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Abstract

Polar graphs generalise bipartite graphs, cobipartite graphs, and split graphs, and they
constitute a special type of matrix partitions. A graph is polar if its vertex set can be
partitioned into two, such that one part induces a complete multipartite graph and the
other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary
graph is polar, is an NP-complete problem. Here, we show that for permutation graphs this
problem can be solved in polynomial time. The result is surprising, as related problems
like achromatic number and cochromatic number are NP-complete on permutation graphs.
We give a polynomial-time algorithm for recognising graphs that are both permutation and
polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.

1 Introduction

Many graph problems can be formulated as finding a partition of the vertices such that various
parts satisfy certain properties internally, and at the same time certain other properties are
satisfied regarding the interaction between these parts. Examples of such problems are the broad
variety of colouring and homomorphism problems, and the matrix partition problem; the latter
was posed by Feder et al. [15]. The matrix partition problem asks for a partition of the vertex set
of a graph into subsets A1, . . . , Ak such that each subset is either a clique or an independent set,
and pairs of subsets are completely adjacent or completely non-adjacent, depending on a given
pattern. If the pattern says that we partition into only cliques and independent sets, and two
partition sets Ai, Aj should be completely adjacent if Ai, Aj are independent sets, completely
non-adjacent if Ai, Aj are cliques, and there is no restriction for the two other cases, then we
get exactly the polar graphs.

Polar graphs were defined in 1985 by Tyshkevich and Chernyak [26]. A graph is polar if
its vertex set can be partitioned into A and B such that A induces a complete multipartite
graph and B induces a cluster graph, i.e., a disjoint union of complete graphs. Such a partition
is called polar. Since complements of cluster graphs are exactly complete multipartite graphs
(and vice versa), the class of polar graphs is closed under taking complements. Furthermore, it
contains the well-known classes of split graphs, bipartite graphs, and cobipartite graphs. If A is
simply an independent set, then the graph (and the partition) is called monopolar. In addition
to fitting into the matrix partition problem [15] described above, polar partitions can be seen
as generalised colourings [5].
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B ⧹ A indep. set clique cluster gr. compl. multip.

indep. set P P P ?
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Figure 1: The table shows known and new computational complexity results for (A,B)-partition
problems on permutation graphs, when A or B (symmetrically) is an independent set, is a clique,
induces a cluster graph, or induces a complete multipartite graph. The boldface entries are the
results of this paper. Empty cells are due to the symmetry of the table.

The recognition problems for polar and monopolar graphs are NP-complete [6, 14]. Notice,
however, that “admitting a polar partition” can be expressed in monadic second-order logic
without using edge-set quantification, and hence, polar graphs of bounded treewidth or bounded
clique-width can be recognised in polynomial time, by the results of [1, 8] and [9]. Consequently,
it is of interest to find out where the boundary goes between subclasses of polar graphs that
are recognisable in polynomial time and those whose recognition is intractable. When it comes
to graph classes of unbounded treewidth and clique-width whose intersection with polar graphs
can be recognised in polynomial time, so far we know only of chordal graphs [11, 17].

In this paper, we give polynomial-time algorithms for the two problems of deciding whether
a given permutation graph is polar or monopolar. Permutation graphs are a well-studied graph
class with a large number of theoretical applications [4, 18], and they can be recognised in lin-
ear time [24]. Permutation graphs have unbounded treewidth and clique-width [19]. Although
many NP-complete problems become tractable on permutation graphs, well-known colouring
problems, like cochromatic number [16, 28] and achromatic number [2], remain NP-complete on
this graph class. The class of monopolar graphs generalises bipartite graphs and split graphs,
and thus the class of monopolar permutation graphs is a generalisation of the class of bipar-
tite permutation graphs. Since permutation graphs are closed under taking complements, our
recognition algorithm for monopolar permutation graphs can also be used to recognise polar per-
mutation graphs whose B-set induces a complete graph. Thus, combined with the well-known
recognition results for bipartite graphs, split graphs and cobipartite graphs, our results show
that a range of partition problems, in the sense of the introductory matrix partition problem, are
polynomial-time solvable on permutation graphs. We summarise these known and new results
in Figure 1.

We show separately that monopolar permutation graph recognition and polar permutation
graph recognition is polynomial-time solvable. The algorithm for the monopolar case partitions
the input graph into small split graphs that satisfy certain conditions. The running time of this
algorithm is O(nm), which is a significant improvement from its preliminary version [10]. For the
case of polar permutation graphs, the main idea is to delete a suitable set of vertices to reduce
the problem to a generalised monopolar recognition problem. As a result, we obtain an O(nm2)-
time algorithm for recognising polar permutation graphs, which improves the running time of the
preliminary version in [10]. We consider the monopolar permutation graph recognition problem
in Section 3, and the polar permutation graph recognition problem in Section 4.
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Other results on polynomial-time recognisable subclasses of polar graphs include [25] which
studies polar partitions where the size of each independent set and clique is bounded, [11, 17]
which give forbidden subgraph characterisations and a recognition algorithm for polar chordal
graphs, and [13] which gives similar results for polar cographs. In addition, [22] and [12] give
respectively a forbidden subgraph characterisation and a polynomial-time recognition algorithm
for bipartite graphs whose line graphs are polar. Finally, [7] gives a polynomial-time recognition
algorithm for monopolar claw-free graphs. Another research direction is to study which NP-
complete problems become tractable on polar graphs. For example, [23] gives polynomial-time
algorithms for finding a minimum maximal independent set in some subclasses of polar graphs.
This problem remains NP-hard in polar graphs admitting a polar partition where the size of
every independent set is at most one and the size of every clique is at most two.

2 Definitions and notation, polar partitions, and permutation
graphs

Our input graphs are simple and undirected. Only in Section 3, we use directed graphs (digraphs)
as auxiliary tools.

Let G be a simple and undirected graph. We denote its vertex set by V (G) and its edge
set by E(G). An edge between vertices u and v is denoted by uv. If uv is an edge of G then
u and v are adjacent in G. For a vertex x of G, the neighbourhood of x, denoted as NG(x), is
the set of vertices that are adjacent to x, and NG[x] = NG(x)∪ {x}. The degree of a vertex x is
dG(x) = |NG(x)|. Let X be a set of vertices of G. The subgraph of G induced by X is denoted
as G[X] and defined as the graph on vertex set X and edge set the set of edges of G that join
only vertices in X. By G \X, we denote the graph G[V (G) \X]. A graph is called complete if
every pair of vertices is adjacent. A set X ⊆ V (G) is called a clique if G[X] is complete, and it is
called an independent set if G[X] has no edges. A graph is connected if there is a path between
every pair of vertices; otherwise, the graph is called disconnected. The connected components of
a graph are the maximal connected (induced) subgraphs.

The disjoint union of two graphs G and H is the graph on vertex set V (G) ∪ V (H) and
edge set E(G) ∪ E(H); the disjoint union of more than two graphs is defined analogously. The
complement of G, denoted as G, is the graph on vertex set V (G) and edge set {uv ̸∈ E(G) |
u, v ∈ V (G) and u ̸= v}. A complete multipartite graph is the complement of the disjoint union
of complete graphs. Equivalently, the vertex set of a complete multipartite graph admits a
unique partition into maximal independent sets.

For a given graph G, a partition (A,B) of V (G), where A or B can also be empty, is called
polar if G[A] is a complete multipartite graph and G[B] is a disjoint union of complete graphs,
i.e., a cluster graph. Equivalently, (A,B) is a polar partition for G if both G[A] and G[B]
are cluster graphs. Note that (A,B) is a polar partition for G if and only if (B,A) is a polar
partition for G. A polar partition (A,B) for G is called monopolar if A is an independent set in
G. We say that a polar partition (A,B) for G is B-maximal if there is no polar partition (A′, B′)
for G with B ⊂ B′. Note that, for a polar partition (A,B), if there is a vertex u in A without a
neighbour in B then (A\{u}, B∪{u}) is also a polar partition for G. Hence the following result
is immediate.

Lemma 2.1 Let (A,B) be a B-maximal polar partition for a graph G. Every vertex in A has
a neighbour in B.
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A graphG is called split graph if V (G) admits a partition (A,B) such thatA is an independent
set of G and B is a clique of G. Such a partition is called split partition. It holds that split
graphs are special monopolar graphs and split partitions are special monopolar partitions.

Let n ≥ 1 and π be a permutation over {1, . . . , n}, i.e., a bijection between {1, . . . , n} and
{1, . . . , n}. We will denote π equivalently as a permutation sequence (π(1), . . . , π(n)). The
position of an integer x in π is π−1(x). By π−1(X) for X ⊆ {1, . . . , n}, we mean {π−1(x) |
x ∈ X}. The inversion graph of π has vertex set {1, . . . , n} and two vertices u, v are adjacent if
and only if (u− v)(π−1(u)− π−1(v)) < 0. A graph is a permutation graph if it is isomorphic to
the inversion graph of a permutation sequence [4, 18]. Permutation graphs can be recognised in
linear time [24]. Permutation graphs also have a geometric intersection model: for two horizontal
lines, mark n points on each line, assign to each point on the upper line a point on the lower
line, and connect the two points by a line segment. The corresponding graph has a vertex for
every line segment and two vertices are adjacent if the corresponding line segments cross. This
representation is called a permutation diagram. A graph is a permutation graph if and only
if it has a permutation diagram. Given a permutation graph, a permutation diagram for it
can be computed in linear time [24]. It is important to note that every induced subgraph of a
permutation graph is a permutation graph. For our purposes, we assume that a permutation
graph is given as a permutation sequence and equal to the defined inversion graph. Every
permutation graph with permutation sequence π has a permutation diagram D in which the
endpoints of the line segments on the lower line appear in the same order as they appear in π.
For such pairs (π,D), we say that D corresponds to π. For convenience reasons, sometimes we
will not distinguish between vertices of the graph and line segments in the permutation diagram;
however, the meaning will always be clear. Line segments, and thus vertices, have an upper and
a lower endpoint.

3 Recognising monopolar permutation graphs

A polar graph G is monopolar if it has a polar partition (A,B) such that A is an independent
set of G. Monopolar graphs are thus a generalisation of bipartite graphs and split graphs. We
show in this section that monopolarity is polynomial-time decidable for permutation graphs.
Our algorithm has running time O(nm) and is even able to output a monopolar partition, if
such exists.

Since connected bipartite graphs admit unique partitions and since partitions for split graphs
are very restricted, an interesting question is whether connected monopolar graphs have a similar
property regarding monopolar partitions. A simple example shows that this is not the case: a
simple path is a monopolar graph, since it is bipartite, but it has exponentially many monopolar
partitions. The algorithm that we present in this section is able to answer an even more general
question: given a connected permutation graph G and a set F ⊆ V (G), does G have a monopolar
partition (A,B) such that A ⊆ F . By choosing F = V (G), we get exactly the monopolar
permutation graph recognition problem.

We partition this section into two parts. In the first part, we present the main algorithmic
idea. It is based on a partition of the graph into small split graphs. In the second part, we
consider implementation aspects. As important auxiliary results, we will closely consider split
partitions.
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Figure 2: The figure shows a trapezoid (in grey) and some of the vertices in the intersection of
the trapezoid, as it may appear in a permutation diagram. The vertices form an independent
set.

3.1 Algorithm and correctness

Let G be a permutation graph with permutation sequence π and corresponding permutation
diagram D. A trapezoid in D is a pair (I1, I2) of intervals of integers with I1 = {i1, . . . , i′1}
and I2 = {i2, . . . , i′2} for 1 ≤ i1 ≤ i′1 ≤ |V (G)| and 1 ≤ i2 ≤ i′2 ≤ |V (G)|. Trapezoids are the
main substructures in permutation diagrams that we consider in this paper. We define four
sets of vertices for trapezoids. Let T = (I1, I2) be a trapezoid in D with I1 = {i1, . . . , i′1} and
I2 = {i2, . . . , i′2}. We define the left side, the right side, the containment and the intersection of
T:

– left side: L(T) =def {x ∈ V (G) | x < i1 and π−1(x) < i2}

– right side: R(T) =def {x ∈ V (G) | i′1 < x and i′2 < π−1(x)}

– containment: con(T) =def {x ∈ V (G) | i1 ≤ x ≤ i′1 and i2 ≤ π−1(x) ≤ i′2}

– intersection: int(T) =def V (G) \ (L(T) ∪R(T)) .

Note that con(T) ⊆ int(T). For X ⊆ V (G), the X-trapezoid in D is the trapezoid U =
(J1, J2) with J1 = {minX, . . . ,maxX} and J2 = {minπ−1(X), . . . ,maxπ−1(X)}. Furthermore,
X ⊆ con(U). Informally, the X-trapezoid is the smallest trapezoid that contains X. Every
trapezoid is not necessarily an X-trapezoid for some set X. A schematic example of a trapezoid
in a permutation diagram, with some vertices in its containment and intersection, is shown in
Figure 2. It follows from the properties of cliques in permutation diagrams that minπ−1(X) =
π−1(maxX) and maxπ−1(X) = π−1(minX) when X is a clique.

Our solution of the problem in this section is based on the following idea: Let (A,B) be
a monopolar partition. Then every clique in G[B] can be connected to a trapezoid, and every
vertex in A intersects with some trapezoid. For X ⊆ V (G) with 1 ≤ |X| ≤ 2, we call the
X-trapezoid T good (with respect to F ) if G[int(T)] has a split partition (C,D) so that int(T)\
con(T) ⊆ C ⊆ F and X ⊆ D ⊆ con(T). We call this split partition (C,D) good for T (with
respect to F ). For our algorithm, we construct an auxiliary digraph whose vertices correspond
to the good trapezoids, and our problem is solved by deciding the existence of a path.

In a digraph edges are ordered pairs, and they are called arcs. An arc from vertex u to vertex
v is denoted by (u, v). A path in a digraph follows the directions of the arcs; hence there is a
path (x1, x2, . . . , xs) if there are arcs (x1, x2), (x2, x3), . . . , (xs−1, xs). Such a path from x1 to xs
is called an x1, xs-path.

Let G be a permutation graph with permutation sequence π and corresponding permutation
diagram D, and let F ⊆ V (G). By aux(D, F ), we denote the auxiliary digraph with the following
vertices and arcs:
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– aux(D, F ) has a vertex for every good X-trapezoid where X ⊆ V (G) and 1 ≤ |X| ≤ 2;
denote by Tx the trapezoid that corresponds to vertex x of aux(D, F );

– for two vertices u and v of aux(D, F ), (u, v) is an arc in aux(D, F ) if con(Tv) ⊆ R(Tu)
and R(Tu) ∩ L(Tv) = ∅ and (int(Tu) \ con(Tu)) ∪ (int(Tv) \ con(Tv)) is an independent
set of G.

To complete the definition of aux(D, F ), there are two more vertices, 0 and 1, and there is an
arc (0, x) for every vertex x in aux(D, F ) with L(Tx) = ∅, and there is an arc (x,1) for every
vertex x in aux(D, F ) with R(Tx) = ∅.

Lemma 3.1 Let G be a connected permutation graph with permutation sequence π and cor-
responding permutation diagram D. Let F ⊆ V (G). The auxiliary digraph aux(D, F ) has a
0,1-path if and only if G has a monopolar partition (A,B) with A ⊆ F .

Proof. Let P = (x0, . . . , xs) be a 0,1-path in aux(D, F ). Note that s ≥ 2, since (0,1) is not
an arc of aux(D, F ) due to the definition of aux(D, F ). Let T1, . . . ,Ts−1 be the trapezoids
corresponding to x1, . . . , xs−1, respectively. For 1 ≤ i ≤ s − 1, let (Ci, Di) be a good split
partition for Ti. We show that (C1 ∪ · · · ∪ Cs−1, D1 ∪ · · · ∪Ds−1) is a monopolar partition for
G. First, observe that (C1 ∪ · · · ∪Cs−1)∩ (D1 ∪ · · · ∪Ds−1) = ∅. Otherwise, there are x ∈ V (G)
and 1 ≤ i, j ≤ s− 1 with i ̸= j such that x ∈ Ci ∩Dj . By definition of good split partition, this
particularly means that x ∈ con(Tj). Since con(Ti) ∩ con(Tj) = ∅ due to the definition of the
arcs of aux(D, F ), it holds that x ∈ int(Ti) \ con(Ti). Then, however, con(Tj) ∩ int(Ti) ̸= ∅,
which is a contradiction to the properties of permutation diagrams and the definition of the arcs
of aux(D, F ). Second, we show that (C1 ∪ · · · ∪ Cs−1) ∪ (D1 ∪ · · · ∪ Ds−1) = V (G). Suppose
there is x ∈ V (G) such that there is no 1 ≤ i ≤ s − 1 with x ∈ int(Ti). Since L(T1) = ∅ and
R(Ts−1) = ∅, there is 1 ≤ i < s− 1 such that x ∈ R(Ti) ∩ L(Ti+1). This, however, contradicts
the definition of the arcs of aux(D, F ). We conclude that (C1 ∪ · · · ∪ Cs−1, D1 ∪ · · · ∪ Ds−1)
defines a partition for G.

Since Di ⊆ con(Ti) for every 1 ≤ i ≤ s − 1 and con(Ti) ∩ con(Tj) = ∅ for every 1 ≤ i <
j ≤ s− 1, G[D1 ∪ · · · ∪Ds−1] is the disjoint union of complete graphs. It remains to show that
C1 ∪ · · · ∪ Cs−1 is an independent set of G. Suppose the contrary, i.e., there are u, v ∈ V (G)
and 1 ≤ i ≤ j ≤ s − 1 with u ∈ Ci and v ∈ Cj and uv ∈ E(G). Note that i ̸= j since (Ci, Di)
is a split partition for G[int(Ti)] and therefore Ci is an independent set of G. If j − i ≥ 2 then
u ∈ Ci+1 or v ∈ Cj−1, so that we can assume without loss of generality that j − i = 1. Since
u ̸∈ con(Ti) and v ̸∈ con(Tj), u and v are contained in (int(Ti) \ con(Ti))∪ (int(Tj) \ con(Tj)),
which is an independent set of G due to the definition of the arcs of aux(D, F ). We obtain our
contradiction, and the defined partition of V (G) is a monopolar partition for G. And with the
condition Ci ⊆ F for every 1 ≤ i ≤ s− 1, we conclude that (C1 ∪ · · · ∪Cs−1, D1 ∪ · · · ∪Ds−1) is
a monopolar partition for G of the desired form.

For the converse, let (A,B) be a monopolar partition for G with A ⊆ F . Let D1, . . . , Dr be
the sets of vertices that induce the connected components of G[B]. Without loss of generality,
we can assume that minD1 < · · · < minDr. With the properties of permutation diagrams, it
follows that minD1 ≤ maxD1 < · · · < minDr ≤ maxDr. By definition of monopolar partition,
D1, . . . , Dr are cliques of G. For every 1 ≤ i ≤ r, let Xi =def {minDi,maxDi} and let Ti be
the Xi-trapezoid in D. By the properties of permutation diagrams, Di ⊆ con(Ti). And since
G[B] is the disjoint union of cliques, it follows with our assumption that con(Ti+1) ⊆ R(Ti) for
every 1 ≤ i ≤ r − 1. First, we show that for every 1 ≤ i ≤ r, Ti is good with respect to F . It
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holds that 1 ≤ |Xi| ≤ 2. Since B ∩ con(Ti) = B ∩ int(Ti) = Di, it holds that int(Ti) \Di ⊆ A.
Hence, ((int(Ti) \Di, Di) is a split partition for G[int(Ti)] that is good. It follows that there is
a vertex of aux(D, F ) that corresponds to Ti. Let x1, . . . , xr be the vertices of aux(D, F ) that
correspond to respectively T1, . . . ,Tr.

Second, we show that (xi, xi+1) is an arc of aux(D, F ) for every 1 ≤ i ≤ r − 1. We have
already seen that con(Ti+1) ⊆ R(Ti). Since int(Ti)\con(Ti) ⊆ A and int(Ti+1)\con(Ti+1) ⊆ A
due to the definition of Xi and Xi+1, it holds that (int(Ti) \ con(Ti))∪ (int(Ti+1) \ con(Ti+1))
is an independent set of G. Finally, suppose that there is x ∈ V (G) with x ∈ R(Ti) ∩ L(Ti+1).
This means that x ̸∈ B, so that x ∈ A. Furthermore, x is not adjacent to any vertex in B, thus,
x is an isolated vertex. This yields a contradiction to G being connected. We conclude that
(xi, xi+1) is an arc of aux(D, F ).

Third, we show that (0, x1) and (1, xr) are arcs of aux(D, F ). Similar to the previous
arguments, if L(T1) ̸= ∅ or R(Tr) ̸= ∅ then there is a vertex in A without a neighbour in B, so
that G cannot be connected. We conclude that aux(D, F ) has a 0,1-path.

Note that a 0,1-path in aux(D, F ) does not correspond to a specific monopolar partition
for G but can represent many partitions. The main reason is that a good split partition for
a trapezoid is not unique, thus a vertex can belong to a clique and to the independent set in
different monopolar partitions.

3.2 Running time

The main computational task is to construct the auxiliary digraph. We partition this task into
listing the vertices and listing the arcs. For listing the vertices, the algorithm mainly needs to
decide for a given trapezoid whether it is good. This is decided by checking the existence of
a split partition that respects constraints. We want to decide this question in O(n) time per
trapezoid, which requires a careful analysis of the structure of possible split partitions.

Let G be a graph with at least one edge. The split partition number of G is defined as the
smallest number k such that there are vertices u, v of G where dG(u) = k and dG(v) ≤ k and
uv ∈ E(G). If G has a vertex of degree smaller than k then the largest degree k′ with k′ < k
is called the second split partition number of G. Note that k′ does not always exist. A split
partition (C,D) for G is clique-maximal if there is no split partition (C ′, D′) for G with D ⊂ D′.

Lemma 3.2 Let G be a split graph with at least one edge. Let k and k′ be respectively the split
partition number and the second split partition number of G (if the latter exists). Let (C,D) be
a clique-maximal split partition. Then, one of the following holds:

– C = {x | dG(x) < k} and D = {x | dG(x) ≥ k}

– if k′ exists: NG(x) = NG(x
′) and xx′ ̸∈ E(G) for all vertex pairs x, x′ of G with dG(x) =

dG(x
′) = k′, and D = NG[y] for some vertex y with dG(y) = k′.

Proof. We first show that all vertices of G with degree more than k belong to D. Let u, v
be a vertex pair of G to witness the split partition number, i.e., dG(u) = k and dG(v) ≤ k
and uv ∈ E(G). Suppose that there is a vertex x of G with dG(x) > k and x ∈ C. Since
all neighbours of x are in D, it follows that |D| > k and all vertices in D with a neighbour
in C have degree larger than k. Since u and v are adjacent, at most one of the two vertices
can be in C. However, if one of the two vertices is in C then the degrees of u and v imply
|D| ≤ k, in contradiction to the above lower bound on |D|. Thus, u, v ∈ D. This also implies
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|D| = k + 1 due to |D| ≤ dG(u) + 1. Since dG(x) ≥ k + 1 and NG(x) ⊆ D, it follows that x is a
neighbour of u. This implies dG(u) > k, which is a contradiction. Hence, x ∈ D, and therefore,
{x | dG(x) > k} ⊆ D.

Next, we consider vertices of degree smaller than k. Assume that there is a vertex y with
dG(y) < k and y ∈ D. Suppose that y has a neighbour z in C. Then, y has at most k − 2
neighbours in D, which implies |D| ≤ k− 1, and thus dG(z) ≤ k− 1. This, however, contradicts
the definition of the split partition number of G. Hence, all neighbours of y are in D, and since
D is a clique of G, NG[y] = D. Note that all vertices in C have degree at most dG(y), since none
of these vertices is adjacent to y. Suppose there is another vertex y′ in D without a neighbour
in C. Then, dG(y) = dG(y

′) and yy′ ∈ E(G), contradicting the definition of the split partition
number. Thus, all vertices in D \ {y} have degree more than dG(y). If there is a vertex z of G
with dG(z) = dG(y) then z ∈ C by the above argument, and NG(z) = NG(y) due to the size
of D. This particularly means that all vertices of degree dG(y) form an independent set of G.
Furthermore, dG(y) = k′. This shows that (C,D) is a split partition for G of the second type.

As the complementary case, we assume that all vertices of degree smaller than k are contained
in C. With the result of the first paragraph, we thus have {x | dG(x) < k} ⊆ C and {x |
dG(x) > k} ⊆ D. We consider the vertices of degree exactly k. Let E =def {x | dG(x) = k}. If
E ⊆ D then (C,D) is a split partition for G of the first type. Otherwise let E ̸⊆ D. We show
that this leads to a contradiction. By E ̸⊆ D, there is a vertex y ∈ E \ D. And since some
vertex in E is adjacent to a vertex of degree at most k due to the definition of k, C ∪ E is not
an independent set of G, thus there is x ∈ E ∩D. Similar to the previous paragraph, if x has no
neighbour in C then |D| = k + 1. Because of y ∈ C, all vertices in D \ {x} have a neighbour in
C and thus degree at least k+ 1. In particular, no vertex in E is adjacent to a vertex of degree
at most k, which is a contradiction to the definition of the split partition number. Thus, x has
a neighbour in C. Then, |D| ≤ k, and |D| ≥ k due to dG(y) = k. This implies |D| = k and
that x has y as the only neighbour in C, in particular, C contains only y as a vertex from E.
It follows that (C \ {y}, D ∪ {y}) is a split partition for G with D ⊂ D ∪ {y}, contradicting the
assumption about (C,D) as being a clique-maximal split partition for G. This completes the
proof.

The result of Lemma 3.2 implies an efficient algorithm for checking whether a trapezoid is
good with respect to some set of vertices.

Lemma 3.3 There is an O(n)-time algorithm that, given a permutation graph G with permu-
tation sequence π and corresponding permutation diagram D and sets F, F ′ ⊆ V (G) and each
vertex labelled with its degree in G and the split partition number k of G (if it exists), decides
whether G has a split partition (A,B) where F ′ ⊆ A ⊆ F .

Proof. Let G, F , F ′ and k be the input according to the lemma. If F ′ is not an independent
set of G or if F ′ ̸⊆ F then the algorithm immediately rejects. So, let F ′ be an independent set
and F ′ ⊆ F . We want to apply Lemma 3.2. Observe that if G has a split partition (A,B) with
F ′ ⊆ A ⊆ F then G has a clique-maximal split partition (A′, B′) with A′ ⊆ F and |B′ ∩F ′| ≤ 1.
Hence, for deciding the question it mainly suffices to consider clique-maximal split partitions.
If G is edgeless then a desired split partition for G exists if and only if |V (G) \ F | ≤ 1. If G is
a complete graph then a desired split partition for G exists if and only if |F ′| ≤ 1. Using the
degrees of the vertices, the two cases can be recognised and decided in O(n) time. Henceforth,
let G be neither edgeless nor complete. Let k′ be the second split partition number of G (if it
exists). We check the following conditions:

8



1) G is a split graph

2) G has a clique-maximal split partition (A,B) with A ⊆ F .

If G is a split graph then G has a split partition thus a clique-maximal split partition, and thus,
one of the following vertex partitions is a split partition for G:

– ({x | dG(x) < k}, {x | dG(x) ≥ k})

– if k′ exists: (V (G) \NG[y], NG[y]) for some vertex y with dG(y) = k′.

As vertex y in the second case, we choose y with y ̸∈ F ′ if possible. The correctness of this
check follows from the result of Lemma 3.2. In a second step, we check whether one of the two
partitions yields a desired split partition. If k′ does not exist then we have to consider only the
first partition. Otherwise, if k′ exists, and if y′ ∈ F ′ for all vertices y′ with dG(y

′) = k′ then the
second partition does not yield a desired partition. We consider the first partition; denote it by
(A1, B1). Clearly, if A1 ̸⊆ F then (A1, B1) does not yield a desired partition. If F ′ ⊆ A1 ⊆ F
then (A1, B1) is a desired partition. Finally, assume that B1 ∩ F ′ = {x}. If x has at least two
neighbours in A1 then (A1, B1) does not yield a desired partition. If x has no neighbour in A1

then (A1 ∪ {x}, B1 \ {x}) is a desired partition. So, let x have exactly one neighbour in A1,
say z. Since dG(x) ≥ k and all vertices in A1 have degree smaller than k, z is non-adjacent to
some vertex in B1, and thus exchanging x and z does not yield a split partition. We consider
the second partition, denoted as (A2, B2). This case can be rejected if y cannot be chosen with
y ̸∈ F ′. Similar to the previous case, if B2 ∩F ′ = {x} then we can accept if and only if x has at
most one neighbour in A2 and the neighbour is adjacent to all vertices in B2.

For the running time of the algorithm, we see that, using the degree every vertex is labelled
with, the vertex partitions can be computed straightforward in O(n) time. Also membership in
F and F ′ is a simple table look-up for each vertex. We check whether a given set of vertices
forms an independent set or a clique of G. Let S ⊆ V (G). In O(n) time, the vertices in S can
be ordered by increasing upper endpoint in D. This ordering arranges the vertices by increasing
lower endpoints if and only if S forms an independent set, and the ordering arranges the vertices
by decreasing endpoints if and only if S forms a clique (for an illustration of the independent
set case, see also Figure 2). This follows from the properties of permutation diagrams. The two
properties can be verified in O(n) time. Scanning the degree labels, k′ can be computed in O(n)
time from k. All other checks can be executed in O(n) time. This completes the algorithm.

For constructing the auxiliary digraph, we split the task into two subtasks, one of which is
listing the vertices. To decide whether a trapezoid represents a vertex we have to decide whether
the trapezoid is good, and we can apply the result of Lemma 3.3 to solve this problem. To obtain
a complete algorithm, it remains to compute the split partition number. This can easily be done
in linear time for arbitrary graphs. But we want to be faster. A partial algorithmic solution is
given in the next lemma.

Lemma 3.4 There is an O(n) time algorithm that given a split graph G whose vertices are
labelled with their degrees in G, computes the split partition number of G.

Proof. If G is edgeless then all vertices have degree 0 and the split partition number of G is
undefined. If G is complete and has at least two vertices then all vertices have degree |V (G)|−1
and the split partition number of G is |V (G)| − 1. This check requires O(n) time. Henceforth,
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assume that G is not edgeless and not complete. Using the degree sequence of G, a split partition
(I, C) for G can be computed in O(n) time (see, for instance, [18] and [20]). We observe, similar
to the proof of Lemma 3.2, that all vertices in I have degree at most |C|, and all vertices in C
with at least one neighbour in I have degree at least |C|. Let x be a vertex in C of smallest
degree. Thus, if all vertices in C have a neighbour in I then the split partition number of G is
equal to dG(x). Now, assume that x has no neighbour in I. It holds that dG(x) = |C| − 1 and
all vertices in I have degree at most |C| − 1. Then, the split partition number of G is equal to
min dG(C \ {x}). Note that C \ {x} is not empty, since otherwise G would be edgeless. This
algorithm takes O(n) time.

For permutation graphs, the split partition number can be computed in O(n log n) time:
order the vertices by increasing degree, which defines a vertex ordering σ, and determine the
leftmost vertex with a neighbour to its left. To decide the existence of a left neighbour, we
assign to every vertex the number of vertices to its left in σ that have smaller upper endpoint
in the permutation diagram and the number of vertices to its left in σ that have smaller lower
endpoint in the permutation diagram. The two numbers are different for a vertex if and only if
it has a neighbour to its left in σ. We leave it as an open problem whether the split partition
number of a permutation graph with degree-labelled vertices can be computed in O(n) time.

Now, we are ready for giving the main result and completing the main algorithm of this
section.

Theorem 3.5 There is an O(nm)-time algorithm that given a connected permutation graph G
and a set F ⊆ V (G), decides whether there is a monopolar partition (A,B) for G with A ⊆ F .

Proof. The algorithm is as follows: on inputG a connected permutation graph with permutation
sequence π and corresponding permutation diagram D and F ⊆ V (G), construct the auxiliary
digraph aux(D, F ) and check whether aux(D, F ) has a 0,1-path; accept if a 0,1-path exists,
otherwise reject. Due to Lemma 3.1, the algorithm accepts if and only if a desired monopolar
partition for G exists. It remains to consider the running time of the algorithm, which is
determined by the two tasks: constructing aux(D, F ) and finding a 0,1-path.

We begin with the construction of aux(D, F ). We first list the vertices of aux(D, F ) and
then we list the arcs. Let G have n vertices and m edges. In linear time, we can label every
vertex of G with its degree in G. By definition, aux(D, F ) has at most n + m vertices. Let
X ⊆ V (G) with |X| = 1 and let T be the X-trapezoid. Note that X = con(T). It can be tested
in O(n) time whether int(T)\X is an independent set of G, and thus, it can be checked in O(n)
time whether T is good. Now, let X ⊆ V (G) with |X| = 2, and let T be the X-trapezoid. To
determine whether T is good, we have to decide for the vertices in con(T) which ones belong
to the independent set and which ones to the clique. We compute the subgraph of G that is
induced by int(T) and assign to every vertex its degree in G[int(T)]. For the vertices in con(T),
the degree in G[int(T)] is equal to the degree in G. It remains to determine the degrees of the
vertices in int(T) \ con(T); these are the vertices with neighbours in G that are not contained
in int(T). If int(T) \ con(T) is not an independent set in G, then T cannot be a good trapezoid
due to the definition of good trapezoid. So, let int(T) \ con(T) be an independent set. By the
properties of permutation diagrams, the upper endpoint ordering is equal to the lower endpoint
ordering of these vertices; let this ordering be σ. Let x be a vertex in int(T) \ con(T). It holds
that dG[int(T)](x) = dG(x) − |L(T) ∩ NG(x)| − |R(T) ∩ NG(x)|. We show that |L(T) ∩ NG(x)|
and |R(T)∩NG(x)| can be computed in amortised constant time per vertex. If x < minX then
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the upper endpoint of x is to the left of T, and |L(T) ∩ NG(x)| is equal to |x − minX| − 1
minus the number of vertices in σ to the right of x and with upper endpoint to the left of T. If
π−1(x) < π−1(maxX) then the lower endpoint of x is to the left of T, and |L(T) ∩ NG(x)| is
equal to |π−1(x)−π−1(maxX)|−1 minus the number of vertices in σ to the right of x and with
lower endpoint to the left of T. If none of the two cases holds then |L(T) ∩ NG(x)| = 0. For
|R(T) ∩ NG(x)|, analogue equivalences hold. Since these numbers can be computed in overall
O(n) time for all vertices in int(T) \ con(T), we conclude that we can compute a permutation
diagram for G[int(T)] and assign the degrees to the vertices in O(n) time. As described in
the proof of Lemma 3.4, we can check in O(n) time whether G[int(T)] is a split graph. If no
then T is not good. If yes then we compute the split partition number of G[int(T)] using the
algorithm of Lemma 3.4 and then we check whether G[int(T)] has a split partition (C,D) with
int(T) \ con(T) ⊆ C ⊆ F ∩ int(T) by applying the algorithm of Lemma 3.3. Hence, in O(n)
time, we can decide whether T is a good trapezoid with respect to F . Summarising, the set of
vertices of aux(D, F ) and the corresponding good trapezoids can be determined in time O(nm).

Now, we determine the arcs of aux(D, F ). We first give an algorithm for deciding whether
there is an arc between two given vertices. Let u and v be vertices of aux(D, F ) and let Tu

and Tv be the corresponding good Xu- and Xv-trapezoids. We decide whether (u, v) is an arc
of aux(D, F ). According to the definition, we have to check three conditions. The condition
con(Tv) ⊆ R(Tu) can be checked in constant time by verifying that maxXu < minXv and
π−1(minXu) < π−1(maxXv). For the second condition, we check whether there is a vertex in
R(Tu) ∩ L(Tv). Let Yu be the set of vertices in int(Tu) \ con(Tu) that have an endpoint to
the right of Tu, and let Yv be the set of vertices in int(Tv) \ con(Tv) that have an endpoint to
the left of Tv. Note that both sets contain only vertices from the independent set of the split
partitions for int(Tu) and int(Tv). We apply the following equivalence:

2|R(Tu) ∩ L(Tv)| = |maxXu −minXv|+ |π−1(minXu)− π−1(maxXv)| − |Yu△Yv| − 2 .

The main argument for correctness of the equivalence is the fact that vertices with exactly
one endpoint between Tu and Tv have to intersect exactly one of the two trapezoids. The
running time for evaluating the equation’s right hand side is mainly determined by computing
the cardinality of the symmetric difference Yu△Yv. Without pre-processing, the computation
of this value requires O(n) time. To make this step faster, we have to apply properties of
independent sets. It holds that |Yu△Yv| = |Yu|+ |Yv| − 2|Yu ∩ Yv|. The values |Yu| and |Yv| are
constants for each trapezoid, whereas |Yu ∩ Yv| is not. Exactly one of the two cases holds:

• all vertices in Yu have their upper endpoint to the right of Tu in D

• all vertices in Yu have their lower endpoint to the right of Tu in D.

For a contradiction, if a vertex has its upper endpoint to the right of Tu and another vertex
has its lower endpoint to the right of Tu, the two vertices are adjacent by the properties of
permutation diagrams and the fact that both are intersected by Tu. Applying the above fact, it
follows that |Yu∩Yv| is equal to the number of vertices in Yu whose upper endpoint is larger than
minXv or whose lower endpoint is larger than π−1(maxXv). To achieve efficient checking of
the second condition, we run a pre-processing for every good trapezoid T, i.e., for every vertex
of aux(D, F ). Firstly, we compute the set of vertices in int(T) \ con(T) with an endpoint to the
left of T and the similar set of vertices with an endpoint to the right of T and the cardinalities
of the two sets. Secondly, we construct an array with the information about how many vertices
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in int(T) \ con(T) have their upper/lower endpoint to the left or right of a given value. This
array can be computed in a single sweep through the two computed subsets of int(T) \ con(T),
that can be assumed ordered by their upper or lower endpoints. The described pre-processing
requires O(n) time per trapezoid, which makes O(nm) time in total. Then, the second condition
can be checked in constant time.

Finally, for determining whether (u, v) is an arc of aux(D, F ), we have to check the third
condition. This condition can be checked in several ways. If Yu∩Yv is non-empty then (int(Tu)\
con(Tu))∪ (int(Tv)\con(Tv)) is an independent set by the properties of permutation diagrams.
Suppose that Yu ∩ Yv is empty. Since G is connected, Yu ∪ Yv is not an independent set or
R(Tu) ∩ L(Tv) is not empty (to establish a path from a vertex in Yu to a vertex in Yv). Hence,
if (u, v) is an arc of aux(D, F ) then Yu ∩ Yv is non-empty. And non-emptiness can be checked
by using the information computed during the pre-processing, or we store the largest vertex in
int(Tu) \ con(Tu) and compare its endpoints with minXv and π−1(maxXv).

Another possibility for checking the third condition is to check that the largest vertex in
int(Tu) \ con(Tu) is non-adjacent to the smallest vertex in int(Tv) \ con(Tv). Sufficiency of this
check follows from the properties of independent sets in permutation diagrams. The smallest
and largest vertex can be computed in overall O(nm) time for all good trapezoids. We conclude
that, with an O(nm)-time pre-proceeding, it takes constant time for checking for a specific arc
between two given vertices of aux(D, F ).

For completing the construction algorithm for aux(D, F ), we show that there are at most
O(nm) arcs in aux(D, F ) and that the candidate pairs for being connected by an arc can be
listed in O(nm) time. Let (u, v) be an arc of aux(D, F ) for u ̸= 0. Let Tu and Xu be defined
as above. If int(Tu) \ con(Tu) = ∅ then V (G) = con(Tu) and (u,1) is an arc of aux(D, F ).
Now, let int(Tu) \ con(Tu) ̸= ∅. Let y be the largest vertex in int(Tu) \ con(Tu). Due to the
properties of permutation diagrams, y is the vertex in int(Tu) \ con(Tu) that is adjacent to
the largest set of vertices in R(Tu). By definition of polar partitions, all neighbours of y are
clearly elements of the disjoint union of cliques. If y has no neighbour in R(Tu) then R(Tu) = ∅
due to the connectedness of G and v = 1. Let y have neighbours in R(Tu). Let z and z′

be the neighbours of y in R(Tu) with smallest respectively upper and lower endpoint. Note
that z = z′ or zz′ ∈ E(G). Let Tv and Xv be defined as above; in particular, they exist
due to the existence of z and z′. We show that z ∈ Xv or z′ ∈ Xv. We have to consider
two cases according to whether the upper endpoint of y is larger than maxXu or the lower
endpoint of y is larger than π−1(minXu). By a symmetry argument, it suffices to argue for
the latter case. As a first observation note that z, z′ ∈ int(Tv). This is the case, since (u, v)
being an arc of aux(D, F ) requires R(Tu) ∩ L(Tv) to be empty, and since Xv ⊆ con(Tv) is
non-empty, z ∈ R(Tv) or z′ ∈ R(Tv) yields a contradiction to the choice of z and z′. As a
second observation note that z, z′ ̸∈ int(Tv) \ con(Tv), since (u, v) being an arc of aux(D, F )
requires (int(Tu)\con(Tu))∪(int(Tv)\con(Tv)) to be an independent set of G. Remember that
y ∈ int(Tv) \ con(Tv). Thus, z, z′ ∈ con(Tv). Let (C,D) be an arbitrary good split partition
for int(Tv). Clearly, z, z′ ∈ D. Let x be an arbitrary vertex in D. Since D is a clique of G,
x is adjacent to z and z′. If π−1(x) < π−1(z′) then x is a neighbour of y and contradicts the
choice of z′. Thus, π−1(z′) < π−1(x). Since z′ ∈ con(Tv), it follows that z

′ ∈ Xv. And since Xv

contains at most two vertices, there are at most n possibilities for a second vertex in Xv. We
conclude that u can have at most n+1 out-neighbours, and the candidates (encoded by the sets
Xv) can be listed in O(n) time, since y, z, z′ for Tu can be determined in O(n) time.

We sum up the running time. In O(nm) time, the vertices of aux(D, F ) can be listed and
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corresponding good split partitions can be computed. In O(nm) time, an arc candidate list
can be obtained, and for determining the arc set of aux(D, F ) it remains to check for every arc
candidate whether it forms an arc of aux(D, F ). This can be done in constant time per arc
candidate, after the O(n) time pre-processing per vertex of aux(D, F ). Thus, aux(D, F ) can
be constructed in O(nm) time. The arcs of aux(D, F ) of the form (0, v) can be determined
straightforward. Checking the existence of a 0,1-path takes linear time in aux(D, F ). Since
aux(D, F ) contains O(m) vertices and O(nm) edges, such a path can be found in O(nm) time.
This concludes the proof.

Note that it is easy to also obtain a monopolar partition for G from the discovered path in
the auxiliary digraph. This is described in the proof of Lemma 3.1.

For disconnected input graphs, we run the algorithm of Theorem 3.5 on every connected
component and combine the partial solutions to a global solution. Computing the connected
components of a graph can be done in linear time.

4 Recognising polar permutation graphs

The idea of the algorithm of this section is: delete a set of vertices that induces a monopolar
graph in the complement of the input graph and obtain a monopolar graph. The existence of
such a set of vertices is easy to decide from a given polar partition. However, finding such a
set of vertices is not easy in general. The major part of this section is dedicated to identifying
possible candidates and showing that there are only few of them and that they can be listed
efficiently.

For identifying candidate sets of vertices, we use trapezoids. Recall the definitions from the
beginning of Subsection 3.1. Let G be a permutation graph with permutation sequence π and
corresponding permutation diagram D. Let G have a polar partition (A,B) and let Y ⊆ V (G).
A trapezoid T in D is called centre trapezoid for (A,B) in D (with Y in-cliqued) if the following
conditions are satisfied:

1) G[int(T)] has a polar partition (A′, C) with

– C is a clique of G (and Y ⊆ C) and C ⊆ con(T)

– int(T) \ con(T) ⊆ A′ ⊆ A

2) one of the following two cases holds:

– A ∩ (L(T) ∪ R(T)) is an independent set of G

– A ∩ L(T) ̸= ∅ and A ∩ R(T) = ∅ and there is a vertex v ∈ int(T) \ con(T) with
NG(v) ∩ L(T) ⊆ A such that {v} ∪ (A ∩ L(T)) \NG(v) is an independent set of G.

Note that condition 1 is similar to good trapezoid as defined in Subsection 3.1. We show that such
centre trapezoids indeed exist. A graph that is polar but not monopolar is called multipolar. In
particular, vertices in the A-set of a polar partition can be adjacent.

Lemma 4.1 Let G be a permutation graph with permutation sequence π and corresponding
permutation diagram D. Let G be multipolar and (A,B) a B-maximal polar partition for G.
There are a trapezoid T in D and a clique X of G with X ⊆ B and 1 ≤ |X| ≤ 2 such that T is
the X-trapezoid in D and T is a centre trapezoid for (A,B) in D with X in-cliqued.
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Figure 3: The figure illustrates the two cases in the second condition of the definition of a centre
trapezoid. The trapezoid itself is represented by the grey area. The thick full line segments
represent vertices from set A. In the above situation, the vertices from A on the left and
right side form an independent set, which corresponds to the first case. The below situation
illustrates aspects of the second case. Vertex v, depicted as the broken line segment, is adjacent
to some vertices from A on the left side of the trapezoid and forms an independent set with the
non-adjacent vertices.

Proof. By Lemma 2.1, every vertex in A has a neighbour in B. Let the connected components of
G[B] be induced by the sets C1, . . . , Cr; without loss of generality we can assume that minC1 <
· · · < minCr. For every x ∈ A, denote by α(x) and ω(x) the respectively smallest and largest
index i with Ci containing a neighbour of x.

As the first case, assume that there are adjacent vertices u, v ∈ A with ω(u) < α(v). Note
that uv ∈ E(G) implies α(v) = ω(u) + 1. Let C =def Cα(v) and let T be the C-trapezoid in
D. Note that u ∈ L(T) and therefore v ∈ int(T) \ con(T) by the properties of permutation
diagrams. Furthermore, L(T) ∩ NG(v) ⊆ A by the definition of α(v) and C ⊆ con(T). For
the first subcase, assume that A ⊆ L(T) ∪ int(T), i.e., A ∩ R(T) = ∅. A vertex in A ∩ L(T)
is either adjacent or non-adjacent to v. By the definition of complete multipartite graphs, the
vertices in A ∩ L(T) that are non-adjacent to v are in the same maximal independent set as v
in G[A]. Hence, they are pairwise non-adjacent, which means that {v} ∪ (A ∩ L(T)) \NG(v) is
an independent set in G. For the second subcase, let A ∩R(T) be non-empty. This means that
both A ∩ L(T) and A ∩ R(T) are non-empty. Since vertices from L(T) and R(T) are pairwise
non-adjacent by the properties of permutation diagrams, the definition of complete multipartite
graphs implies that A ∩ (L(T) ∪R(T)) is an independent set in G. Hence, in both subcases, T
satisfies the second condition of the definition of centre trapezoid.

As the second case, assume that for all pairs u, v ∈ A of adjacent vertices, α(u) ≤ α(v) ≤ ω(u)
or α(v) ≤ α(u) ≤ ω(v). The following construction and argumentation is more difficult than it
would be expected, since the condition of the second case does not compare all pairs of vertices
from A but only adjacent vertices. Let u, v ∈ A be a pair of adjacent vertices such that the
intersection {α(u), . . . , ω(u)} ∩ {α(v), . . . , ω(v)} is of smallest size. Without loss of generality,
we can assume that α(u) ≤ α(v). Let C =def Cα(v) and let T be the C-trapezoid in D. For
the first subcase, let ω(v) ≤ ω(u). Then, α(u) ≤ α(v) ≤ ω(v) ≤ ω(u) with our assumptions,
which implies α(x) ≤ α(v) ≤ ω(v) ≤ ω(x) for all vertices x ∈ A ∩ NG(v). This follows from
the choice of the pair u, v as of smallest intersection size. Hence, A ∩ NG(v) ⊆ int(T), and
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by the properties of complete multipartite graphs, A ∩ (L(T) ∪ R(T)) is an independent set
of G. For the second subcase, let ω(u) < ω(v). For every vertex x ∈ A ∩ L(T), ω(x) <
α(v), which means by the assumptions of the case that (A ∩ L(T)) ∩ NG(v) = ∅. Hence,
due to the properties of complete multipartite graphs, {v} ∪ (A ∩ L(T)) is an independent
set of G. In the following, we distinguish between the cases A ∩ L(T) non-empty and empty.
First, let A ∩ L(T) be non-empty. By the properties of permutation diagrams, the vertices in
A∩L(T) and A∩R(T) are pairwise non-adjacent. Then, the properties of complete multipartite
graphs imply that {v} ∪ (A ∩ L(T)) ∪ (A ∩ R(T)) is an independent set of G. Second, let
A ∩ L(T) be empty. Let A ∩ R(T) be non-empty and let w ∈ A ∩ R(T). Since u ∈ int(T),
w ̸= u. Suppose that uw ∈ E(G). Then, α(v) < α(w) and α(v) ≤ ω(u) < ω(v) yield a
contradiction to the intersection size of u, v. Hence, u and w are non-adjacent, which implies
that {u} ∪ (A ∩ R(T)) = {u} ∪ (A ∩ L(T)) ∪ (A ∩ R(T)) is an independent set of G. Hence, in
both subcases, A ∩ (L(T) ∪ R(T)) is an independent set of G, which shows that T satisfies the
second condition of the definition of centre trapezoids.

It remains to check whether the chosen trapezoids satisfy the first condition of the definition
of centre trapezoids. We can consider the two cases above simultaneously. Let C and T be
as defined above. First, we show that (int(T) \ C,C) is a polar partition for G[int(T)]. Since
no edge of G joins vertices from different cliques among C1, . . . , Cr, B ∩ int(T) = C. Hence,
int(T) \B = int(T) \ C ⊆ A. By the definition of C-trapezoid, C ⊆ con(T), which also implies
that int(T) \ con(T) ⊆ int(T) \ C ⊆ A. Hence, T satisfies the first condition of the definition
of centre trapezoids. To complete the proof of the lemma, let x =def minC and y =def maxC.
Note that x = y in case |C| = 1. Then, with the properties of permutation diagrams and the
representation of cliques, it holds that T is the {x, y}-trapezoid and a centre trapezoid for (A,B)
in D with {x, y} in-cliqued.

Lemma 4.1 is the main tool of our algorithm. Informally, the algorithm removes a trapezoid
from the graph and checks whether the remaining subgraph is monopolar. The main problem
then is to combine the independent set of the monopolar partition with the complete multi-
partite graph of the polar partition of the removed trapezoid. Not every monopolar partition
is suitable. The next lemma will be useful for choosing a suitable monopolar partition. Let
G be a permutation graph with permutation sequence π and corresponding permutation dia-
gram D. Let T = (I1, I2) be a trapezoid in D with I1 = {i1, . . . , i′1} and I2 = {i2, . . . , i′2} and
let S ⊆ int(T) \ con(T). A vertex x ∈ S is left-endpoint close to T among the vertices in S if
x < i1 and x ≥ y for all vertices y ∈ S or if π−1(x) < i2 and π−1(x) ≥ π−1(y) for all vertices
y ∈ S. Right-endpoint close vertex is defined symmetrically. Note that there are at most two
left-endpoint close and at most two right-endpoint close vertices for every trapezoid and chosen
set.

Lemma 4.2 Let G be a permutation graph with permutation sequence π and corresponding
permutation diagram D. Let G be multipolar and (A,B) a B-maximal polar partition for G. Let
T be a centre trapezoid for (A,B) in D.

1) Let A ∩ (L(T) ∪ R(T)) be an independent set of G and let A ∩ con(T) be non-empty.

Let x be an arbitrary vertex in A ∩ con(T). Then, {x} ∪ (A ∩ (L(T) ∪ R(T))) is an
independent set of G.

2) Let A ∩ (L(T) ∪ R(T)) be an independent set of G and let A ∩ con(T) be empty.

If there is x ∈ A∩ int(T) such that {x} ∪ (A∩ (L(T)∪R(T))) is an independent set in G
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then x can be chosen as left-endpoint close or right-endpoint close to T among the vertices
in int(T) \ con(T).

3) Let A ∩ (L(T) ∪ R(T)) not be an independent set of G.

Let A ∩ L(T) ̸= ∅ and A ∩ R(T) = ∅ and let there be a vertex x ∈ int(T) \ con(T) with
NG(x)∩L(T) ⊆ A such that (A∩L(T)) \NG(x) is an independent set of G. Then, x can
be chosen as left-endpoint close to T among the vertices in int(T) \ con(T).

Proof. We consider the three cases separately. For the first two cases, let A∩ (L(T)∪R(T)) be
an independent set of G. If A∩ (L(T)∪R(T)) is empty then the two cases trivially hold. So, let
A∩ (L(T)∪R(T)) be non-empty. For the first case, let there be a vertex x ∈ A∩ con(T). Then,
x is not adjacent to any vertex in L(T) ∪ R(T) and thus {x} ∪ (A \ int(T)) is an independent
set of G due to the properties of complete multipartite graphs.

For the second case, let A ∩ con(T) = ∅. Assume that there is x ∈ A ∩ int(T) such that
{x}∪ (A∩(L(T)∪R(T))) is an independent set of G. By a symmetry argument for permutation
diagrams, we can assume that A ∩ L(T) ̸= ∅ and x is smaller than the vertices in con(T). The
three other cases are obtained from flipping the permutation diagram vertically or horizontally.
Informally spoken, the upper endpoint of x in D is to the left of T. By assumption, all vertices in
A∩L(T) are non-adjacent to x. Let y be the left-endpoint close vertex for T among the vertices
in int(T) with the upper endpoint of y to the left of T in D. Assume that x ̸= y. Note that x < y.
No vertex from A ∩ L(T) is adjacent to y, since otherwise such a vertex would be adjacent also
to x due to the properties of permutation diagrams. Thus, {y} ∪ (A ∩ L(T)) is an independent
set of G. And with the properties of complete multipartite graphs, {y} ∪ (A ∩ (L(T) ∪ R(T)))
is an independent set of G.

For the third case, let A ∩ (L(T) ∪ R(T)) not be an independent set of G. By assumption
about T, A∩L(T) ̸= ∅ and A∩R(T) = ∅ and there is a vertex x that satisfies the assumptions of
the case. By a symmetry argument for permutation diagrams, we can assume that x is smaller
than the vertices in con(T), i.e., the upper endpoint of x is to the left of T in D. Let y be the
left-endpoint close vertex for T among the vertices in int(T) \ con(T) with the upper endpoint
of y to the left of T in D. Assume that y ̸= x. With the properties of permutation diagrams and
the assumptions about x, NG(y)∩L(T) ⊆ NG(x)∩L(T) ⊆ A. We show that (A∩L(T))\NG(y)
is an independent set of G. If there is a pair u, v ∈ (A∩L(T)) \NG(y) of adjacent vertices then
the properties of complete multipartite graphs imply that at least one of them is adjacent to y,
which is a contradiction.

We are ready to give the algorithm for recognising connected polar permutation graphs. The
algorithm is called Polar-Permutation-Graphs-Recognition, and it is given in Figure 4. If
the input graph is polar, the algorithm outputs a polar partition, thus provides a certificate.

Theorem 4.3 Algorithm Polar-Permutation-Graphs-Recognition recognises connected po-
lar permutation graphs in O(nm2) time.

Proof. For the correctness of the algorithm, let G be the input graph with permutation se-
quence π and corresponding permutation diagram D. We first show that every ‘yes’ answer
(in lines 2, 14, 20, 28, 34) is correct and the output partition is a proper polar partition for
G. So, let the answer of the algorithm on input G, π,D be ‘yes’. It is a simple check that the
output vertex partition is indeed a partition of V (G). If the answer is output in line 2 then G is
monopolar, thus polar, and the output partition is a polar partition for G. We consider the four
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Algorithm Polar-Permutation-Graphs-Recognition

Input connected permutation graph G
with permutation sequence π and corresponding permutation diagram D

Output answer ‘yes’ or ‘no’, and if ‘yes’ then a polar partition for G

begin
1 if G is monopolar then
2 compute a monopolar partition (A,B) for G; return ‘yes’ and (A,B)
3 end if;
4 for X a clique of G of size 1 or 2 do
5 let T be the X-trapezoid in D;
6 if G[int(T)] is polar and has polar partition (A′, C) such that int(T) \ con(T) ⊆ A′ and
7 C is a clique of G and maximal with X ⊆ C ⊆ con(T) then
8 let (A′, C) be the computed polar partition for G[int(T)];

9 if A′ ∩ con(T) ̸= ∅ then
10 let x ∈ A′ ∩ con(T);
11 if G \ int(T) has monopolar partition (A,B) with every vertex in A is adjacent to
12 every vertex in A′ ∩NG(x) and non-adjacent to every vertex in A′ \NG(x) then
13 let (A,B) be the computed monopolar partition for G \ int(T);
14 return ‘yes’ and (A ∪A′, B ∪ C)
15 end if
16 else
17 if G \ int(T) has monopolar partition (A,B) with
18 every vertex in A is adjacent to every vertex in A′ then
19 let (A,B) be the computed monopolar partition for G \ int(T);
20 return ‘yes’ and (A ∪A′, B ∪ C)
21 end if;

22 let L and R be the sets of respectively left-endpoint close and right-endpoint close vertices
23 for T among the vertices in int(T) \ con(T);

24 if there are vertex x ∈ L ∪R and monopolar partition (A,B) for G \ int(T) with
25 every vertex in A is adjacent to every vertex in A′ ∩NG(x) and non-adjacent to
26 every vertex in A′ \NG(x) then
27 let (A,B) be the computed monopolar partition for G \ int(T);
28 return ‘yes’ and (A ∪A′, B ∪ C)
29 end if;

30 if there are vertex x ∈ L and monopolar partition (A,B) for G \ (int(T) ∪ (NG(x) ∩ L(T)))
31 with A ∩ R(T) = ∅ and {x} ∪A an independent set of G and
32 G[A ∪A′ ∪ (NG(x) ∩ L(T))] complete multipartite then
33 let (A,B) be the computed monopolar partition for G \ int(T);
34 return ‘yes’ and (A ∪A′ ∪ (NG(x) ∩ L(T)), B ∪ C)
35 end if

36 end if
37 end if
38 end for;
39 return ‘no’
end.

Figure 4: The polar permutation graph recognition algorithm.

other cases. We consider the for loop during its last execution. Let T be the trapezoid defined
in line 5 and let (A′, C) be the polar partition for G[int(T)] chosen in line 8. Note that (A′, C)
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has the properties of lines 6–7. In particular, no vertex from C has a neighbour in G \ int(T),
which follows directly from C ⊆ con(T) and the properties of permutation diagrams. Hence,
since C is a clique of G and G[B] is an induced subgraph of G \ int(T) and the disjoint union
of complete graphs, for each of the four cases for B, G[B ∪ C] is the disjoint union of complete
graphs. It remains to show for each of the four cases that the first component set of the output
vertex partition induces a complete multipartite graph in G. The case is clear for the output in
line 34 by the condition in line 32. Assume that the answer is output in line 14. Let (A,B) be
the monopolar partition for G \ int(T) in line 13 and let x be the vertex chosen in line 10. Since
A and A′ \NG(x) are independent sets of G, A ∪ (A′ \NG(x)) is an independent set of G due
to the conditions in line 11–12. And by the properties of complete multipartite graphs and the
adjacency condition in lines 11–12, every vertex in A ∪ (A′ \NG(x)) is adjacent to every vertex
in A′ ∩NG(x). Hence, G[A ∪ A′] is complete multipartite. The cases for the output in lines 20
and 28 follow similarly. We conclude that the output partition is indeed a polar partition for G
and G is polar.

For the converse, let G be polar. We show that Polar-Permutation-Graphs-Recognition
answers ‘yes’. If G is monopolar then Polar-Permutation-Graphs-Recognition returns answer
‘yes’ in line 2. Let G not be monopolar, and let (P,Q) be a Q-maximal polar partition for G.
According to Lemma 4.1, there are a trapezoid T in D and a clique X of G with X ⊆ Q and 1 ≤
|X| ≤ 2 such thatT is theX-trapezoid inD andT is a centre trapezoid for (P,Q) in D withX in-
cliqued. Note that X and thus T can be chosen by Polar-Permutation-Graphs-Recognition

in lines 4 and 5. Let (A′, C) be a polar partition for G[int(T)] as defined in condition 1 of the
definition of centre trapezoids; such a partition exists by assumption. Without loss of generality,
we can assume that every vertex in A′ ∩ con(T) is non-adjacent to some vertex in C. This
partition satisfies the conditions in lines 6–7, and Polar-Permutation-Graphs-Recognition

continues execution in line 8. Observe for the following arguments that P ∩ int(T) = A′: if
there is u ∈ (P ∩ int(T)) \A′ then u ∈ C. By the definition of (A′, C) according to condition 1
of the definition of centre trapezoids, it holds that u ∈ con(T), which means that u is not
adjacent to any vertex in Q \ int(T). Then, (P \ {u}, Q ∪ {u}) is a polar partition for G, which
contradicts the choice of (P,Q) as Q-maximal. Then, P∩(L(T)∪R(T)) = P \A′. We distinguish
between the two cases in condition 2 of the definition of centre trapezoids. As the first main
case, let P \ A′ be an independent set of G. Then, G \ int(T) is monopolar with monopolar
partition (P \A′, Q\C). As a first subcase, let P ∩con(T) = A′∩con(T) be non-empty (line 9).
For any vertex x ∈ A′ ∩ con(T), {x} ∪ (P \ A′) is an independent set of G and particularly in
G[P ]. With the properties of complete multipartite graphs, all vertices in P \A′ are adjacent to
all vertices in A′ ∩NG(x) and non-adjacent to all vertices in A′ \NG(x). Then, the conditions
in lines 11–12 are satisfied by partition (P \A′, Q \C), and the algorithm accepts. As a second
subcase, let A′ ∩ con(T) be empty. If all vertices in P \A′ are adjacent to all vertices in A′ then
Polar-Permutation-Graphs-Recognition accepts in line 20. Let there be a vertex y ∈ P \A′

that is non-adjacent to some vertex x ∈ A′. Then, x and y are in the same maximal independent
set of G[P ], which implies that {x} ∪ (P \ A′) is an independent set of G. Due to Lemma 4.2,
there is a vertex z in L ∪ R of lines 22–23 such that {z} ∪ (P \ A′) is an independent set
of G. Analogous to the first subcase, Polar-Permutation-Graphs-Recognition accepts in
line 28. As the second main case, let P \ A′ not be an independent set of G. According to
condition 2 of the definition of centre trapezoids, P ∩L(T) ̸= ∅ and P ∩R(T) = ∅ and there is a
vertex v ∈ A′\con(T) with NG(v)∩L(T) ⊆ P and {v}∪(P ∩L(T))\NG(v) is an independent set
of G. Then, ((P \A′)\NG(v), Q\C) is a monopolar partition for G\ (int(T)∪ (NG(v)∩L(T))).
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Due to Lemma 4.2, we can choose v from L. Then, Polar-Permutation-Graphs-Recognition
accepts in line 34. This completes the correctness proof.

For the running time, observe that the for loop is executed at most n+m times. First, we
show that each for loop execution takes time O(n + m) plus the time for deciding whether a
permutation graph has a monopolar partition (A,B) with A ⊆ F for F a given set of vertices.
Trapezoid T in line 5 can be computed in constant time from the given set X. The sets int(T),
con(T), L(T), R(T) and L and R (in lines 22–23) can be computed in linear time straightforward
by checking the endpoints of every vertex against the intervals of T. We consider the conditional
in lines 9–36. Assume that partition (A′, C) for int(T) is given. The test A′∩con(T) ̸= ∅ (line 9)
can be done in linear time. Vertex x in line 10 is chosen arbitrarily. For the conditional in lines 11-
12, we need to compute an appropriate set F . We define F as the set of vertices in L(T)∪R(T)
that are adjacent to every vertex in A′ ∩NG(x) and non-adjacent to every vertex in A′ \NG(x).
This set can be computed in linear time. For the conditionals in lines 17–18 and 24–26, the
corresponding sets F can be computed similarly. For the conditional in lines 30–32, F contains
only vertices from L(T) due to the condition A ∩ R(T) = ∅ and no vertices from NG(x). With
the requirements on the computed polar partition, F can be computed in linear time analogous
to the previous cases. The conditionals in lines 24–26 and 30–32 are executed several times with
different choices for x. Since |L ∪R| ≤ 4, the number of executions is constant. Hence, besides
the running time for obtaining partitions (A′, C) and (A,B), a for loop execution takes linear
time. The existence of partition (A,B) with the restriction F can be decided in O(nm) time
due to Theorem 3.5. By the remark at the end of Section 3, a partition (A,B) can be computed
in the same time if it exists.

It remains to give an algorithm for deciding the conditional in lines 6–7. Since the vertices
in X are adjacent to all vertices in con(T), it suffices to compute a desired polar partition for
G[int(T)] \ X and we only need to decide for vertices in con(T) \ X whether they belong to
the clique or to the complete multipartite graph. A polar partition for G[int(T)] of the type
of lines 6–7 can be computed by applying the algorithm of Theorem 3.5 to the complement of
G[int] \X with set F chosen as con(T). Let the output polar partition be (A′, C). If a vertex in
A′ is adjacent to all vertices in C then this vertex is moved to set C. Hence, in O(nm) time, the
conditional in lines 6–7 can be decided and a corresponding polar partition can be computed in
the positive case. In total, we obtain O(nm2) running time.

An arbitrary graph is polar if and only if each of its connected components is polar. Hence,
the result of Theorem 4.3 gives an O(nm2)-time algorithm for polar permutation graph recog-
nition.

5 Concluding remarks and open problems

The running time of our monopolar permutation graph recognition algorithm is determined
by the construction of the auxiliary digraph. The running time of the construction algorithm
is equal to the theoretical upper bound on the number of arcs of the digraph. Is this bound
tight? Is there an algorithm with running time dependent on the number of vertices and arcs
of the auxiliary digraph? This is a possible approach to reduce the running time of recognising
monopolar permutation graphs and in consequence also polar permutation graphs.

Permutation graphs are both comparability and cocomparability graphs. An interesting
question is whether polar comparability graphs, or equivalently polar cocomparability graphs,
can be recognised in polynomial time.
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As we have mentioned in the introduction, there are well-studied problems that are NP-
complete on permutation graphs. What are their computational complexities on polar permu-
tation graphs? Extending the table in Figure 1, we can for instance ask for the complexity of
partitioning a permutation graph into two cographs. In other words, is there a polynomial-time
algorithm for the problem, given a permutation graph G, is there a partition (A,B) of V (G)
with A and B induce graphs with no induced path on four vertices? Such graphs are particularly
interesting for problems that are hard on the whole class of permutation graphs or for problems
whose complexity has not yet been determined completely. Another question is whether a max-
imum induced polar subgraph in non-polar permutation graphs can be computed in polynomial
time.
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