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ABSTRACT
There has recently been a great deal of work focused on de-
veloping statistical models of graph structure—with the goal
of modeling probability distributions over graphs from which
new, similar graphs can be generated by sampling from the
estimated distributions. Although current graph models can
capture several important characteristics of social network
graphs (e.g., degree, path lengths), many of them do not gen-
erate graphs with sufficient variation to reflect the natural
variability in real world graph domains. One exception is the
mixed Kronecker Product Graph Model (mKPGM), a gener-
alization of the Kronecker Product Graph Model, which uses
parameter tying to capture variance in the underlying dis-
tribution [10]. The enhanced representation of mKPGMs
enables them to match both the mean graph statistics and
their spread as observed in real network populations, but un-
fortunately to date, the only method to estimate mKPGMs
involves an exhaustive search over the parameters.

In this work, we present the first learning algorithm for
mKPGMs. The O(|E|) algorithm searches over the contin-
uous parameter space using constrained line search and is
based on simulated method of moments, where the objective
function minimizes the distance between the observed mo-
ments in the training graph and the empirically estimated
moments of the model. We evaluate the mKPGM learning
algorithm by comparing it to several different graph models,
including KPGMs. We use multi-dimensional KS distance
to compare the generated graphs to the observed graphs
and the results show mKPGMs are able to produce a closer
match to real-world graphs (10-90% reduction in KS dis-
tance), while still providing natural variation in the gener-
ated graphs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

Keywords
Link analysis, statistical graph models, Kronecker models,
method of moments estimation.
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1. INTRODUCTION
Graphs are a natural representation to use for the analysis

of complex systems. As such, there has been a great deal of
research focusing on the development of models that accu-
rately reflect the characteristics of real-world networks. This
work includes stochastic algorithms (e.g., [16, 2, 6]) that are
capable of generating graphs with particular properties of
interest (e.g., short geodesic distance, high local clustering).
It also includes statistical models that are capable of mod-
eling probability distributions over graphs. For example,
Exponential Random Graph Models (ERGMs) [15], Chung-
Lu models (CL) [3], and Kronecker Product Graph Models
(KPGM) [8, 9]. Statistical models such as these offer the
advantage that model parameters can be estimated from
observed networks and, once learned, new graphs can be
generated from the estimated distribution by sampling.

Of the statistical models of graphs, the KPGM method [9]
is intuitively appealing for its elegant fractal structure and
fast sampling algorithms (i.e., O(|E|)). However, recent
work has identified a few limitations of KPGMs. Seshadhri
et al. [13] showed via mathematical analysis that graphs gen-
erated from the KPGM have 50-75% isolated vertices with
no incident edges and Moreno et al. [11] showed empirically
that graphs generated from the KPGM do not capture the
level of clustering observed in many network datasets.

Moreover, while recent graph models adequately capture
several important characteristics of social network graphs
(e.g., skewed degree, short path lengths), many of them do
not generate graphs with sufficient variation to reflect the
natural variability of real world graph domains [11]. Specif-
ically, when learned from real-world social network samples,
the models appear to place most of the probability mass on
a relatively small subset of graphs with very similar charac-
teristics. This clearly limits the applicability of the models
for representing and reasoning about graph populations.

Recently, we proposed a mixed-KPGM (mKPGM) [10] to
address these issues. The mKPGM is a generalization of
the KPGM that uses parameter tying to model dependencies
among edges. These dependencies enable the model to more
accurately capture the clustering observed in real-world net-
works. The dependencies also increase the variance of the es-
timated distribution while preserving the expectation—thus
mKPGMs are able to more accurately capture the natural
variation observed in real-world network populations. How-
ever, the parameter tying makes it more difficult to learn the
model from observed data (due to edge dependencies) and
to date the only method to determine mKPGM parameters
from data involves exhaustive search.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357239042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this work, we present the first tractable learning al-
gorithm for mKPGMs. The algorithm is based on simu-
lated method of moments where the distance between the
observed moments in the training data and the empirically
estimated moments of the model is minimized using con-
strained line search for continuous optimization. We eval-
uate the proposed mKPGM learning algorithm by compar-
ing to several alternative graph models, including KPGMs,
on six real-world network domains. The results show that
mKPGMs are able to capture the characteristics of the real-
world graphs more accurately, while still providing natural
variation in the generated graphs.

The contributions of the paper include:

• The first tractable estimation algorithm for mKPGMs
based on the simulated method moments, with com-
plexityO(|E|)—which facilitates learning mKPGM mod-
els from observed network datasets.

• Development of multi-dimensional KS distance—a new
method for evaluation to compare joint distributions
of multiple graph statistics, rather than calculating the
KS distance in each dimension independently.

• Empirical evaluation of mKPGM shows 10-90% reduc-
tion in KS distance over KPGMs on several real world
population datasets, which shows mKPGMs are signif-
icantly more accurate at capturing the characteristics
of real world network populations.

• Empirical evaluation of SMM learning in KPGMs shows
10-40% reduction in KS distance over previous KPGM
learning algorithms, which shows how mKPGMs gen-
eralize KPGMs and our proposed learning algorithm
can improve KPGM modeling of single network datasets.

2. BACKGROUND
This section describes the Kronecker Product Graph Model

(KPGM) and two algorithms to learn its parameters based
on (i) maximum likelihood estimation (MLE) [9] and (ii)
method of moments (MoM) [4]. We also describe the mixed-
KPGM (mKPGM) [10] and include a brief discussion about
the choice of initiator matrix size.

2.1 Kronecker Product Graph Model
Let Θ be a b × b initiator matrix of parameters, where
∀i,j θij ∈ [0, 1], and let K be a parameter that determines
the size of the graph (i.e., |V| = bK). Then the KPGM al-
gorithm generates a graph GK = (VK ,EK), where VK and
EK are the set of nodes and edges respectively, as follows.
First, the model computes the Kth Kronecker power of the
initiator matrix Θ via K−1 Kronecker products of Θ with
itself. This produces a bK × bK matrix PK = Θ[K], where
PK(i, j) represents the probability of an edge existing be-
tween nodes i and j. PK is used to generate a graph GK
with bK nodes, by sampling each edge independently from a
Bernoulli(PK(i, j)) distribution (i.e., if the trial is successful,
the edge eij is added to EK).

Given an observed training network G? = (V∗,E∗), the
KPGM likelihood of the graph is:

P (G?|Θ, σ) =
∏

(i,j)∈E∗
PK(σi, σj)

∏
(i,j)/∈E∗

(1− PK(σi, σj)) (1)

Here σi denotes the position of node i according to a per-
mutation σ. MLE learning algorithm finds the parameters
Θ that maximizes the likelihood of the observed graph given

a permutation (σ) of the rows and columns of the adjacency
matrix [9]. In practice, the true permutation is unknown
and the learning algorithm uses a Metropolis-Hasting sam-
pling approach to search over the factorial number of possi-
ble permutations of the network. The algorithm then uses
a gradient descent approach to update the parameters Θ,
where the derivative of the likelihood is approximated given
the current σ and Θ.

A second learning algorithm for KPGMs was developed
in [4], which is based on method of moments. The strength
of this approach is that it is permutation invariant—thus
it avoids the difficulty of search over permutation space.
The MoM learning algorithm searches for parameters Θ that
minimize the following objective function:

f(Θ,F∗) =

|F|∑
i=1

(
F ∗i − E[Fi|Θ]

F ∗i

)
(2)

Here Fi is a function over a network G = (V,E) that cal-
culates a statistic of the graph, e.g., for number of edges:
F = |E|. Then, F∗ = {F ∗1 , F ∗2 , · · · , F ∗Nm

} corresponds to a
set of Nm sample moments of the training network G? and
E[Fi|Θ] is the expected value of those statistics (i.e., distri-
butional moments) given particular values of Θ. The MoM
learning algorithm [4] considers four moments: the num-
ber of (i) edges, (ii) 2-stars, (iii) 3-stars, and (iv) triangles.
These moments were selected because their expected values
can be analytically calculated for any Θ, provided b = 2.

2.2 Mixed Kronecker Product Graph Model
The mKPGM is a generalization of the KPGM, which uses

parameter tying to capture the clustering and natural vari-
ation observed in real-world networks more accurately [10].
The marginal probabilities of edges in PK are preserved but
the edge probabilities are no longer independent.

Specifically, given Θ, K, and a parameter ` ∈ [1, · · · ,K]
that specifies the level of parameter tying, the mKPGM
generation process samples a network of size bK as follows.
First, the model uses the standard KPGM algorithm with
initiator matrix Θ to calculate a probability matrix P` = Θ[`]

and then a graph G` is sampled from P`. Next a subsequent
Kronecker product is computed from G` to produce a new
probability matrix P`+1 = G` ⊗ Θ. Then a graph G`+1

is sampled from P`+1 for further Kronecker products. The
process of sampling a graph before computing subsequent
Kronecker products produces dependencies among the sam-
pled edges. This process is repeated K− ` − 1 times to
generate the final network GK . For more details see [10].

The parameter ` controls the level of tying and thus im-
pacts the variance and clustering of the model. Lower val-
ues of ` produce larger dependencies among the edges and
greater clustering among the nodes. When ` = K the model
is equivalent to KPGM and this produces lower clustering
and lower variance.

The mKPGM likelihood has two parts: the untied part
(i.e., G`) is calculated as in the original KPGM, while the
tied part is based on the K− ` Kronecker products where
edges share parameters. The mKPGM likelihood of an ob-
served graph G∗ (given a permutation σ) is based on the
matrix G∗` that was generated to produce the permuted net-
work G∗ under σ:

P (G∗|Θ, σ) = P (G∗` |θ, σ`)

 ∏
(i,j)∈E∗

G∗`

(⌊
σi − 1

bK−`

⌋
,

⌊
σj − 1

bK−`

⌋)
·



K−`∏
k=1

θikjk
∏

(i,j)/∈E∗

(
1−G∗`

(⌊
σi − 1

bK−`

⌋
,

⌊
σj − 1

bK−`

⌋)K−`∏
k=1

θikjk

)
(3)

Here P (G∗` |θ, σ`) is the likelihood of the untied part given
by Eq. 1, where σ` = 1, · · · , |V∗` | and G∗` (i, j) = 1 if there
is at least one edge in the submatrix of G∗ defined by (i −
1) ∗ bK−` + 1, · · · , i ∗ bK−` × (j − 1) ∗ bK−` + 1, · · · , j ∗ bK−`
under the permutation σ, and G∗` (i, j) = 0 otherwise. In

addition, G∗`

(⌊
σi−1

bK−`

⌋
,
⌊
σj−1

bK−`

⌋)
is the mapping of the pair

(i, j) to its corresponding cell in the adjacency matrix G∗`
and results in an edge probability of zero when the cell in G∗`
is 0.

∏K−`
k=1 θikjk is the remaining probability for a tied edge,

where θikjk corresponds to the probability of a successful
Bernoulli trial for (i, j) at scale k in the hierarchy—which is
determined by the entry of P1 corresponding to the kth bits
of (i, j) (see [10] for a detailed explanation of the hierarchical
bit representation).

2.3 Initiator matrix
To investigate the impact of the size of the initiator ma-

trix, we generated networks over a wide range of parameter
values in Θ and measured the characteristics of the resulting
graphs. Specifically, we considered 9,239 different values of
Θ with b = 2. For each Θ, we generated 50 networks with
K = 11 from KPGM (` = K) and mKPGM (` = 6). This
produced networks with 3,500-15,200 edges. We also gener-
ated the same quantity of networks, with similar number of
nodes, edges and equivalent levels of parameter tying for Θ
of size b = 3. For b = 3, we considered 18,816 different val-
ues of Θ and generated networks with K = 7 from KPGMs
(` = K) and mKPGM (` = 4). This produced networks
with 3,400-16,300 edges. For the generated networks, we
calculated two moments: (i) average clustering coefficient,
and (ii) average geodesic distance (see Figure 1).

Figure 1 shows that mKPGM and KPGM are able to pro-
duce networks with higher clustering coefficient when using
a larger initiator matrix (b = 3). Moreover, the increased
size of the initiator matrix does not change considerably the
average geodesic distance of the resulting networks. Conse-
quently, since a slightly larger initiator matrix increases the
coverage of the graph space without significantly increasing
the number of parameters that need to be estimated (4 vs.
9), in this paper we use b = 3 for the initiator matrix size.

Figure 1: Variation of graph properties for synthetic
networks using generator matrix of size b=2 and
b=3 for KPGM (left) and mKPGM (right)

3. MKPGM ESTIMATION
The simulation experiments in [10] demonstrate the ad-

vantages of the mKPGM representation for capturing im-
portant characteristics of real world networks (i.e., clustering

and variation). However, previous experiments used exhaus-
tive search to identify model parameters—to date there is no
training algorithm to learn mKPGM parameters automati-
cally from an observed network. Here we describe the first
tractable learning algorithm for mKPGMs. In Section 5 we
will apply the algorithm to learn mKPGM parameters from
real-world network populations and show that the learned
models are more accurate than competing models.

First we note that even though the mKPGM likelihood
(Eq. 3) is similar to that of KPGMs (Eq. 1), it can not easily
be used as an objective function to estimate the parameters
of the model. In principle, if the level of tying (`) is known
apriori, a MLE algorithm could alternate between sampling
permutations and estimating the parameters of the untied
and tied parts of the model. However, we found that MLE is
not likely to be successful in this case, since local search (i.e.,
swapping a single pair of nodes) in permutation space is ex-
tremely unlikely to discover the block structure that results
from parameter tying. Since it is necessary to recover the
block structure permutation to accurately estimate the pa-
rameters with MLE, in practice MLE only works well when
the search starts from very close to the true permutation—
which is not the case for real datasets.

Next, we note that the MoM approach to learn KPGMs [4]
is difficult to apply to mKPGMs since analytical expressions
for even simple moments are difficult to derive for mKPGMs
due to the complex dependencies between the edges (the key
characteristic of the model). For example, let Aij = 1 when
there is an edge between nodes i and j, and 0 otherwise.
Then for nodes that have common (tied) parameters in the
network generation of GK−`: E[AijAkl] 6= E[Aij ]E[Akl].
This makes it difficult to calculate distributional moments
analytically and directly minimize f(Θ,F∗) in Eq. 2.

However, a strength of MoM estimation is that it is permu-
tation invariant—i.e., it successfully avoids the search over
the factorial permutation space which is even more difficult
in the space of mKPGMs. At the same time, a strength
of both mKPGMs and KPGMs is their ability to generate
sample networks in sub-quadratic time. To exploit these
two strengths we developed a simulated method of moments
(SMM) learning algorithm that approximates the objective
function in Eq. 2 with empirically estimated moments. Sim-
ulated method of moments (see e.g., [12]) is often used to
estimate models where the moments are complicated func-
tions that cannot easily be evaluated analytically (e.g., in
econometric models). In SMM methods, simulation experi-
ments are used to empirically estimate the moments and/or
their derivatives.

In our SMM method, we replace the analytical expression

of E[F|Θ] with an empirical estimation Ê[F|Θ] based on sim-
ulated networks from Θ. Algorithm 1 outlines the function
estObjFunc where we estimate f(Θ,F∗) empirically. Specif-

ically it estimates Ê[F|Θ] from a set of sampled networks
S. Each network Gi (i ∈ {1, · · · , Ns}), where Ns = |S|,
is generated with the mKPGM algorithm using the input
parameters Θ, K, and ` and the specified moments are cal-
culated in each Gi. Each expected moment is then esti-
mated from the median of the moments observed in the set
S: Ê[Fi|Θ] = median(Fi1, · · · , FiNs). Finally, the value
of the objective function is calculated using the estimated
distributional moments. The complexity of this function de-
pends on both the complexity of sampling Ns networks from
the model and the complexity of calculating the moments in



Algorithm 1 Function estObjFunc

Require: Θ, K, `, Ns, F∗

1: for i = 1; i+ +; i ≤ Ns do
2: Generate network Gi using mKPGM with (Θ,K, `)
3: Calculate moments Fi for Gi.
4: for i = 1; i+ +; i ≤ |F| do
5: Ê[Fi|Θ] = median(Fi1, · · · , FiNs )

6: return
∑
|F|

(
F∗−Ê[F|Θ]

F∗

)
each network. While generating a network from mKPGM is
O(|E|), the time needed for moment estimation depends on
the chosen moments. For example, computing average node
degree is O(|E|) but computing average geodesic distance
could be O(|V||E| log|V|). In this work, we approximate
the calculation of moments to make them at most linear in
E (e.g., by sampling shortest paths). Thus, the complexity
of estimating the objective function is O(Ns · |E|).

The use of SMM avoids the difficulties of determining an
analytical expression for each moment and facilitates the
incorporation of a wider range of moments in the learning
algorithm. However, since the objective function in Algo-
rithm 1 is not convex, we need a way to search over the
parameter space to minimize f(Θ,F∗). Moreover, without
a closed form expression for the moments, we also can not
estimate their gradients, thus a gradient descent-type opti-
mization method is not applicable. To offset these issues,
we developed a line search optimization method, using the
empirically estimated moments from SMM.

To consider whether linear search would be reasonable to
pursue, we explored whether the objective function is lo-
cally convex. We varied each parameter θij , while keeping
the rest of parameters constant, and evaluated f(Θ,F∗) for
different θij (see Figure 2, left). In all cases, we observed
a locally convex error function with a minimum around the
value of θij such that SKΘ = (

∑
i

∑
j θij)

K ≈ |E∗| (the num-

ber of edges of the training network). This implies that a
one dimensional linear search (i.e., changing a single param-
eter) will not be effective—once it reaches a local minima
that matches |E∗| it will not explore any further because
changing a single parameter in isolation will always change
the expected number of edges. However, a two dimensional
(2D) search, where we keep SKΘ constant through a simulta-
neous increase in one parameter and equal decrease in an-
other, could enable a successful search to improve f(Θ,F∗).
To test this, we varied combinations of two parameters in Θ
and evaluated f(Θ,F∗) for different values of the parame-
ters, while keeping the rest of parameters constant (figure 2,
right). Again, in all cases, the 2D curve was locally convex.

Thus, under the assumption that the 2D space is likely to
be locally convex, our algorithm approximates a full search
over parameter space by performing a linear search in 2D,
while constraining the parameters to match SKΘ = |E∗|.

3.1 mKPGM Learning Algorithm
Algorithm 2 outlines our learning algorithm which com-

bines SMM with a constrained line search in two dimensions
(2D) to identify the best set of parameters. The algorithm

begins calculating K =
⌈

log(|V∗|)
log(b)

⌉
, where |V∗| is the num-

ber of nodes of the training network G? = (V∗,E∗) and
b × b is the size of the parameter matrix Θ. It continues
with the initialization ∀i, j θij = K

√
|E∗|/b2, which ensures

the constraint SKΘ = |E∗| is met. With the initial set of
parameters, the initial error EF ∗ is calculated with estOb-

Figure 2: Error function with respect to the varia-
tion of one (left) and two (right) parameters.

Algorithm 2 mKPGM training algorithm

Require: G? = (V∗,E∗), b, δ, `, iter, Ns
1: Calculate the moments F∗ for G?

2: K =
⌈

log(|V∗|)
log(b)

⌉
3: Initialize ∀ i, j θij = K

√
|E∗|/b2

4: EF ∗ = estObjFunc(Θ,K, `,Ns,F∗)

5: Nc =
(b2

2

)
{combinations of 2 parameters}

6: Let Θpairs = {(11, 12), · · · , (b(b− 1), bb)}
7: for i = 1; i+ +; i ≤ iter do
8: j1 = 0
9: idx = Nc

10: while j1 < idx do
11: index = Θpairs(mod(j1, Nc) + 1)
12: for j2 = −3; j2 + +; j2 ≤ 3 do
13: Φ = Θ
14: φindex(1) = φindex(1) + j2 ∗ δ
15: φindex(2) = φindex(2) − j2 ∗ δ
16: if ∀ i1, i2 ∈ {1, · · · , b}, φi1,i2 ∈ [0, 1] then
17: EF ′ = estObjFunc(Φ,K, `,Ns,F∗)
18: if EF ′ < EF ∗ then
19: EF ∗ = EF ′

20: Θ = Φ
21: idx = idx+mod(j1, Nc) + 1

{Search is extended for the next Nc iterations}
22: j1 + +
23: δ = δ/2
24: return Θ

jFunc. The algorithm continues with the generation of the

set of Nc =
(
b2

2

)
possible pairs of parameters Θpairs to con-

sider in the 2D search. In case of undirected networks the
set Θpairs is reduced to Nc =

(
b(b+1)/2

2

)
elements, due to the

symmetric relationship in Θ.
The algorithm then begins the search over the parameter

space, which consists of three loops. The first loop iterates
iter times over the step sizes δ, which determines the pa-
rameters value changes. The second loop iterates over the
set Θpairs, selecting two parameters in each iteration, which
determine the part of parameter space that is searched. The
two indexes of the selected parameters are given by the
pair index = Θpairs(mod(j1, Nc)+1), where index(1) and
index(2) correspond to the parameters indexed by the first
and second element of index respectively. The third loop
(over j2), implements the restricted linear search, by iter-
ating from −3δ to 3δ with a step size of δ. The loop be-
gins with a copy of the original set of parameters (Φ = Θ),
then two parameters are modified: φindex(1) =φindex(1) +j2
and φindex(2) = φindex(2)− j2. This modification searches
over the two dimensional parameter space while constrain-
ing SKΘ = |E∗|. If all the parameters are in the range [0, 1],
then the value EF ′ is calculated by estObjFunc using Φ. If
EF ′ < EF ∗, then Φ is accepted, the error is updated, and
the search extended for the next Nc iterations.



The complexity of the mKPGM learning algorithm is O(c·
estObjFunc), where c= iter ·Nc depends on the number of
iterations needed for learning and the size of the initiator
matrix (i.e., number of parameters). Since the objective
function can be estimated in O(Ns · |E|), the overall com-
plexity of learning is O(c·Ns ·|E|).

Our SMM learning algorithm has three important advan-
tages over the previous MoM learning method for KPGMs.
First, our algorithm is not limited to moments that can be
calculated analytically. The only consideration for including
additional moments is the additional time needed to calcu-
late them empirically in network samples. Second, the SMM
approach facilitates learning for different sizes of initiator
matrices (i.e., b≥2). Third, our algorithm is not limited to
undirected networks, since the SMM approach can handle
the complexity of directed networks.

In this work, we use b = 3 for our initiator matrix and
consider five moments in our training algorithm: (i) average
number of edges, (ii) average cluster coefficient, (iii) average
geodesic distance (approximated by a sample of nodes), (iv)
size of the largest connected component, and (v) number of
nodes with degree greater than zero (to solve the KPGM
problem of isolated nodes [13]).

4. EXPERIMENTS
We compare mKPGMs, learned with our SMM algorithm,

to four alternative statistical models of networks and eval-
uated their ability to model both synthetic and real-world
network populations. To assess whether the generated net-
works capture the properties we observe in real network pop-
ulations, we use four evaluation measures and visual compar-
ison of the properties of networks generated from the learned
models. We also apply our learning algorithm to three sin-
gle network datasets, where due to the lack of information
about population variance, we train the mKPGM algorithm
with `=K (which is equivalent to a KPGM). The results in-
dicate that our new SMM approach can learn more accurate
parameters than current learning methods for KPGMs.

4.1 Datasets
We considered one synthetic dataset and six real-world

network datasets in this paper. All datasets were trans-
formed to undirected graphs without self loops. For the syn-
thetic data, we generated 50 networks utilizing the mKPGM
algorithm with K = 7 and ` = 4 and the Θorig parameters
specified in Figure 2.

The first real dataset (Facebook) is drawn from the public
Purdue Facebook network. Facebook is a popular online so-
cial network site with over 845 million members worldwide.
We considered a set of over 400,000 Facebook wall links in a
year-long period among over 50,000 Facebook users belong-
ing to the Purdue University network. From this data, we
sampled 50 networks based on the same process describe by
Moreno [10]. Each network has 2,187 nodes (b=3)(K=7) and
the edges were collected over time windows of 60 days.

The second dataset (Email) is drawn from a Purdue email
network which was constructed from anonymized email logs
on the Purdue mail-servers. The email traffic was recorded
over 189 days from August 22, 2011 to February 28, 2012
and is comprised of all email transactions from one Purdue
user to another. In order to remove the effects of mailing
lists and automated emails, we drop any node that has an
incoming or outgoing degree of 0. In our analysis we focus on

the 137 daily snapshots of networks that occur during during
class periods (i.e., weekdays). The resulting networks have
an average of 10,946 nodes and 26,562 edges per day.

The third dataset (AddHealth) consists of a set of social
networks from the National Longitudinal Study of Adoles-
cent Health [5]. The AddHealth dataset consists of survey
information from 144 middle and high schools, collected (ini-
tially) in 1994-1995. The survey questions queried for the
students’ social networks along with myriad behavioral and
academic attributes. In this work, we considered a set of 25
school networks with sizes ranging from 800 to 2,000 nodes.

These three real datasets are illustrative examples of graph
populations—sets of networks that exhibit similar graph struc-
tures with natural variation. Each set of graphs is likely
to be drawn from the same underlying distribution (e.g.,
email communication patterns are generated by similar so-
cial processes). While the networks population are small
to medium-sized networks, the empirical performance of
mKPGMs on larger-sized single networks indicates that re-
sults will generalize to larger graphs as well.

Three single large networks data were obtained from the
Stanford Network Analysis Project1 and [14]. We learned
mKPGM models with ` = K from these single networks and
compared against KPGM training methods. The first net-
work is the Gnutella peer-to-peer network (Nutella), which
is a sequence of snapshots of the Gnutella peer-to-peer file
sharing network from August 2002 with 6,301 nodes and
20,777 edges. The second dataset is the Arxiv General Rel-
ativity and Quantum Cosmology (GRQC) collaboration net-
work, where each of the 5,242 nodes represent authors, and
the 28,980 edges indicates a publication between two au-
thors. The third dataset based on Facebook friendship links
in New Orleans (FBOR) as described by [14], consists of
46,952 nodes and 183,412 edges.

4.2 Models
We compare mKPGMs to four alternative models:

Kronecker Product Graph Model MLE (KPGM MLE).
The KPGM algorithm using the maximum likelihood train-
ing method described in section 2.2.

Kronecker Product Graph Model MoM (KPGM MoM).
The KPGM algorithm using the method of moments train-
ing method described in section 2.2.

Chung Lu Model (CL) [3]. The CL algorithm models
the expected degree distribution via a set of weights wi pro-
portional to degree of node i. To generate a sample graph
from the model, each edge is sampled independently with a
Bernoulli distribution with P (i, j) = wiwj .

Exponential Random Graph Model (ERGM) [15].
ERGMs represent probability distributions over graphs with
an exponential linear model that uses feature counts of local
graph properties (e.g., edges, triangles).

4.3 Evaluation
Our evaluation investigates whether the models capture

three important graph characteristics of real network datasets:
degree, clustering coefficient, and hop plot (see e.g., [11] for a
description of the characteristics). To evaluate the ability of
the models to capture these characteristics, we compare the
cumulative distribution functions (CDFs) of networks gen-

1http://snap.stanford.edu/data/



erated from the learned models to the CDFs of the original
data. We plot each CDF independently and use those for
visual comparison, but we would also like to evaluate the
relationships among the distributions of characteristics to
determine if the models are able to jointly capture the char-
acteristics through the network. To measure this quantita-
tively, we extend the Kolmogorov-Smirnov distance (KS),
which measures distributional distance in a single variable,
to multiple distributions. In addition to these results, we
consider three more network characteristics that were not
used as moments during mKPGM learning to assess how
the models perform on non-optimized measures.

Distributions of Network Characteristics
The CDF provides a more complete description of the net-
work structure compared to a single aggregate statistic (e.g.,
average degree). To compare the algorithms, we generated
50 sample graphs from the learned models. From these sam-
ples, we estimated the empirical sampling distributions for
degree, clustering coefficient, and hop plots. We plot the me-
dian and error bars corresponding to the interquartile range
for the set of observed network distributions. Solid lines cor-
respond to the median of the distributions and error bars to
the 25th and 75th percentiles.

Kolmogorov-Smirnov Distance Between Distributions
Since network characteristics are correlated, independent
evaluation of multiple CDFs can make it difficult to accu-
rately evaluate the models. For example, when two or more
variables are correlated (e.g., degree and clustering), an al-
gorithm may generate networks that match each (marginal)
distribution but do not capture the joint distribution accu-
rately. At the same time, another algorithm may generate
networks that do not accurately match the marginal distri-
butions (e.g., one is overestimated and another is underesti-
mated), but the joint distribution may be a closer match.

To quantitatively measure the differences between mul-
tidimensional discrete CDFs, we outline a new distance
measure—the KS3D which is based on the Kolmogorov-
Smirnov (KS) distance. The KS distance between two one
dimensional CDFs is the maximum absolute difference be-
tween the CDFs: KS(CDF1, CDF2) = maxx|CDF1(x) −
CDF2(x)|. This distance varies between 0 and 1, where
zero indicates a perfect match of the two distributions.

The KS3D distance captures the correlation among graph
measures in multiple dimensions, calculating the maximum
difference between two three-dimensional CDFs. To calcu-
late theKS3D, we represent every node as a three-dimensional
point Poi =< di, ci, gi > where di is the degree, ci is the
clustering coefficient, and gi is the average geodesic distance,
for node i respectively. We then calculate the maximum per-
centage difference between two distributions of Po. Specif-
ically, given two graphs G1 = (V1,E1) and G2 = (V2,E2),
the KS3D distance is defined as:

KS3D(G1, G2) = maxPox |cp1(Pox)− cp2(Pox)| (4)

where cpi(Pox) is the percentage of points from network
Gi that are less than or equal to the reference point Pox
(in all dimensions). The KS3D distance varies between 0
and 1, with 0 indicating a perfect match between the two
distributions. Although we describe the distance in 3D, gen-
eralization to higher dimensions is straightforward.

The code for the KS3D distance is presented in Algo-
rithm 3. Given G1 = (V1,E1) and G2 = (V2,E2), the set

Algorithm 3 KS3D distance algorithm

Require: G1 = (V1,E1), G2 = (V2,E2)
1: Let V = V1 ∪V2

2: maxDist = 0
3: for node i in V do
4: Let Poi =< di, ci, gi > {degree, clustering coefficient and

geodesic distance of node i}
5: for j = 1; j + +; j <= 2 do
6: cpj = 0 {Proportion of points lower than Poi in Gj}
7: for node k in Vj do
8: Let Pok =< dk, ck, gk >
9: if dk ≤ di and ck ≤ ci and gk ≤ gi then

10: cpj + +
11: cpj = cpj/|Vj |
12: if maxDist < |cp1 − cp2| then
13: maxDist = |cp1 − cp2|
14: return maxDist

V = V1 ∪ V2 is defined. For every node i in V, we use
Poi to calculate cp1 and cp2 for G1 and G2, if the abso-
lute difference between them is greater than the current
maximum distance, we save the new difference and con-
tinue with the next point. Once that all points are consid-
ered, the maximum distance is return. An approximation
of the KS3D can be calculated using random selected nodes
from each network and using a 3D-grid for the comparison
(KS3D(G1, G2) = maxx|cp1(x)− cp2(x)|, where x is a point
of the 3D-grid)

Non-Optimized Network Measures
We also evaluate three different characteristics not utilized
as moments in the mKPGM learning algorithm, to asses
whether the learned mKPGMs can capture other network
characteristics that were not explicitly optimized.

K-core: The K-core of a network is the largest induced
subgraph where each node has minimum degree k in the
subgraph. The distribution of k-core sizes (for varying k)
demonstrates the connectivity and community structure of
the graph [1]. Considering that two k-core distributions
could differ in size, we use skew divergence to measure the
divergence of the two distributions PDF1 and PDF2. The
skew divergence distance is defined as KL[αPDF1 + (1 −
α)PDF2, αPDF2 + (1− α)PDF1] with α = 0.99.

eigVal: The eigenvalues of the adjacency matrix of the net-
work G measure the centrality of each node in the network.
We compare the largest 25 eigenvalues of each network uti-
lizing the standardize absolute distance between them, a dis-
tance of zero implies a similarity among the importance of
the nodes in the network.

netVal: The first eigenvector of an adjacency matrix con-
tains important information for data analysis [7]. We calcu-
late the euclidean distance between the largest 100 network
values of each first eigenvector, where a value of zero im-
plies that important component characteristics are modeled
by the networks.

Average: To summarize the results of these three measures,
we normalized each measure to the range [0, 1] and averaged
the three for each model on each dataset.

5. RESULTS
We evaluated our training algorithm on one synthetic dataset

and six real datasets. For each dataset, we selected a single
network to use as the training set. To control for variation in
the samples, we selected the network that was closest to the



median of the degree distribution on synthetic (network 27,
13,460 edges) and Facebook data (network 11, 5,634 edges).
For Email and AddHealth we selected the network which is
the closest to 38 = 6, 561 and 37 = 2, 187 nodes (network 36
with 14,756 edges and network 72 with 15,484 edges respec-
tively). The other real datasets consist of a single network.

Dataset Real data `2 `3 `4 `5
Synthetic 1,277 - 2,529 1,107 -
Facebook 323 - - 536 291

Email 1,037 - - 1,905 947

AddHealth 2,491 2,826 1,789 - -

Table 1: Standard deviation of the number of edges,
for real data and mKPGM algorithm.

To determine the best value of `, we compared the stan-
dard deviation of the number of edges observed in the real
data against the standard deviation generated by the learned
parameters. We chose the value of ` to be the value with
closest match to the real data. The standard deviation for
the number of edges and the selected values of ` (in bold)
are included in Table 1.

Using each selected network as a training set, we learned
each of the described models. For mKPGM and KPGM-
MLE we used b = 3; for KPGM-MoM we used b = 2 since
the algorithm is specific to that size of initial matrix. For
mKPGMs, we used δ = 0.15, iter = 9, and Ns = 10 (which
is sufficient considering that we use the median of the char-
acteristics for learning). From each learned model, we gen-
erated 50 sample graphs and calculate the minimum of the
measures mentioned in Section 4.3, to control for the effect
of network variation.

5.1 Synthetic Data
The synthetic data experiments are intended to evaluate

whether our proposed mKPGM estimation algorithm is able
to learn parameters successfully in networks generated from
mKPGM distributions. Table 2 reports the parameters
learned by each of the KPGM-type models. KPGM-MLE
does not learn the original parameters, which is also reflected
in the CDFs and the evaluation metrics. Even though our
mKPGM training algorithm does not recover the exact pa-
rameters, the learned parameters can emulate the proper-
ties of the original synthetic dataset—as is confirmed by the
results in Figures 3-6. When MoM is used, we note that
models are not identifiable if the number of moments is less
than the number of model parameters. In our experiments,
we used five moments to estimate six parameters, and com-
bined this with constrained search—with quite accurate re-
sults. In future work, we will explore whether additional
moments can be used to improve estimation without incur-
ring additional computational costs.

Figures 3-5 (first column) show the CDFs for all meth-
ods on the synthetic data. Noticeably, mKPGM is the only
method able to capture the observed variance. The large
error for ERGMs may be due to degeneracy problems, even

Θorig ΘmKPGM ΘKPGMMLE
ΘKPGMMoM0.90 0.50 0.10

- 0.90 0.10
- - 0.70

0.81 0.07 0.42
- 0.81 0.17
- - 0.96

0.83 0.18 0.82
- 0.76 0.12
- - 0.08

 [
1.00 0.43

- 0.38

]
Table 2: Original and learned parameters for Kro-
necker algorithms in synthetic data.

Synthetic
Model K-core eigVal netVal Average

KPGM MoM 1.42 0.37 0.12 0.43
KPGM MLE 0.59 0.18 0.13 0.27

CL 0.26 0.19 0.22 0.33
ERGM 3.18 0.71 0.36 1.00

mKPGM 0.21 0.03 0.04 0.08

Table 3: K-core, eigVal and netVal distances over
synthetic data for all models.

Figure 6: KS3d distance over all dataset.

though we used some prescribed solutions to avoid it. We
expected that KPGMs would generate graphs with less vari-
ance than mKPGM, and this is confirmed by the results.
Finally, the lack of variance in the CL graphs can also be
explained by the models assumption of edge independence,
as is demonstrated in Appendix B. The conclusions from
visual CDF comparisons are further confirmed by the quan-
titative KS3d results (see Figure 6) and the non-optimized
measures (see Table 3). The low error for mKPGMs con-
firms the ability of the SMM learning algorithm to identify
a good set of parameters.

5.2 Real Data
Similar to results on synthetic data, the only model that

can capture the variance observed in the CDFs of real net-
works is the mKPGM (see Figures 3-5). The CL model is
the closest method to the median of the degree distribution
in most datasets (figure 3), however, it fails considerably
in the other characteristics. Moreover, the low variance of
the method makes it difficult for it to match entire distribu-
tions. The ERGM can only model the Email data, but while
it matches the median of the CDFs fairly well, it still does
not capture the variance. Moreover, it produces large errors
in the other two datasets. The KPGM cannot model any
of the CDFs well and critically lacks the ability to capture
any of the clustering in the data (see Figure 4). Finally the
mKPGM can model all datasets fairly well. In particular,
the mKPGM is the best model for the Facebook and Ad-
dHealth data, matching not only the median of the CDFs
but also their variance.

These results are further supported by the KS3d distance
(Figure 6, left plot), where mKPGM obtains the lowest er-
ror in two of the three datasets and the second lowest on the
third dataset. Notably, the mKPGM model results in up to
a 77% reduction of KS3d distance compared to the KPGM
models. These results confirm that the SMM training algo-
rithm not only learns the average of the selected moments
but also can learn parameters which capture the correlations
among the characteristics. It is important to observe the
high error of other models on some of the real datasets. For
example CL and KPGM MoM obtain the highest possible
error on Email data.



Figure 3: Variation of degree distribution: Synthetic (1st), Purdue (2nd), Email (3rd) and AddHealth (4th).

Figure 4: Variation of cluster coefficient: Synthetic (1st), Purdue (2nd), Email (3rd) and AddHealth (4th).

Figure 5: Variation of hop plot: Synthetic (1st), Purdue (2nd), Email (3rd) and AddHealth (4th).

The results for the non-optimized measures of K-core,
eigVal and netVal (see Table 4) confirm that the training
method for mKPGM is not overfitting to the moments used
in the objective function and the learned parameters pro-
duce graphs that also capture other characteristics. Specifi-
cally, even though the training used different characteristics,
mKPGM produces the best match for the three characteris-
tics on the Facebook and AddHealth data, where it obtains
the lowest average error. The only exception is the Email
data, where the mKPGM model produces networks with a
high value in the K-core distance. This is due to the skew-
ness of the K-core distribution in the email data (the highest
K-core is three). Beside the ERGM, which is the best model
for Email data, the other models can only capture one or two
characteristics at the same time, obtaining most of the time
an average distance over 0.4.

Given that KPGMs are a special case of mKPGMs (` =
K), we apply our training method to three single network
datasets and compare our learning algorithm with ` = K,
against the current KPGM training algorithms. From the
learned models we generated 50 networks to compare against
the real data (except by FBOR where we generate a smaller
number of samples because of the network size). For these
experiment, we only present the KS3D distances (Figure 6,
right plot), and omit other results due to space constraints.

In spite of the fact that mKPGM generates networks equiv-
alent to KPGMs (` = K), the results show that mKPGMs
obtain the lowest KS3D error among all the models—up
to 36% of reduction in KS error. This demonstrates that

Facebook
Model K-core eigVal netVal Average

KPGM MoM 0.07 0.21 0.10 0.55
KPGM MLE 0.17 0.11 0.12 0.50

CL 0.13 0.04 0.21 0.50
ERGM 0.45 0.18 0.11 0.80

mKPGM 0.11 0.06 0.06 0.26

Email
Model K-core eigVal netVal Average

KPGM MoM 0.43 0.26 0.28 0.82
KPGM MLE 0.26 0.27 0.29 0.74

CL 0.21 0.02 0.38 0.47
ERGM 0.09 0.08 0.15 0.29

mKPGM 0.53 0.11 0.39 0.80

AddHealth
Model K-core eigVal netVal Average

KPGM MoM 2.36 0.33 0.11 0.74
KPGM MLE 0.64 0.16 0.20 0.39

CL 0.16 0.18 0.37 0.47
ERGM 0.80 0.22 0.47 0.67

mKPGM 0.21 0.08 0.05 0.14

Table 4: K-core, eigVal and netVal distances over
network populations for all models.

our SMM training algorithm also improves on the previous
KPGM training algorithms—even in large networks such as
FBOR (46,952 nodes). While other KPGM models can cap-
ture some aspects of the networks, CL is the worst model in
single datasets (except for FBOR where ERGM cannot be
learned due to its size).



6. DISCUSSION AND CONCLUSIONS
In this paper, we presented the first tractable learning al-

gorithm for mixed Kronecker Product Graph Models, mak-
ing it feasible to learn these models from data for the first
time. Our empirical evaluation demonstrates that mKPGMs,
learned with our simulated method of moments training al-
gorithm (SMM), outperform several competing statistical
models of graphs—not only by matching the characteristics
of the networks, but also by capturing the variability ob-
served in network populations.

Specifically, we compared against CL, ERGM, KPGM
(MLE and MoM) and showed that mKPGMs are signifi-
cantly more accurate, resulting in 10-90% reduction in KS
distance. The improved fit is due to the ability of mKPGMs
to jointly capture the clustering coefficient and the hop plot
distribution. Moreover, the learned parameters also pro-
duce a fairly good match on characteristics that were not
included in the objective function (eigenvalues, network val-
ues, and K-core). We note that the SMM method is flexible
enough to include these additional measures into the objec-
tive function directly if they are deemed important enough
to explicitly optimize and computational resources allow.

We also demonstrated that SMM learning can be applied
to a single network by setting ` = K. mKPGMs learned with
SMM offer a significant improvement over current KPGM
learning algorithms, not only by reducing the error over the
measures (10-40% reduction in KS3D distance) but also by
avoiding the difficulties of search over factorial permutation
space and the complexities of deriving analytical moments.

For evaluation, we proposed a new measure—the 3-D
Kolmogorov-Smirnov distance. This measure considers the
correlation among graph distributions (e.g., multiple graph
features per node) and enables a more accurate assessment
of the characteristics of generated networks by considering
the empirical joint distribution rather than independently
evaluating marginal distributions.

In the future, we will extend the mKPGM learning algo-
rithm to consider the use of additional moments, including
higher order moments (i.e., variance) that can be used to
learn the most appropriate way to tie parameters (e.g., by
varying levels throughout the graph).
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APPENDIX
A. MKPGM GENERATION TIME

The running time is given by the KPGM network G′ = (V′,E′)
and the generation of the K − ` tied levels for each edge of the
set E′. The running time for KPGM is O(E′) [9], while one
subnetwork of K − ` tied takes a time equal to the total number
of bernoulli trial. Considering that the expected number of edges

for the level i − 1 is given by Si−1
Θ , and b2 bernoulli trials are

realized for each edge, the number of trials is:
K−l∑
i=1

b2Si−1
Θ = b2

K−l−1∑
i=0

SiΘ = b2
1− SK−`Θ

1− S1
Θ

considering each trial as O(1), the running time for the generation

of K − ` tied levels is O(b2SK−`Θ ). Multiplying this value for
the number of edges of G′, the final running time for the entire

network is O(S`Θ + S`Θb
2SK−`Θ ) ≈ b2SKΘ ≈ O(|E|).

B. VARIANCE FOR CL MODEL
Theorem: The independent edge generation process of the

Chung-Lu model produces a low variance in the number of edges.
Proof: The variance of the number of edges for a graph G =
(V,E), generated by the Chung-Lu model, is:

V ar (|E|) =
N∑
i=1

N∑
j=1

V ar (eij) =
N∑
i=1

N∑
j=1

wiwj(1− wiwj)

=
N∑
i=1

N∑
j=1

wiwj −
N∑
i=1

N∑
j=1

w2
iw

2
j = E[|E|]−

N∑
i=1

N∑
j=1

w2
iw

2
j

Given that
∑N
i=1

∑N
j=1 w

2
iw

2
j ≥ 0 then V ar (|E|) ≤ E[|E|].


