, we check
whether e1, e2, . . . , ei exist in G. If so, this will be a match of q1.
Otherwise, this match of q2 could not be extended to a match of q1.
This process continues until all matches of q2 are examined. The
formal algorithm is described in Algorithm 4. Figure 6 depicts an
example of matching q1 based on its subgraph q2 corresponding to
the longest prefix of q1. Then when matching q1, we only need to
check the matches of q2.
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Figure 6: Matching q1 based on its subgraph q2

Although the SAPPER algorithm employs approximation to ac-

celerate the matching process, it can find all matches to the graphs
that are approximately isomorphic to a query graph. Due to the
space limitations, the proof is in the Appendix. It is difficult to de-
termine the exact time complexity of the SAPPER method since it
depends on how many graphs in AI(q, θ) are enumerated. Since
the subgraph isomorphism test is an NP-hard problem, the worst
case time complexity is exponential. We will empirically analyze
the time efficiency and scalability of the SAPPER method in the
next section.

6. EXPERIMENTAL RESULTS
In this section, we empirically analyze the performance of SAP-

PER against TALE, GADDI, two of the most recent subgraph match-
ing tools that designed for large graphs, and Basic SAPPER (BSAP-
PER). TALE is efficient in index construction and heuristically finds
the approximate matches of the query graph. GADDI enumerates
all possible approximate isomorphic graphs (AI(q, θ)) of the query
graph and finds all exact matches for each of these graphs. To show
the pruning power of the random spanning trees and lexicograph-
ical order, we also include BSAPPER in the comparison results.
BSAPPER employs the same indexing structure as SAPPER, but it
differs from SAPPER in the following two aspects. (i) BSAPPER
does not use spanning trees. (ii) BSAPPER uses a breadth-first
enumeration order similar to the level-wise search algorithm in [2].
In the first level, all the graphs θ edge edit distance away from
the query graph q are enumerated and queried. Next it enumerates
graphs θ − 1 edge edit distance away in the second level, a graph
will be enumerated in the second level if there exists at least one
match for all its subgraphs in the first level. This process contin-
ues until either the level containing q or no graph can be enumer-
ated based on the subgraph property. The performance difference
between BSAPPER and SAPPER is essentially the effects of the
random spanning trees and the lexicographical order query graph
enumeration while the performance difference between BSAPPER
and GADDI is the effects of the bloom filters. All methods are
implemented with C++ and run on a Dell PowerEdge 2950, with
two 3.0 GHZ dual-core CPUs and 16 GB main memory, and Linux
2.6.16.21-0.8-smp system.

6.1 Protein Interaction Network
In this set of experiments, the graph is generated from a subset

of the protein interaction network for homo sapiens. Each vertex
represents a protein and the label of the vertex is its gene ontology
term from [25]. An edge in the graph represents an interaction be-
tween the two proteins it connects. There are 6410 vertices, 53844
edges, and the average degree of a vertex is 16.8. There are a total
of 632 distinct labels.

SAPPER spends about 25 minutes to construct an index of 60MB,
while TALE spends 10 minutes to construct an index of 15MB, and
GADDI spends 35 minutes to construct an 100MB index. As SAP-
PER processes more information than TALE, it takes more time to
construct the index. Since we only need to build an index struc-
ture for each database graph once, the query time is much more
important than the index building time.

To evaluate these four methods, we use eight known signal trans-
duction pathways from the KEGG database [13] to query the pro-
tein interaction network. These known pathways are from species
other than homo sapiens, e.g., flies and yeast, etc. Since some pro-
tein interaction only exists in yeast or flies and does not exist in
human, there are missing edges in the homo sapiens protein interac-
tion network. If θ is set to 2, all eight signal transduction pathways
should be recovered in our homo sapiens protein interaction net-
work. Thus, we use these eight pathways as the query graphs and



set θ to 2. SAPPER, BSAPPER and GADDI find all these eight
pathways successfully. Among these three methods, SAPPER is
much faster than the remaining two due to its advanced pruning
techniques. Since TALE is a heuristic algorithm, it only finds two
out of these eight pathways. Although TALE runs very fast, its ac-
curacy (e.g., recall) is not high. The execution time of SAPPER,
BSAPPER, GADDI, and TALE is shown in Figure 7. The num-
ber of vertices on the eight known pathways are 9, 10, 11, 12, and
14. Thus, we report the average execution time with respect to the
number of vertices in each query graph.

Figure 7: The Performances of the Queries on a Protein Inter-
action Network

6.2 Synthetic Data Sets
In this portion of the experimental studies, we analyze the per-

formance of SAPPER, BSAPPER and GADDI by independently
varying each of six parameters on a set of synthetically generated
graphs. We do not include TALE because although it can efficiently
finish the queries, only around 20% of all the approximate matches
are discovered by TALE as shown in the real data set. To system-
atically analyze the performance of these methods, we vary one
parameter at a time. The default values of the parameters are listed
in Table 1.

Table 1: Default Parameter Value
Parameter Default Value

Number of vertices in G 5000
Number of vertices in q 20

Number of Labels 250
θ 1

Average Degree of G 8
Average Degree of q 4

The index construction comparisons are shown in in Figure 8.
We first vary the number of vertices in G. GADDI needs more time
to construct the index than SAPPER because it needs to calculate
the NDS distances for neighboring vertices. Due to the nature of the
compactness of the bloom filter, the size of the index of SAPPER
is consistently smaller than that of GADDI. When the number of
vertices in G is 10,000, SAPPER takes around 18000 seconds to
build an 80 MB index. Next, we vary the average vertex degree
of G. This affects SAPPER more on the index construction time

since the number of 2-hop neighbor vertices grows exponentially
with respect to the average degree.

(a) Index Construction Time (b) Index Size

(c) Index Construction Time (d) Index Size

Figure 8: Comparisons of the Indices

Now the average query time of these 3 methods on different pa-
rameters are analyzed. The first parameter is the number of ver-
tices in G. The |V (G)| is varied from 200 to 10,000. SAPPER and
BSAPPER achieve better matching efficiency than GADDI as they
can quickly match vertices by the index and optimize the approxi-
mation matching process. SAPPER outperforms BSAPPER due to
the effectiveness of the random spanning trees and lexicographical
order pruning techniques. The results are shown in Figure 9(a).

Next we vary the number of vertices in the query graph q. We
show the result in Figure 9 (b). With more vertices in q, more ver-
tices and edges need to be compared in the query process, so the
query times of all three methods increases. The increase is more
evident with |V (q)| ≥ 40, as the methods need to find all approxi-
mate matches, especially GADDI, which processes more candidate
graphs for large query graph without pruning techniques.

The third parameter we vary is the number of distinct labels.
From Figure 9 (c), we can see that more labels in G increases the
pruning power of GADDI, but has a mixed effect on SAPPER. This
may be due to the fact that SAPPER only indexes a subset of labels
of neighboring vertices. Increasing the number of distinct labels
reduces the number of candidate matches between any pair of ver-
tices in G and q, but also decreases the pruning power of SAPPER’s
index.

The approximate threshold parameter θ is varied and the results
are shown in Figure 9 (d). With the increase of θ, the query time of
SAPPER is still less than GADDI and BSAPPER because GADDI
needs to generate all possible candidate graphs, whose number in-
creases dramatically with θ. On the other hand, due to the use of the
advanced pruning techniques, the query time of SAPPER increases
at a slower pace.

The fifth parameter we vary is the average degree of G and the
results are shown in Figure 9 (e). The high degree in G means more
edges have to be examined when matching a pattern and basically
the query time of these three methods grows at a similar rate.

Last we vary the average degree of a vertex in q. The results are
shown in Figure 9 (f). It is obvious that the higher average degree



(a) |V (G)| (b) |V (q)|
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Figure 9: Query Time on Different Parameters

of q is, the more information that q possesses for pruning vertices in
G. However, a high vertex degree will also generate more potential
candidate query graphs since the number of candidate query graphs
is exponential to the average degree of q. When the average degree
of q is 2, there are few edges to be examined and all algorithms
are efficient. When the average vertex degree of q is larger than 6,
the number of edges that need to be compared grows exponentially,
which results in GADDI’s long response time.

The main difference between TALE and SAPPER is the accu-
racy. TALE is a heuristic method which does not find all approx-
imate matches of a pattern while SAPPER is an exact method to
find the complete set of the approximate matches. Thus, if the goal
is to take a quick look of the approximate matches of any query
graph in the database, TALE is an efficient and convenient tool. On
the other hand, SAPPER is a better choice if the complete set of
approximate matches needs to be retrieved. The main difference
between GADDI and SAPPER is the efficiency. Although GADDI
can find all approximate matches by enumerating all approximate
isomorphic graphs of the query graph, this is a very time consum-
ing process. The performance of BSAPPER is between GADDI
and SAPPER since it utilizes the bloom filter to match vertices and
the subgraph property to prune query graphs without the help of
the random spanning trees and lexicographical order. Therefore,
when the goal is to discover all approximate matches, SAPPER is
preferred.

7. CONCLUSION
Due to the existence of noises (e.g., missing edges) in the large

database graph, we are investigating the problem of approximate
subgraph indexing, i.e., finding the occurrences of a query graph in

a large database graph with (possible) missing edges. In this paper,
we have proposed a subgraph indexing and matching method (SAP-
PER) to find all approximate matches of a query graph. SAPPER
constructs the HNU index to accelerate query processing. During
the query time, SAPPER improves matching efficiency by using
pre-generated random spanning trees and a lexicographical query
graph enumeration order. To the best of our knowledge, this is the
first attempt to find the complete set of approximate matches in a
single large graph. With a large set of real and synthetic data, we
demonstrate that the SAPPER approach can outperform the alter-
native methods in accuracy while achieve a good efficiency.
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APPENDIX

A. FORMAL ALGORITHM DESCRIPTION

Algorithm 1 Generating Random Spanning Tree
Input: graph q.
Output: a Random Spanning Tree t of q.

1: Construct transition matrix P from q.
2: Vertex set S ← ∅, edge list E ← ∅.
3: randomly select a vertex X0 of q.
4: S ← S +X0.
5: v ← X0.
6: while S < |V (q)| do
7: randomly select vertex w by P , evw exists.
8: if !w ∈ S then
9: E ← E + evw

10: S ← S + w
11: end if
12: v ← w
13: end while
14: Output the graph composed of edge list E.

Algorithm 2 LEXI Next
Input: sequence s1, edge list EL = {e1, ..., el}, threshold θ.
Output: the next sequence of s1.

1: L← Length(s1)
2: if s1(L) < el then
3: ex ← s1(L)
4: return Sequence s1(1), ...., s1(L)ex+1

5: end if
6: LEXI JUMP(s1,EL, θ)

Algorithm 3 LEXI Jump
Input: sequence s1, edge list e1, ..., el, threshold θ.
Output: the next sequence of s1 which is not a super-sequence of s1.

1: if ∃i, s.t. s1(i) < el−(L−i) then
2: x← MAX{i : s1(i) < el−(L−i)}
3: et ← s1(x)
4: if x ≥ l − θ then
5: return Sequence s1(1), ..s1(x− 1)et+1

6: end if
7: return Sequence s1(1), ..s1(x− 1)et+1et+2...et+l−θ−x

8: end if
9: return end

B. PROOF OF CORRECTNESS OF SAPPER
The proof of the correctness of SAPPER is divided into two

parts. First, we prove that given a query graph q, a database graph
G, and an approximation threshold θ, for every connected graph s
where Diste(s, q) ≤ θ and there exists at least one match of s in
G, SAPPER will enumerate s (described in Section 5.3). Second,
we want to prove that if s is enumerated in Section 5.3, all of its
matches in G will be discovered.
Lemma 1: SAPPER enumerates every candidate graph s of query
graph q such that Dedit(s, q) ≤ θ and s has at least one exact
match in G.
Proof: The lexicographical order enumerates every graph s′ such
that Dedit(s

′, q) ≤ θ in a depth first style. When we find that
such a graph (denoted as s′′) does not have any exact match in the
database graph, we perform a jump procedure. The graphs we skip
are all supergraphs of s′′, which cannot have any exact match in
the database graph, and hence are not candidate graphs. Therefore,

Algorithm 4 Algorithm SAPPER
Input: database graph G, query graph q, threshold θ.
Output: approximate matches of q.

1: Sort q’s edges decreasingly by their number of matches in G, l ←
|E(q)|

2: edge list EL← e1, ..., el, (∀i, ei ∈ q).
3: s← e1, ..sl−θ
4: while s �= end do
5: if The graph corresponding to the longest prefix of s is not matched

yet then
6: Find and output the exact matches of g(s) with the help of

matches of the spanning trees if it contains any
7: else
8: Find and output the exact matches of g(s) according to the

matches of the graph corresponding to the longest prefix of s
9: end if

10: if g(s) has no match then
11: s← LEXI JUMP(s,EL, θ)
12: else
13: s← LEXI Next(s, EL, θ)
14: end if
15: end while

we enumerate all candidate graphs s of query graph q such that
Dedit(s, q) ≤ θ and s has at least one exact match in G.
Lemma 2: SAPPER finds all exact matches of any candidate graph
s.
Proof: For a candidate graph s, if we have not yet searched for
any prefix of s and s does not contain any pre-generated random
spanning trees, then we would perform a depth first matching for s,
which will not miss any exact match of s. Otherwise, we start the
search from either the matches of the prefix candidate graph of s or
the intersection of matches of the pre-generated random spanning
trees contained by s. Either the prefix candidate graph of s or a
pre-generated random spanning tree contained by s is a subgraph
of s. Since any exact match of s must contain at least one exact
mach of any subgraph of s based on Property 1, we will not miss
any exact match of s in this scenario either. Therefore, SAPPER
can find all exact matches of any candidate graph s.
Theorem 1: SAPPER finds all approximate matches of query graph
q.
Proof: From Lemma 1, we prove that SAPPER can enumerate all
candidate graphs of the query graph. From Lemma 2, we prove
that for any candidate graph s, SAPPER finds all matches of s.
By the definition of approximate matches, SAPPER can find all
approximate matches of q.

C. EDGE ADDITIONS/DELETIONS AND
DISCONNECTED MATCHES

In this paper, we focus on approximate matches with the follow-
ing two restrictions: (1) the match has to be connected and (2) only
edge additions but not edge deletions are consider ed. The ratio-
nale behind these two restrictions are the following. If unconnected
matches are considered, there could be too many of these matches.
Moreover, these unconnected matches may not be useful in many
applications. Thus, in this paper, we focus on finding connected
matches.

Edge deletions could be as important as edge additions. In most
cases, a match with edge deletions is a super-graph of some other
approximate matches. For instance, if g2 can be obtained by delet-
ing some edge from g1, then g1 has to contain g2. For an approxi-
mate match g2, if the edit distance between g2 and the query graph
q is less than θ, then by adding different edges to g2, a (potential)
large number of matches will be discovered and all these matches



contain g2 as a subgraph. These matches may not be interesting to
users.

However, there is only one exception: g2 is unconnected. For
example, assume that the query graph q is a− b− c−d and θ = 2.
The graph c − d − a − b can be considered as an approximate
match of q (deletion of edge d − a and addition of edge b − c).
Since unconnected matches are not discovered by SAPPER, this
type of matches could not be retrieved.

Assume that both edge additions and deletions are allowed in our
approximate match model. Let g be an approximate match of q in
the new model. g can be transformed to q by adding a set of edges
E1 and deleting a set of edges E2. The core of a match g is defined
as a graph of g − E2. By addition edges in E1 to the core of g,
we will recover the query graph q. For example, in the previous
example, the core of c− d− a− b is a− b, c− d (E1 = {b− c}
and E2 = {d− a}). All approximate matches of q can be divided
into two categories according to their cores: connected cores and
unconnected cores.

For matches with connected cores, their cores (subgraphs) will
be discovered by SAPPER, and therefore, it is very easy to discover
these matches by extending from their connected cores. Since SAP-
PER does not discover unconnected approximate matches, locating
matches with unconnected cores is more complicated. If discover-
ing these matches is useful, the following method can be used. In
the case that removing at most θ − 1 edges from q, and q becomes
a set of disconnected components, we need locate the matches for
each unconnected component of q. Next we examine whether the
matches of these unconnected components can be linked together
by inserting edges. If so, an approximate match is discovered.
There could be more optimization techniques. For example, dif-
ferent cores may share some same unconnected components. By
locating the matches of a component in multiple cores, it can save
a significant amount of computation time. The optimization tech-
niques for discovering approximate matches with unconnected cores
is complicated and could be a future research direction. Thus, we
will not elaborate more in this paper.

D. NDS VS. BLOOMING FILTER
There are three main contributions on SAPPER: Blooming filter

data structures representing the neighborhoods of a vertex, random
spanning trees, and enumeration order of candidate query patterns.
It is possible to extend GADDI to approximate subgraph matching
with the random spanning trees and the query pattern enumeration
order. We call this extended GADDI as GADDI2. The main differ-
ence between GADDI2 and SAPPER is how the neighborhoods of
a vertex is represented. In SAPPER, the bloom filter is used while
in GADDI2, the index of neighborhood discriminative substruc-
tures (NDS) is employed. NDS is usually much larger than that of
blooming filter as shown in Figure 8. When the indexing structures
can be stored in the main memory, then NDS has a better pruning
power than bloom filters with about 10% execution time improve-
ment. However, when the database graph is very large, the NDS
may not be fit in the memory and thus the thrashing may occur.
As a result, the execution time of GADDI2 could become much
larger than that of SAPPER with large database graphs as shown in
Figure 10.

Figure 10: The Performance Comparison Involved with
GADDI2


