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A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing
rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm
and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully created and the
exchange of vibration energy is existent. Due to the inertial coupling, the damping enhancement effect is revealed. Via the inertial
coupling, vibration energy of the flexible arm can be dissipated by not only the damping of the vibration absorber but also its own
enhanced damping, thereby effectively decreasing vibration. Through numerical simulations and analyses, it is proven that this
method is feasible in controlling nonlinear vibration of the flexible arm undergoing rigid motion.

1. Introduction

Although flexible robotic arms have various important appli-
cations in space exploration, automatic assembly, undersea
operation, nuclear environment, and so forth, major possible
disadvantages of these arms are serious vibration response
and deteriorative tracking accuracy due to large dimension,
light weight, low structural damping, and small stiffness.
Therefore, a great deal of research has been conducted to
combat these problems.

Some traditional methods have been used to control
vibration, like enhancing the stiffness of links and joints,
optimizing shape and dimensions [1, 2], and utilizing com-
posite materials [3, 4]. In recent years, a number of active
control methods are put forward, most of them employ such
smart material actuators as the piezoelectric ceramic and
shapememory alloy, and remarkable progress has beenmade
[5, 6]. In addition to these vibration suppression methods,
vibration absorption methods are especially useful to the
large amplitude vibration with strong energy. However, since
large amplitude can unavoidably excite nonlinear effects in
the dynamic system,manymethods based on linear vibration
model may cause fundamental mistakes. In fact, although
the nonlinearity can increase the analysis difficulty, modal

interaction caused by the nonlinearity can be used to migrate
and dissipate strong vibration energy of the flexible arm.

Internal resonance is a typical nonlinear principle.
Through modal interaction, vibration energy of one mode
can be transferred to another mode which is commen-
surable or nearly commensurable with the former [7, 8].
Golnaraghi [9] firstly used internal resonance to decrease
structural vibration of a flexible cantilever beam. By properly
tuning the position gain, internal resonance was established
between the beam and the slider. And the beam vibration
was decreased by migrating and dissipating its vibration
energy through the slider motion. Tuer et al. [10] proposed
Disabled Torque Method (DTM) and Dissipated Energy
Method (DEM) to control a flexible cantilever beam based
on internal resonance. Afterwards, Oueini and Golnaraghi
[11] finished an experimental study and built a controller with
analog electronic components. Furthermore, Khajepour et al.
[12] used center manifold theory to control vibration of the
flexible beam.However, the flexible cantilever beam they have
researched is a rigid beam connected by a linear torsional
spring. This simplified model is not suitable for the long
and thin arm which should be represented by a distributed
flexibility model.
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Figure 1: Model of the flexible arm with a vibration absorber.

In recent years, the above studies have been extended to
control vibration of the distributed flexible beam. Pai et al.
[13] used a higher order internal resonance absorber to
decrease vibration of a cantilevered aluminum plate. Ashour
and Nayfeh [14] designed an active vibration controller for a
flexible structure based on internal resonance and saturation
phenomenon. Yaman and Sen [15] studied vibration absorp-
tion problem concerning a cantilever beam with a tip mass
and pendulum which is attached to the tip mass. Hui et al.
[16] used the internally resonant energy transfer from the
symmetrical to antisymmetrical mode to reduce the source
mass vibration. But these studies only deal with the flexible
cantilever beam without rigid motion, but do not involve
the flexible arm undergoing large scale joint motion which
exhibits much more complex dynamic behaviors.

To the best of our knowledge, there is little research on
controlling vibration of the flexible arm based on energy
migration. In this paper, a type of vibration absorber is
suggested and gives rise to the inertial coupling between the
modes of the flexible arm and the absorber. By analyzing 1 : 2
internal resonance, it is proved that the internal resonance
can be successfully created and the exchange of vibration
energy is existent. Furthermore, due to the inertial coupling,
the damping enhancement effect is revealed. Via the inertial
coupling, the damping of the vibration absorber can be
mapped into the flexible arm, thus increasing the damping
effect of the flexible arm. In this way, vibration energy of the
flexible arm can not only be dissipated by the damping of the
vibration absorber based on the internal resonance but also be
attenuated by its own enhanced damping, thereby effectively
decreasing vibration.

2. Oscillatory Differential Equation

In this study, a model with one flexible arm, one rigid joint,
and a vibration absorber is considered, as shown in Figure 1.
The arm is a uniform Euler-Bernoulli beam with the length 𝑙,
the rectangle cross section of height ℎ, and width 𝑏 and a tip
mass 𝑚

𝐵
. Only flexural deformation 𝛿(𝑥1, 𝑡) about 𝑦1 axis is

considered, where 𝑡 is time. The arm rotates around the rigid

joint, and the nominal motion is denoted by 𝑞. The vibration
absorber is a slider mass-spring-dashpot mechanism with
mass 𝑚, stiffness 𝑘2, and damping 𝑐2 and attached to the
flexible arm at 𝑥1 = 𝑟. The mass displacement is denoted by 𝑠
and equilibrium position is denoted by 𝑠

𝑎
.

Based on the assumed-modes theory, the deformation of
the flexible arm can be expressed as

𝛿 (𝑥1, 𝑡) =
𝑛𝐹

∑

𝑖=1
𝑢
𝑖
(𝑥1) 𝜑𝑖 (𝑡) , (1)

where 𝜑
𝑖
(𝑡) is the 𝑖th modal coordinate describing deforma-

tion of the flexible arm, 𝑢
𝑖
(𝑥1) is the 𝑖thmode shape satisfying

certain geometric and force boundary conditions, and 𝑛
𝐹
is

the number of flexural degrees of freedom of the flexible arm.
In present study, only the fundamental mode of the arm

is considered due to its most contribution to the vibration
response in common cases. Equation (1) can be written as

𝛿 (𝑥1, 𝑡) = 𝑢1 (𝑥1) 𝜑1 (𝑡) . (2)

The angle of the tangent of the flexible arm at 𝑥
1
= 𝑟

with respect to 𝑥
1
axis is denoted by 𝛽, as shown in Figure 1.

Consider

𝛽 = 𝛽
𝑟
𝜑1 (𝑡) , (3)

where 𝛽
𝑟

= (𝑑𝑢1(𝑥1)/𝑑𝑥1)|𝑥1=𝑟. The axial displacement
caused by the transverse bending of the arm is written as

𝜅 (𝑥1) = −
1
2
∫

𝑥1

0
(
𝜕𝛿 (𝜗, 𝑡)

𝜕𝜗
)

2
𝑑𝜗 = −

1
2
𝐵1𝜑

2
1 , (4)

where 𝜗 is a dummy variable and 𝐵1 = ∫
𝑥1

0 (𝑑𝑢1/𝑑𝜗)
2
𝑑𝜗.

To use the absorber for reducing vibration response that
resulted from the fundamental mode of the arm, the coupling
effect between the fundamental mode coordinate 𝜑1 of the
arm and the degree of freedom 𝑠 of the absorber is our
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concern. Based on Kane’s method, the dynamic equations
concerning 𝜑1 and 𝑠 are derived and can be written as

𝑚11𝜑̈1 +𝑚12 ̈𝑠 + 𝑐11𝜑̇1 + (𝑘11 + 𝑏1 ̈𝑞) 𝜑1 + 𝑘12 ̈𝑞𝑠

= − 𝑏2𝜑̇1 ̇𝑠 − 𝑏3𝜑̇
2
1 − 𝑏4𝜑̈1𝜑1 − 𝑏2𝜑̈1𝑠 − 𝑏5 ̈𝑞 − 𝑏6 ̇𝑞

2

+𝑓1 (𝜑1, 𝜑̇1, 𝜑̈1, 𝑠, ̇𝑠, ̈𝑠, ̇𝑞, ̈𝑞) ,

𝑚22 ̈𝑠 +𝑚21𝜑̈1 + 𝑐22 ̇𝑠 + 𝑘22𝑠

= 𝑏7𝜑̇
2
1 − 𝑏8 ̈𝑞 + 𝑏9 ̇𝑞

2
+𝑓2 (𝜑1, 𝜑̇1, 𝜑̈1, 𝑠, ̇𝑠, ̈𝑠, ̇𝑞, ̈𝑞) ,

(5)

where𝑚11 = 𝐵2+𝑚𝐵𝑢
2
1𝑙+𝑚𝑠

2
𝑎
𝛽
2
𝑟
+𝑚𝑢

2
1𝑟; 𝐵2 = 𝜌∫

𝑙

0 𝑢
2
1(𝑥1)𝑑𝑥1;

𝑢1𝑙 = 𝑢1(𝑥1)|𝑥1=𝑙; 𝑢1𝑟 = 𝑢1(𝑥1)|𝑥1=𝑟; 𝑚12 = 𝑚𝑢1𝑟; 𝑐11 is the
damping of the arm; 𝑘11 = 𝐸𝐼 ∫

𝑙

0(𝑑
4
𝑢1(𝑥1)/𝑑𝑥1

4
)𝑢1(𝑥1)𝑑𝑥1;

𝑏1 = 𝑚𝑠
𝑎
(𝐵1𝑟 − 𝑟𝛽

2
𝑟
); 𝐵1𝑟 = 𝐵1(𝑥1)|𝑥1=𝑟; 𝑘12 = 2𝑚𝑠

𝑎
𝛽
𝑟
;

𝑏2 = 2𝑚𝑠
𝑎
𝛽
2
𝑟
; 𝑏3 = 𝑚𝑠

𝑎
𝛽
𝑟
(𝐵1𝑟 − 𝑢1𝑟𝛽𝑟); 𝑏4 = 2𝑏3; 𝑏5 =

𝜌∫
𝑙

0 𝑥𝑢1(𝑥1)𝑑𝑥1+𝑚𝐵𝑙𝑢1𝑙+𝑚𝑠
2
𝑎
𝛽
𝑟
+𝑚𝑟𝑢1𝑟; 𝑏6 = 𝑚𝑠

𝑎
(𝑟𝛽
𝑟
−𝑢1𝑟);

𝑚22 = 𝑚; 𝑐22 = 𝑐2; 𝑘22 = 𝑘2;𝑚21 = 𝑚12; 𝑏7 = 𝑚𝑠
𝑎
𝛽
2
𝑟
; 𝑏8 = 𝑚𝑟;

𝑏9 = 𝑚𝑠
𝑎
;𝜌 ismass per length of the flexible arm;𝐸𝐼 is flexural

rigidity; 𝑙 is the length of the arm.

3. Nonlinear Analysis

Equations (5) are nonlinear differential equations and are
solved in this section.

3.1. Nondimensionalization andDecoupling of the Equations of
Motion. The nondimensional variables 𝜑∗, 𝑠∗, 𝜏, and 𝑞∗ are
defined by

𝜑
∗
=
𝜑1
𝑙
,

𝑠
∗
=
𝑠

𝑙
,

𝜏 = 𝜔
𝜑
𝑡,

𝑞
∗
= 𝑞,

(6)

where 𝜔
𝜑
= √𝑘11/𝑚11 and the equations of motion (5) are

nondimensionalized as follows:

𝑑
2
𝜑
∗

𝑑𝜏2
+ 𝑚̃12

𝑑
2
𝑠
∗

𝑑𝜏2
+ 𝜂11

𝑑𝜑
∗

𝑑𝜏
+(1+𝑑1

𝑑
2
𝑞
∗

𝑑𝜏2
)𝜑
∗

+ 𝑘̃12
𝑑
2
𝑞
∗

𝑑𝜏2
𝑠
∗
= −𝑑2

𝑑𝜑
∗

𝑑𝜏

𝑑𝑠
∗

𝑑𝜏
− 𝑑3 (

𝑑𝜑
∗

𝑑𝜏
)

2

−𝑑4
𝑑
2
𝜑
∗

𝑑𝜏2
𝜑
∗
−𝑑2

𝑑
2
𝜑
∗

𝑑𝜏2
𝑠
∗
−𝑑5

𝑑
2
𝑞
∗

𝑑𝜏2
−𝑑6 (

𝑑𝑞
∗

𝑑𝜏
)

2

+𝑓3 (𝜑
∗
,
𝑑𝜑
∗

𝑑𝜏
,
𝑑
2
𝜑
∗

𝑑𝜏2
, 𝑠
∗
,
𝑑𝑠
∗

𝑑𝜏
,
𝑑
2
𝑠
∗

𝑑𝜏2
,
𝑑𝑞
∗

𝑑𝜏
,
𝑑
2
𝑞
∗

𝑑𝜏2
) ,

𝑑
2
𝑠
∗

𝑑𝜏2
+ 𝑚̃21

𝑑
2
𝜑
∗

𝑑𝜏2
+ 𝜂22

𝑑𝑠
∗

𝑑𝜏
+𝜔

2
𝑠𝜑
𝑠
∗
= 𝑑7 (

𝑑𝜑
∗

𝑑𝜏
)

2

−𝑑8
𝑑
2
𝑞
∗

𝑑𝜏2
+𝑑9 (

𝑑𝑞
∗

𝑑𝜏
)

2

+𝑓4 (𝜑
∗
,
𝑑𝜑
∗

𝑑𝜏
,
𝑑
2
𝜑
∗

𝑑𝜏2
, 𝑠
∗
,
𝑑𝑠
∗

𝑑𝜏
,
𝑑
2
𝑠
∗

𝑑𝜏2
,
𝑑𝑞
∗

𝑑𝜏
,
𝑑
2
𝑞
∗

𝑑𝜏2
) ,

(7)

where 𝑚̃12 = 𝑚12/𝑚11; 𝜂11 = 𝑐11/(𝜔𝜑𝑚11); 𝑑1 = 𝑏1/𝑚11; 𝑘̃12 =
𝑘12/𝑚11; 𝑑2 = 𝑏2𝑙/𝑚11; 𝑑3 = 𝑏3𝑙/𝑚11; 𝑑4 = 𝑏4𝑙/𝑚11; 𝑑5 =

𝑏5/(𝑚11𝑙); 𝑑6 = 𝑏6/(𝑚11𝑙); 𝑚̃21 = 𝑚21/𝑚22; 𝜂22 = 𝑐22/(𝜔𝜑𝑚22);
𝜔
𝑠
= √𝑘22/𝑚22; 𝜔𝑠𝜑 = 𝜔

𝑠
/𝜔
𝜑
; 𝑑7 = 𝑏7𝑙/𝑚22; 𝑑8 = 𝑏8/(𝑚22𝑙);

𝑑9 = 𝑏9/(𝑚22𝑙).
To make the damping and nonlinearities appear in the

same perturbation equations, let 𝜂11 = 𝜀𝜁11, 𝜂22 = 𝜀𝜁22,
𝜑
∗
= 𝜀𝜙, 𝑠∗ = 𝜀𝑤, and 𝑑𝑞∗/𝑑𝜏 = 𝜀(𝑑𝜒/𝑑𝜏), where 𝜀 is a small

nondimensional bookkeeping parameter, 0 < 𝜀 ≪ 1. Then,
(7) can be expressed as

𝑑
2
𝜙

𝑑𝜏2
+𝜙 = − 𝑚̃12

𝑑
2
𝑤

𝑑𝜏2
−𝑑5

𝑑
2
𝜒

𝑑𝜏2
+ 𝜀 [−𝜁11

𝑑𝜙

𝑑𝜏

− 𝑑1
𝑑
2
𝜒

𝑑𝜏2
𝜙− 𝑘̃12

𝑑
2
𝜒

𝑑𝜏2
𝑤−𝑑2

𝑑𝜙

𝑑𝜏

𝑑𝑤

𝑑𝜏
−𝑑3 (

𝑑𝜙

𝑑𝜏
)

2

−𝑑4
𝑑
2
𝜙

𝑑𝜏2
𝜙−𝑑2

𝑑
2
𝜙

𝑑𝜏2
𝑤−𝑑6 (

𝑑𝜒

𝑑𝜏
)

2
]+ 𝑜 (𝜀) ,

(8)

𝑑
2
𝑤

𝑑𝜏2
+𝜔

2
𝑠𝜑
𝑤 = − 𝑚̃21

𝑑
2
𝜙

𝑑𝜏2
−𝑑8

𝑑
2
𝜒

𝑑𝜏2
+ 𝜀 [−𝜁22

𝑑𝑤

𝑑𝜏

+𝑑7 (
𝑑𝜙

𝑑𝜏
)

2
+𝑑9 (

𝑑𝜒

𝑑𝜏
)

2
]+ 𝑜 (𝜀) .

(9)

3.2. Perturbation Analysis. The time dependence 𝜏 is
expanded in terms of multiple time scales, 𝑇

𝑖
= 𝜀
𝑖
𝜏, (𝑖 =

0, 1, . . .), so that the first- and second-time derivatives become
𝑑

𝑑𝜏
= 𝐷0 + 𝜀𝐷1 + 𝜀

2
𝐷2 + ⋅ ⋅ ⋅ ,

𝑑
2

𝑑𝜏2
= 𝐷

2
0 + 2𝜀𝐷0𝐷1 + 𝜀

2
𝐷1 + 2𝜀

2
𝐷0𝐷2 + ⋅ ⋅ ⋅ ,

(10)

where𝐷
𝑖
= 𝜕/𝜕𝑇

𝑖
, (𝑖 = 0, 1, . . .).

We seek first-order approximate solutions of (8) and (9)
by using the method of multiple scales in the form

𝜙 (𝜏, 𝜀) = 𝜙0 (𝑇0, 𝑇1) + 𝜀𝜙1 (𝑇0, 𝑇1) ,

𝑤 (𝜏, 𝜀) = 𝑤0 (𝑇0, 𝑇1) + 𝜀𝑤1 (𝑇0, 𝑇1) .
(11)

Substituting (10), (11) into (8) and (9) and equating
coefficients of same powers of 𝜀, we obtain the following:

Order (𝜀0) is as follows:

𝐷
2
0𝜙0 +𝜙0 = − 𝑚̃12𝐷

2
0𝑤0 +𝑔1,

𝐷
2
0𝑤0 +𝜔

2
𝑠𝜑
𝑤0 = − 𝑚̃21𝐷

2
0𝜙0 +𝑔2.

(12)
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Order (𝜀1) is as follows:

𝐷
2
0𝜙1 +𝜙1 = − 2𝐷0𝐷1𝜙0 − 𝜁11𝐷0𝜙0 − 𝑚̃12𝐷

2
0𝑤1

− 2𝑚̃12𝐷0𝐷1𝑤0 −𝑑1𝐷
2
0𝜒𝜙0

− 𝑘̃12𝐷
2
0𝜒𝑤0 −𝑑2𝐷0𝜙0𝐷0𝑤0

−𝑑3 (𝐷0𝜙0)
2
−𝑑4𝐷

2
0𝜙0𝜙0

−𝑑2𝐷
2
0𝜙0𝑤0 −𝑑6 (𝐷0𝜒)

2
,

𝐷
2
0𝑤1 +𝜔

2
𝑠𝜑
𝑤1 = − 2𝐷0𝐷1𝑤0 − 𝑚̃21𝐷

2
0𝜑1

− 2𝑚̃21𝐷0𝐷1𝜙0 − 𝜁22𝐷0𝑤0

+𝑑7 (𝐷0𝜙0)
2
+𝑑9 (𝐷0𝜒)

2
,

(13)

where 𝑔1 = −𝑑5𝐷
2
0𝜒, 𝑔2 = −𝑑8𝐷

2
0𝜒.

The solution of (12) can be written in the form

𝜙0 = 𝐴1 (𝑇1) exp (𝑗𝜔1𝑇0) +𝐴2 (𝑇1) exp (𝑗𝜔2𝑇0)

+ ℎ1 + 𝑐𝑐,

𝑤0 = Λ 1𝐴1 (𝑇1) exp (𝑗𝜔1𝑇0)

+Λ 2𝐴2 (𝑇1) exp (𝑗𝜔2𝑇0) + ℎ2 + 𝑐𝑐,

(14)

where 𝐴1(𝑇1) and 𝐴2(𝑇1) are functions of slow time 𝑇1;
ℎ1 = 𝑔1/2; ℎ2 = 𝑔2/(2𝜔

2
𝑠𝜑
); 𝑐𝑐 denotes the complex conju-

gate terms. According to the theory of ordinary differential
equation, the 𝜔2

𝑛
(𝑛 = 1, 2) are the roots of

(1− 𝑚̃12𝑚̃21) 𝜔
4
𝑛
− (1+𝜔2

𝑠𝜑
) 𝜔

2
𝑛
+𝜔

2
𝑠𝜑
= 0, (15)

Λ
𝑛
=
1 − 𝜔2
𝑛

𝜔2
𝑛
𝑚̃12

=
𝑚̃21𝜔

2
𝑛

𝜔2
𝑠𝜑
− 𝜔2
𝑛

(16)

and 𝜔
𝑛
are assumed to be distinct.

In this study, because the second-order nonlinear cou-
pling terms exist in the dynamic model, the vibration
absorber is used to control vibration of the flexible arm at
the 1 : 2 internal resonance condition; that is, 𝜔2 ≈ 2𝜔1. It is
this internal resonance condition that enables the transfer of
vibration energy between the fundamental mode of the arm
and the vibration mode of the absorber. In order to solve the
nonlinear problem, substituting (14) into (13) yields

𝐷
2
0𝜙1 +𝜙1 = − (2𝑗𝜔1𝐴

󸀠

1 + 𝜁11𝑗𝜔1𝐴1 + 2𝑚̃12𝑗𝜔1Λ 1𝐴
󸀠

1

+𝑑1𝐷
2
0𝜒𝐴1 + 𝑘̃12𝐷

2
0𝜒Λ 1𝐴1) exp (𝑗𝜔1𝑇0)

+ [−𝑑2 (Λ 1 +Λ 2) 𝜔1𝜔2 − 2𝑑3𝜔1𝜔2

+𝑑4 (𝜔
2
1 +𝜔

2
2) + 𝑑2 (Λ 2𝜔

2
1 +Λ 1𝜔

2
2)]𝐴1𝐴2

⋅ exp [𝑗 (𝜔2 −𝜔1) 𝑇0] +NST+ 𝑐𝑐,

𝐷
2
0𝑤1 +𝜔

2
𝑠𝜑
𝑤1 = − (2𝑗𝜔2Λ 2𝐴

󸀠

2 + 𝜁22𝑗𝜔2Λ 2𝐴2

+ 2𝑚̃21𝑗𝜔2𝐴
󸀠

2) exp (𝑗𝜔2𝑇0) − 𝑑7𝜔
2
1𝐴

2
1 exp (2𝑗𝜔1𝑇0)

+NST+ 𝑐𝑐,
(17)

where ()󸀠 ≡ 𝜕()/𝜕𝑇1 and NST denotes nonsecular terms.
In the case of the 1 : 2 internal resonance, a detuning

parameter 𝜎 is introduced as 𝜔2 = 2𝜔1 + 𝜀𝜎. To determine
the solvability conditions of (17), the particular solutions are
sought in the form

𝜙1 = 𝑝11 exp (𝑗𝜔1𝑇0) + 𝑝12 exp (𝑗𝜔2𝑇0) ,

𝑤1 = 𝑝21 exp (𝑗𝜔1𝑇0) + 𝑝22 exp (𝑗𝜔2𝑇0) .
(18)

Substituting (18) into (17) and then equating the coefficients
of exp(𝑗𝜔1𝑇0) and exp(𝑗𝜔2𝑇0) on both sides, one obtains

(1−𝜔2
𝑛
) 𝑝1𝑛 − 𝑚̃12𝜔

2
𝑛
𝑝2𝑛 = 𝑅1𝑛,

− 𝑚̃21𝜔
2
𝑛
𝑝1𝑛 + (𝜔

2
𝑠𝜑
−𝜔

2
𝑛
) 𝑝2𝑛 = 𝑅2𝑛,

(19)

where

𝑅11 = − 2𝑗𝜔1 (1+ 𝑚̃12Λ 1) 𝐴
󸀠

1 − 𝑗𝜔1𝜁11𝐴1

+ (−𝑑1𝐷
2
0𝜒− 𝑘̃12𝐷

2
0𝜒Λ 1 + 2ℎ1𝑑4𝜔

2
1 + 2ℎ2𝑑2𝜔

2
1)

⋅ 𝐴1 + [𝑑4 (𝜔
2
1 +𝜔

2
2) − 𝑑2 (Λ 1 +Λ 2) 𝜔1𝜔2

− 2𝑑3𝜔1𝜔2 +𝑑2 (Λ 2𝜔
2
1 +Λ 1𝜔

2
2)]𝐴1𝐴2 exp (𝑗𝜎𝑇1) ,

𝑅12 = − 2𝑗𝜔2 (1+ 𝑚̃12Λ 2) 𝐴
󸀠

2 − 𝑗𝜔2𝜁11𝐴2

+ (−𝑑1𝐷
2
0𝜒− 𝑘̃12𝐷

2
0𝜒Λ 2 + 2ℎ1𝑑4𝜔

2
2 + 2ℎ2𝑑2𝜔

2
2)

⋅ 𝐴2 + (2𝑑2Λ 1 +𝑑3 +𝑑4) 𝜔
2
1𝐴

2
1 exp (−𝑗𝜎𝑇1) ,

𝑅21 = − 2𝑗𝜔1 (𝑚̃21 +Λ 1) 𝐴
󸀠

1 − 𝑗𝜔1𝜁22Λ 1𝐴1

+ 2𝑑7𝜔1𝜔2𝐴1𝐴2 exp (𝑗𝜎𝑇1) ,

𝑅22 = − 2𝑗𝜔2 (𝑚̃21 +Λ 2) 𝐴
󸀠

2 − 𝑗𝜔2𝜁22Λ 2𝐴2

−𝑑7𝜔
2
1𝐴

2
1 exp (−𝑗𝜎𝑇1) .

(20)

Therefore, the problem of determining the solvability condi-
tions of (17) is reduced to that of determining the solvability
condition of (19).

Since the determinant of the coefficient matrix of (19) is
zero according to (15), the solvability conditions are

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑅1𝑛 −𝑚̃12𝜔
2
𝑛

𝑅2𝑛 𝜔
2
𝑠𝜙
− 𝜔

2
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0

or 𝑅1𝑛 = −Λ
𝑛
𝑅2𝑛

𝑚̃12
𝑚̃21

(21)

on account of (16).
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Substituting (20) into (21) yields

− 2𝑗𝜔1 (1+ 𝑚̃12Λ 1) 𝐴
󸀠

1 − 𝑗𝜔1𝜁11𝐴1 + (−𝑑1𝐷
2
0𝜒

− 𝑘̃12𝐷
2
0𝜒Λ 1 + 2ℎ1𝑑4𝜔

2
1 + 2ℎ2𝑑2𝜔

2
1)𝐴1

+ [𝑑4 (𝜔
2
1 +𝜔

2
2) − 𝑑2 (Λ 1 +Λ 2) 𝜔1𝜔2 − 2𝑑3𝜔1𝜔2

+𝑑2 (Λ 2𝜔
2
1 +Λ 1𝜔

2
2)]𝐴1𝐴2 exp (𝑗𝜎𝑇1) = −Λ 1

⋅
𝑚̃12
𝑚̃21

[−2𝑗𝜔1 (𝑚̃21 +Λ 1) 𝐴
󸀠

1

− 𝑗𝜔1𝜁22Λ 1𝐴1 + 2𝑑7𝜔1𝜔2𝐴1𝐴2 exp (𝑗𝜎𝑇1)] ,

− 2𝑗𝜔2 (1+ 𝑚̃12Λ 2) 𝐴
󸀠

2 − 𝑗𝜔2𝜁11𝐴2 + (−𝑑1𝐷
2
0𝜒

− 𝑘̃12𝐷
2
0𝜒Λ 2 + 2ℎ1𝑑4𝜔

2
2 + 2ℎ2𝑑2𝜔

2
2)𝐴2 + (2𝑑2Λ 1

+𝑑3 +𝑑4) 𝜔
2
1𝐴

2
1 exp (−𝑗𝜎𝑇1) = −Λ 2

⋅
𝑚̃12
𝑚̃21

[−2𝑗𝜔2 (𝑚̃21 +Λ 2) 𝐴
󸀠

2

− 𝑗𝜔2𝜁22Λ 2𝐴2 −𝑑7𝜔
2
1𝐴

2
1 exp (−𝑗𝜎𝑇1)] .

(22)

It is convenient to express the resultingmodulation equations
in polar form by introducing the following transformation:

𝐴1 =
1
2
𝑎1 exp (𝑗𝜃1) ,

𝐴2 =
1
2
𝑎2 exp (𝑗𝜃2) ,

(23)

where 𝑎1, 𝑎2, 𝜃1, and 𝜃2 are real functions of the slow time 𝑇1;
𝑎1 and 𝑎2 are defined as the modal amplitudes.

Inserting (23) into (22), then setting the coefficients of
the real and imaginary parts to zero yields the modulation
equations

𝑎
󸀠

1 = −
ℎ2
2ℎ1

𝑎1 +
ℎ3
4ℎ1

𝑎1𝑎2 sin 𝛾, (24)

𝑎
󸀠

2 = −
ℎ5
2ℎ4

𝑎2 −
ℎ6
4ℎ4

𝑎
2
1 sin 𝛾, (25)

𝜃
󸀠

1 = −
ℎ7
2ℎ1

−
ℎ3
4ℎ1

𝑎2 cos 𝛾, (26)

𝑎2𝜃
󸀠

2 = −
ℎ8
2ℎ4

𝑎2 −
ℎ6
4ℎ4

𝑎
2
1 cos 𝛾, (27)

𝛾 = 𝜃2 − 2𝜃1 +𝜎𝑇1, (28)

where

ℎ1 = (1+ 2𝑚̃12Λ 1 +
Λ
2
1𝑚̃12
𝑚̃21

)𝜔1;

ℎ2 = (𝜁11 +
Λ
2
1𝜁22𝑚̃12
𝑚̃21

)𝜔1;

ℎ3 = 𝑑4 (𝜔
2
1 +𝜔

2
2) − 𝑑2 (Λ 1 +Λ 2) 𝜔1𝜔2 − 2𝑑3𝜔1𝜔2

+𝑑2 (Λ 2𝜔
2
1 +Λ 1𝜔

2
2) +

2Λ 1𝑑7𝜔1𝜔2𝑚̃12
𝑚̃21

;

ℎ4 = (1+ 2𝑚̃12Λ 2 +
Λ
2
2𝑚̃12
𝑚̃21

)𝜔2;

ℎ5 = (𝜁11 +
Λ
2
2𝜁22𝑚̃12
𝑚̃21

)𝜔2;

ℎ6 = (2𝑑2Λ 1 +𝑑3 +𝑑4) 𝜔
2
1 −

Λ 2𝑑7𝜔
2
1𝑚̃12

𝑚̃21
;

ℎ7 = −𝑑1𝐷
2
0𝜒− 𝑘̃12𝐷

2
0𝜒Λ 1 + 2ℎ1𝑑4𝜔

2
1 + 2ℎ2𝑑2𝜔

2
1 ;

ℎ8 = −𝑑1𝐷
2
0𝜒− 𝑘̃12𝐷

2
0𝜒Λ 2 + 2ℎ1𝑑4𝜔

2
2 + 2ℎ2𝑑2𝜔

2
2 .

(29)

Eliminating 𝜃1 and 𝜃2 from (26) and (27) yields

𝑎2𝛾
󸀠
= 𝜎𝑎2 −

ℎ8
2ℎ4

𝑎2 −
ℎ6
4ℎ4

𝑎
2
1 cos 𝛾 +

ℎ7
ℎ1
𝑎2

+
ℎ3
2ℎ1

𝑎
2
2 cos 𝛾.

(30)

From ℎ2 and ℎ5, it can be seen that both 𝜁11 and 𝜁22 affect
𝑎1 and 𝑎2 and thus affect the response of both flexible arm
and the vibration absorber. In this way, vibration energy of
the flexible manipulator can not only be dissipated by the
damping of the vibration absorber based on the internal
resonance but also be attenuated by its own enhanced
damping, thereby obtaining better vibration control results.
In this paper, it is called “the damping enhancement effect.”

3.3. Analysis of Secular Term. In order to better understand
the dynamics of the system, the undamped case (i.e., 𝜁11 =

𝜁22 = 0) is studied. We have

𝑎
󸀠

1 =
ℎ3
4ℎ1

𝑎1𝑎2 sin 𝛾, (31)

𝑎
󸀠

2 = −
ℎ6
4ℎ4

𝑎
2
1 sin 𝛾. (32)

Let

𝜐 =
ℎ1ℎ6
ℎ3ℎ4

. (33)

Thenmultiplying (31) by 𝑎1 and (32) by 𝜐𝑎2 and adding them,
it results in the equation

𝑎1𝑎
󸀠

1 + 𝜐𝑎2𝑎
󸀠

2 = 0. (34)

Integrating (34), one obtains

𝑎
2
1 + 𝜐𝑎

2
2 = 𝐸0 = const., (35)
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where 𝐸0 is a constant representing the total energy and is
dependent on initial conditions.

From (33), it is seen that 𝜐 is determined by the struc-
tural parameters of both the flexible arm and the vibration
absorber. If the structural parameters of the flexible arm
are given, then 𝜐 will be uniquely determined by those of
the vibration absorber, that is, 𝑚, 𝑠

𝑎
, and 𝑟. Due to the

difficulty in determining the sign of 𝜐 in symbolic form, a
numerical method is used here. Firstly, 𝑚/𝑚

𝑙
, 𝑠
𝑎
/𝑙, and 𝑟/𝑙

are viewed as three search variables, where 𝑚
𝑙
is the mass of

the flexible arm. Secondly, the search ranges of these variables
are defined, respectively. In this example, 𝑚/𝑚

𝑙
∈ (0, 0.5],

𝑠
𝑎
/𝑙 ∈ (0, 0.2], and 𝑟/𝑙 ∈ (0, 1]. Thirdly, the search step

is given. In this example, the search step is 0.001. Then, a
numerical method is used to find the sign of 𝜐 in terms of
the given search variables, search ranges, and search step.
The final search result is 𝜐 > 0 when 𝑚/𝑚

𝑙
∈ (0, 0.5],

𝑠
𝑎
/𝑙 ∈ (0, 0.2], and 𝑟/𝑙 ∈ (0, 1]. As a result, 𝑎1 and 𝑎2 in

(35) are always bounded. Since the damping is neglected in
this case, the system is conservative and the energy level
remains constant. Therefore, if the response of the modal
amplitude 𝑎1 is periodic, 𝑎2 will be periodic and out of phase
from 𝑎1. Equation (35) demonstrates that, in the absence of
damping, the energy in the system continues to be exchanged
undampedbetween the fundamentalmode of the flexible arm
and the vibration mode of the absorber.

3.4.TheDissipative EnergyMethod. In the presence of damp-
ing (i.e., 𝜁11 > 0 and 𝜁22 > 0), the equilibrium points for
this case are defined by the solution of the set of steady state
secular term equations; namely,

−
ℎ2
2ℎ1

𝑎1 +
ℎ3
4ℎ1

𝑎1𝑎2 sin 𝛾 = 0,

−
ℎ5
2ℎ4

𝑎2 −
ℎ6
4ℎ4

𝑎
2
1 sin 𝛾 = 0,

𝜎𝑎2 −
ℎ8
2ℎ4

𝑎2 −
ℎ6
4ℎ4

𝑎
2
1 cos 𝛾 +

ℎ7
ℎ1
𝑎2 +

ℎ3
2ℎ1

𝑎
2
2 cos 𝛾

= 0.

(36)

By inspection, it is determined that the system possesses an
infinite number of equilibrium points defined by

𝑎1 = 0,

𝑎2 = 0,

𝛾 ∈ 𝑅.

(37)

Therefore, by examining the Jacobian, we can ascertain the
stability of the system.

The Jacobian matrix of this case is

[
[

[

𝜇1 0 0
0 𝜇2 0
0 0 0

]
]

]

, (38)

where 𝜇1 = −ℎ2/2ℎ1, 𝜇2 = −ℎ5/2ℎ4.
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Figure 2: Response of the uncontrolled fixed flexible arm.

The corresponding eigenvalues are (𝜇1, 𝜇2, 0). Since ℎ2 >
0, the sign of 𝜇1 is determined by ℎ1. Since ℎ5 > 0, the sign of
𝜇2 is determined by ℎ4. Similarly, due to the difficulty in deter-
mining the sign of ℎ1 and ℎ4 in symbolic form, a numerical
method is used. Since ℎ1 and ℎ4 have relation to 𝑚, 𝑠

𝑎
, and 𝑟

when the structural parameters of the flexible arm are given,
𝑚/𝑚
𝑙
, 𝑠
𝑎
/𝑙, and 𝑟/𝑙 are viewed as three search variables and

𝑚/𝑚
𝑙
∈ (0, 0.5], 𝑠

𝑎
/𝑙 ∈ (0, 0.2], and 𝑟/𝑙 ∈ (0, 1] are defined,

respectively, in this example. Also, the search step is 0.001.The
search result is 𝜇1 < 0 and 𝜇2 < 0when𝑚/𝑚

𝑙
∈ (0, 0.5], 𝑠

𝑎
/𝑙 ∈

(0, 0.2], and 𝑟/𝑙 ∈ (0, 1]. Therefore, the modal amplitudes 𝑎1
and 𝑎2 are stable, as indicated by the negative eigenvalues.

By numerical integrations of (24)–(28), vibration energy
is transferred between the fundamental mode of the flexible
arm and the vibration mode of the absorber in the presence
of damping, but it is gradually dissipated. Therefore, internal
resonance can be used to reduce vibration of the flexible arm.

4. Simulations and Analyses

To verify the above theoretical analysis, some numerical
simulations are done on the conditions: 𝑙 = 1.0m, ℎ = 0.05m,
𝑏 = 0.003m,𝑚

𝐵
= 0.5 kg, the arm is made of aluminum, and

𝜌 = 2710 kg/m3.
Supposing the flexible arm has neither rigid motion (i.e.,

𝑞 = ̇𝑞 = ̈𝑞 = 0) nor vibration absorber, it can be viewed
as a flexible structure. For the initial disturbance of 𝛿(𝑙, 0) =
0.1m, the end-effector deformation is obtained using a
fourth-order Runge-Kutta numerical integration algorithm,
as shown in Figure 2. For a flexible structure subjected to
an initial disturbance, its end-effector response is usually a
slowly attenuated vibration due to the low damping. To verify
the above results, a virtual prototype simulation is conducted
using ADAMS software. The dynamic model of the flexible
arm with the same parameters is created (as shown in
Figure 3), and the end-effector deformation is shown in
Figure 4. As can be seen, the results are similar to each other.
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Figure 3: A fixed flexible arm in ADAMS.
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Figure 4: Response of the uncontrolled fixed flexible arm in
ADAMS.

In order to reduce vibration of the flexible structure via
modal interaction, a vibration absorber is perpendicularly
attached to the flexible arm at 𝑥1 = 0.5m, at which mass
𝑚 = 0.3 kg and equilibrium position 𝑠

𝑎
= 0.05m, as

shown in Figure 1. At the state of internal resonance, (24)–
(28) are integrated numerically in the absence of damping.
The relationship between the modal amplitudes 𝑎1 (dashed
line) and 𝑎2 (solid line) is shown in Figure 5. As can be seen,
the peaks and troughs of the responses are exactly 180∘ out of
phase, verifying the fact that there is continuous exchange of
the energy between modes of vibration.

When the damping of the vibration absorber is taken
into account and 𝜁22 = 0.0015, (24)–(28) are integrated
numerically at the state of internal resonance. The motion
of 𝑎1 (dashed line) and 𝑎2 (solid line) within the whole work
process is illustrated in Figure 6. And the transfer of energy
between modes can be found, verified by the coincidence of
the peaks of one modal curve with the troughs of the other.
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Figure 5: Undamped modal amplitudes in fixed flexible arm.
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Figure 6: Damped modal amplitudes in fixed flexible arm.

In addition, the modal amplitudes decrease with time, which
suggests that vibration energy of the fundamental mode of
the flexible arm is absorbed by the absorber and dissipated
through the damping of the absorber.

The end-effector deformation of the flexible arm
equipped with the vibration absorber is shown in Figure 7.
At the stage of 1 : 2 internal resonance, the initial deformation
is reduced quickly within 10 seconds. After 20 seconds,
the end-effector deformation is reduced by 50%. After 40
seconds, the end-effector deformation is reduced by 80%.

Through above simulation and analysis, it is verified that
this control method based on internal resonance is effective
in controlling vibration of the flexible structure.

Next, an example of the flexible arm undergoing rigid
motion is considered. Suppose the desired jointmotion of the
arm is

̇𝑞 = 0.2× sin(𝜋𝑡
3
)+ 0.5× cos (𝑡) , (0 ≤ 𝑡 ≤ 100 s) . (39)
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Figure 7: Response of the controlled fixed flexible arm.
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Figure 8: Response of the uncontrolled moving flexible arm.

If the flexible arm is not equipped with the vibration
absorber, when moving according to (39), its end-effector
deformation is obtained for the initial disturbance of 𝛿(𝑙, 0) =
0.1m, as shown in Figure 8. Compared with a flexible
structure (as shown in Figure 2), rigid motion can cause
more complex dynamic behaviors due to its coupling effect
with flexural deformation. As can be seen, the end-effector
response is no longer an attenuated vibration and its peaks
even exceed the initial disturbance. Once again, the end-
effector deformation is calculated using ADAMS software
and shown in Figure 9. As can be seen, the results are similar
to each other.

In order to reduce vibration of the flexible arm via modal
interaction, a vibration absorber is perpendicularly attached
to the flexible arm and the same parameters as in the afore-
mentioned case are used. At the state of internal resonance,
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Figure 9: Response of the uncontrolled moving flexible arm in
ADAMS.
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Figure 10: Undamped modal amplitudes in moving flexible arm.

(24)–(28) are integrated numerically in the absence of
damping. The relationship between the modal amplitudes 𝑎1
(dashed line) and 𝑎2 (solid line) is shown in Figure 10. It can
be seen that the peaks and troughs of the responses are exactly
180∘ out of phase, which means that there is continuous
exchange of the energy between modes of vibration.

When the damping of the vibration absorber is taken into
account and 𝜁22 = 0.005, (24)–(28) are integrated numerically
at the state of internal resonance. The modal amplitudes 𝑎1
(dashed line) and 𝑎2 (solid line) are illustrated in Figure 11.
Since each of ℎ2 and ℎ5 has relation to both 𝜁11 and 𝜁22, once
𝜁22 is added to the system, it can increase the damping of not
only 𝑎2 but also 𝑎1. In this case, the vibration energy of 𝑎1 can
not only be absorbed by the damping of 𝑎2 when transferred
to 𝑎2, but also be dissipated by its increased damping.
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Figure 11: Damped modal amplitudes in moving flexible arm.

As demonstrated in Figure 11, the transfer of energy between
modes can be found, verified by the coincidence of the peaks
of onemodal curve with the troughs of the other. In addition,
the modal amplitudes decrease with time and approach the
equilibrium value (𝑎1 = 𝑎2 = 0), which suggests that
the vibration energy of the flexible arm has been effectively
absorbed and dissipated through internal resonance.

The end-effector deformation of the flexible arm
equipped with the vibration absorber is shown in Figure 12.
At the stage of 1 : 2 internal resonance, the end-effector
deformation of the flexible arm is reduced quickly within
20 seconds. After 20 seconds, the end-effector deformation
is reduced by 75%, compared with the uncontrolled case (as
shown in Figure 8). Final deformation of the end-effector
can be reduced by 90%. Also, an example of the initial
disturbance of 𝛿(𝑙, 0) = 0.2m and 𝜁22 = 0.005 is conducted.
The end-effector deformation is shown in Figure 13. As can
be seen, even though larger disturbance is imposed on the
system, vibration response can still be reduced effectively.

In addition, the effects of the absorber damping 𝜁22 are
studied, as shown in Figure 14. It can be seen that if the
absorber damping is very small, vibration energy flowing
into the absorber cannot be effectively dissipated. However,
if the absorber damping is too large, its effect becomes
indistinctive.Therefore, an appropriate damping is necessary.

Furthermore, the effect of the absorber location is studied.
When the absorber is attached to the flexible arm at 𝑟 =

0.35m, the controlled frequency of the arm is 1.0106Hz. Its
end-effector deformation is shown in Figure 15. When the
absorber is attached to the flexible arm at 𝑟 = 0.5m, the
controlled frequency of the arm is 0.9905Hz. Its end-effector
deformation is shown in Figure 12. When the absorber is
attached to the flexible arm at 𝑟 = 0.75m, the controlled
frequency of the arm is 0.9237Hz. Its end-effector deforma-
tion is shown in Figure 16. From these figures, it can be seen
that the absorber location can remarkably affect the end-
effector deformation, and an appropriate absorber location is
necessary.
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Figure 12: Response of the controlled arm (𝛿(𝑙, 0) = 0.1m).
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Figure 13: Response of the controlled arm (𝛿(𝑙, 0) = 0.2m).

Based on above simulations and analyses, it is proven that
this method is effective in controlling nonlinear vibration of
the flexible arm.

5. Conclusion

In this paper, a vibration control method based on energy
migration is proposed to decrease vibration response of
the flexible arm undergoing rigid motion. A type of vibra-
tion absorber is suggested and gives rise to the inertial
coupling between the modes of the flexible arm and the
absorber. By analyzing 1 : 2 internal resonance, it is proved
that the internal resonance can be successfully created and the
exchange of vibration energy is existent. Furthermore, due
to the inertial coupling, the damping enhancement effect is
revealed. Via the inertial coupling, vibration energy of the
flexible arm can be dissipated by not only the damping of
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Figure 14: Effects of the absorber damping.
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Figure 15: Response of the controlled arm (𝑟 = 0.35m).
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Figure 16: Response of the controlled arm (𝑟 = 0.75m).

the vibration absorber but also its own enhanced damping,
thereby effectively decreasing vibration. Through numerical
simulations and analyses, it is proven that this method is
feasible in controlling nonlinear vibration of the flexible arm
undergoing rigid motion.
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