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Abstract— We consider the problem of analysis and control of
Linear Parameter Varying(LPV) systems. With regard to such
problems, solving rationally parametric Lyapunov and Riccati
equations for parametric matrices often arises. In this paper,
we develop computationally efficient iterative methods for
finding rational approximations to solutions to such problems
to arbitrary accuracy.

I. INTRODUCTION

In recent years, system models in many important ap-

plications have been shown to have a Linear Parameter

Varying(LPV) structure, e.g. wind turbines [1], automated

lane keeping systems [2], steam generators for nuclear power

plants [3], biomedical applications [4], web servers [5], and

bicycles [6]. Correspondingly, there has been a burgeoning

field of LPV analysis and synthesis techniques, see e.g.

[7][8][9][10][11] and the references therein.

An important problem in LPV analysis and control is to

find parameter dependent solutions to parameter dependent

Lyapunov and Riccati equations and inequalities of both

the algebraic and differential type, valid over some set

of admissible parameters and parameter rates. Such solu-

tions can be used to guarantee exponential LPV stability

or performance [12] or to construct parameter dependent

controllers with guaranteed stability and performance(see

e.g. [13] and references therein). Unfortunately, finding

such parameter dependent solutions (or even verifying that

a given solution satisfies a parameter dependent equation

or inequality over the entire parameter set) turns out to

be quite a difficult problem; even though the inequalities

are linear in the unknowns, we must search or optimize

over the (often infinite) space of admissible parameters.

Such problems can often be cast as verifying or solving

a parametric matrix equation (Lyapunov, Riccati) or Linear

Matrix Inequality(LMI) for which various techniques have

been developed: e.g. [14][15](parametric equations) [16][17]

[18][19][20][21][22][23](parametric LMI’s). However, these

techniques either require some restrictive a priori assumption

on the form of the solution’s parameter dependence (e.g

affine, polynomial or rational of order n, etc), the gridding of

the parameter space, conservative relaxations, or relaxations

which are asymptotically nonconservative but lead to very

large (and thus computationally expensive) LMI’s.

However, under certain system assumptions, we can de-

velop computationally efficient techniques based on transfer
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function arithmetic and the matrix sign function which avoids

these problems, and allows us to solve certain parameter

dependent algebraic Lyapunov and Riccati equations arbi-

trarily accurately, thus providing a different approach to

such LPV problems. Our idea is to construct a sequence of

rationally parametric matrices which approach the exact(and

perhaps irrational) solution of the Lyapunov or Riccati equa-

tion quadratically fast. Instead of using the computationally

expensive operations on transfer matrices, we work only in

stable realizations (with a mixed-causal LTI interpretation)

thereof, for which we build a structure preserving arithmetic.

In section II we will overview the type of LPV systems

we will consider, and show how to convert them into a form

that is convenient for our computational methods. In section

III, we will build our computationally efficient, structure

preserving arithmetic of rationally dependent matrix realiza-

tions, and in section IV we will show how this arithmetic

can be used with the matrix sign function to efficiently

solve rationally parameter dependent Lyapunov and Riccati

equations to arbitrary accuracy. In section V we then show

how these tools can be used for some practical LPV analysis

and synthesis problems, with an example in section VI.

II. BACKGROUND, NOTATION, AND Sc REALIZATIONS

We will consider systems of the sort:

Σ :





ẋ
z
y



 =





A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)









x
w
u



 (1)

where ρ ∈ R̂+ (the extended positive real line; R̂+ =
R+

⋃
+∞) and α < ρ̇ < β are bounds on the rate of

variation of the measurable parameter ρ(t), and the system

matrices are assumed to have a proper rational parameter

dependence, e.g. A(ρ) = H+G(ρI−E)−1F . At first glance

this formulation seems ungainly; parameters of most physical

systems won’t vary over ρ ∈ R̂+, however, some common

situations may be transformed into this one:

Example 1 (Affine Parameter Dependence on an Interval):

Say we have an affine LPV operator K(µ) = ςµ + κ valid

over µ ∈ [α, β]. We can perform a transformation to

parameterize µ = α−β
ρ+1 + β over ρ ∈ R̂+ and equivalently

write: K(ρ) = ς α−β
ρ+1 + ςβ +κ or as a state space realization

of an LFT:

K(ρ) = ς
︸︷︷︸

G

(ρI − (−1)
︸︷︷︸

E

)−1 (α − β)
︸ ︷︷ ︸

F

+ ςβ + κ
︸ ︷︷ ︸

H

over ρ ∈ R̂+. Note that this construction is well posed and

easily generalizable to matrices. Also note that the above
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parametrization can be extended to any polynomial in µ, a

practical example of which we will exhibit in section VI. ⋆

For our computational methods, the system in (1) is not

yet suitable. Given some K(ρ) = G(ρI − E)−1F + H ,

ρ ∈ R̂+, addition, multiplication, and inversion of such

operators is trivial (and identical in form to that of LTI

transfer functions over the imaginary axis or unit circle),

but calculating the induced norm ‖K(ρ)‖, or finding order

reduced approximations K̃(ρ) ≈ K(ρ)∀ρ ∈ R̂+, which will

be integral to our iterative procedures, is not. Hence we

will further reparametrize such K(ρ) ∀ρ ∈ R̂+ into mixed-

causal transfer functions over the extended imaginary axis:

K(s), ∀s ∈ ℑ.

For any well posed K(ρ), this can trivially be accom-

plished via a change of variables

K(ρ) = H + G(ρI − E)−1F = H − G(s2I + E)−1F

where ρ = −s2. This parametrization can in turn be split up

into stable and antistable parts, for a stable ‘mixed causal’

realization:

Lemma 1: Assuming that K(−s2) = H−G(s2I+E)−1F
is well posed for all s ∈ ℑ, then equivalently,

K(−s2) = H−G(sI−(−Z))−1XF−GX(s∗I−(−Z))−1F

where Z := (−E)1/2 with ℜ(λ(Z)) > 0 and X is the unique

solution to the Sylvester equation ZX + XZ + I = 0.

Proof: see appendix.

We have thus successfully rewritten the system in

K(s) = D + P (sI − R)−1Q + U(s∗I − W )−1V (2)

form, where R and W are both strictly stable.

But such stable mixed causal realizations of K(s) are

highly non unique, and given some K(s) in transfer function

form with high rational orders, finding a minimal realization,

while trivial, is extremely computationally inefficient. Hence

we will avoid this step in the following by only dealing

with stable state space representations of K(s) (instead of

the elementwise transfer function version), which we will

represent using the following notation:

K = Sc(P, R, Q, D, U, W, V ) (3)

and we will use the notation Ā ∈ Sc to indicate that Ā is

a mixed causal realization of A(s) with stable causal and

anticausal parts. We will hereafter develop an arithmetic of

such realizations, and this notation will serve to show how

we avoid ever dealing explicitly with the awkward element-

wise rational transfer function form.

This notation will also show how part of this work parallels

work on spatially invariant systems in [24], except on a

continuous domain instead of discrete, and we will note the

analogous results when they occur.

III. ARITHMETIC, ORDER REDUCTION

Transfer matrix arithmetic is slow (especially inversion)

and may lead to unnecessarily high orders, so instead we

will work in Sc realizations, for which we will now develop a

structure and stability preserving arithmetic. A • will indicate

a term that can be trivially derived from the surrounding

information, but is omitted due to space constraints.

A. Addition and Multiplication

Lemma 2: Given

X̄ = Sc{PX , RX , QX , DX , UX , WX , VX}

Ȳ = Sc{PY , RY , QY , DY , UY , WY , VY }

Then a realization of the sum: Z̄ = X̄ + Ȳ is:

Z̄ = Sc{

[
PT

X

PT
Y

]T

,

[
RX 0
0 RY

]

,

[
QX

QY

]

, (DX + DY ), •, •, •}

Proof: This is verifiable by inspection.

Lemma 3: X̄Ȳ = Z̄ =
Sc{PZ , RZ , QZ , DZ , UZ , WZ , VZ} with

DZ = DXDY , PZ =
[
PX DXPB + UXS

]

RZ =

[
RX QXPY

0 RY

]

, QZ =

[
QXDY + TVY

QY

]

UZ = •, WZ = •, VZ = •

where S and T are the unique solutions to the Sylvester

equations:

WXS + SRY + VXPY = 0, RXT + TWY + QXUY = 0

Proof: This is easy to verify using LTI continuous time

systems theory, where we consider X and Y to be mixed-

causal system realizations that we put in series.

Note that the proper rational transfer function structure, and

also the stability of the realizations, is preserved under these

addition and multiplication algorithms: X̄, Ȳ ∈ Sc ⇒ Z̄ ∈
Sc. This result is the continuous domain analog of [24].

B. Order Reduction

The alert reader will have noticed that through the above

two operations, Z(s) will be a rational transfer matrix

with order larger than X(s) or Y (s). Fortunately, since

we represent Z̄ as the sum of Z(s) = L(s) + U(s) with

LTI causal and anticausal interpretations, respectively, we

can efficiently perform order reduction on Z by performing

standard LTI state space model order reduction on its causal

and anticausal parts separately. Since each is stable, using,

e.g. balanced truncation, we also obtain an H∞ bound on the

error of the transfer function(see e.g. [25]). If we perform

balanced truncations such that ‖L(s) − L̃(s)‖∞ < eL,

‖U(s) − Ũ(s)‖∞ < eU , then the reduced order realization
˜̄Z = ˜̄L+ ˜̄U has error bound ‖Z̄− ˜̄Z‖ < eL +eU . This result

is the continuous domain analog of [24].

C. Inversion

We have shown the closure of Sc under addition and

multiplication, but for controller synthesis, we will also need

inversion. First we need some preliminaries:

Lemma 4 (Positive Real Lemma): Let G(s) = D +
C(sI − A)−1B be a stable rational transfer matrix with

R := (D + D∗)−1 ≻ 0. The following two statements are

equivalent:
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• G(s) + G∗(s) ≻ 0, ∀s ∈ ℑ
• ∃P � 0, unique, such that:

A∗P + PA + (PB − C∗)R(PB − C∗)∗ = 0 (4)

and λ(A + BR(B∗P − C)) ∈ C−

Proof: ([25], Lemma 13.27)

We will first consider the inverse of Hermitian operators:

Lemma 5: Given a Hermitian X̄ =
Sc{P, R, Q, Y, Q∗, R∗, P ∗} with Y ≻ 0, if the Riccati

and Lyapunov equations:

RG + GR∗ + ΦY Φ∗ = 0 (5)

Π∗H + HΠ + P ∗Y −1P = 0 (6)

where Φ = (Q − GP ∗)Y −1 and Π = R − ΦP , have

solutions, G and H , then there exists a X̄−1 = Z̄ =
Sc{PZ , RZ , QZ , YZ , •, •, •}, which may be calculated as:

PZ = Φ∗H − Y −1P, RZ = Π, QZ = Φ, YZ = Y −1

Proof: The derivation is omitted for brevity, but basi-

cally follows by assuming that X̄ has an outer factorization

X̄ = L̄L̄∗ and then calculating X̄−1 = L̄−∗L̄−1. Note that

the adjoint is characterized as: Sc{P, R, Q, D, U, W, V }∗ =
Sc{V

∗, W ∗, U∗, D∗, Q∗, R∗, P ∗}:

Lemma 6: The Riccati equation (5) will have a (positive

semidefinite)stabilizing solution if and only if X̄ ≻ 0. When

this is the case, Π = R − ΦP will be strictly stable, the

Lyapunov equation (6) has a unique solution, and Z̄ =
X̄−1 ∈ Sc.

Proof: Set G(s) = 1
2Y + P (sI − R)−1Q, and this

follows directly from Lemma 4. Note that X(s) ≻ 0∀s ∈ ℑ
implies Y ≻ 0, and that λ(R − ΦP ) ∈ C− is sufficient for

(6) to have a unique solution and for Z̄ to be stable.

We can now extend to the nonsymmetric case:

Lemma 7: Assume Ā ∈ Sc. Then ∃Ā−1 ∈ Sc ⇔ 0 /∈
λ(Ā). Furthermore, we can calculate it using the formulas

in Lemma 5.

Proof:

⇐ Then clearly 0 ≺ ĀĀ∗ ∈ Sc, and we can use Lemmas 5

and 6 to calculate Ā−1 = Ā∗(ĀĀ∗)−1 ∈ Sc

⇒ A bounded Ā−1 always implies 0 /∈ λ(Ā).

We will call such Ā ∈ Sc with Ā−1 ∈ Sc ‘regular’. Note

that we have been assuming Ā square, but these results

could easily be extended to nonsquare Ā using left and right

inverses.

We also note that the rational order of Ā−1, as calculated

above, will be generally 3 times the rational order of Ā.

However, often this can be avoided by inverting Ā directly,

without making it symmetric, using nonsymmetric Riccati

and Lyapunov equations:

Lemma 8: Given A = Sc{P, R, Q, D, U, W, V }, if the

nonsymmetric CARE:

(R − QD−1P )T + T (W − V D−1U) + ...

TV D−1PT + QD−1U = 0 (7)

has a stabilizing solution, e.g., a T for which both

WF = W − V D−1(U − PT )

RF = R − (Q − TV )D−1P

are stable, then A has an inverse Ā−1 = F̄ =
Sc{P

F , RF , QF , DF , UF , WF , V F } where

DF = D−1, UF = DF (U − PT ), QF = (Q − TV )DF

V F = SQF − V DF , PF = UF S − DF P

where S is the (unique) solution to the Sylvester equation

WF S + SRF + V DF P = 0 (8)

Proof: The proof proceeds by first assuming that Ā
has an outer factorization Ā = L̄Ū with L̄, Ū ∈ Sc and

with L̄ (Ū ) causal and anti-causal, with causal and anticausal

inverses ∈ Sc respectively, this requirement gives us the

Riccati equation (7). If the stabilizing solution exists, it

then provides an appropriate L̄, Ū pair. We then calculate

Ā−1 = Ū−1L̄−1 using Lemma 3, giving the Sylvester

equation, (8) which has a unique solution because WF and

RF are both stable. See [26] for the details.

The Riccati equation (7) will not have a stabilizing solution

for every invertible Ā, like that in the inversion method

in Lemma 7. However, when (7) does have a stabilizing

solution (which can always be calculated using the sign

iteration [27]), notice that the resulting F̄ does not increase

in order from Ā. This is often the case in practice, allowing

us to greatly speed up our iterative computations. This result

is the continuous domain analog of [24].

D. How to calculate ‖A(s)‖∞

In the following, we will perform iterative calculations

on Sc realizations, and thus must have some measure of

convergence. Given a realization, X̄ ∈ Sc, however, ‖X̄‖ is

not trivial to calculate. First we need an outer factorization:

Lemma 9 (Outer Factorization): Assume we have a Her-

mitian X̄ = Sc{P, R, Q, Y, Q∗, R∗, P ∗}, X̄ ≻ 0. Then ∃

L̄ = Sc{PL, RL, QL, DL, 0, 0, 0}

L̄−1 = Sc{(D
−1
L PL), (RL − QLD−1

L PL), (−QLD−1
L ),

D−1
L , 0, 0, 0}

with DL invertible such that L̄L̄∗ = X̄ . Furthermore, such

an L̄ can be calculated as: PL = P, RL = R, DLD∗

L =
Y, QL = (Q − GP ∗)Y −1DL, where G � 0 is the

stabilizing solution to the Riccati equation(5). DL can be

calculated via Cholesky factorization.

Proof: The derivation is part of that of the inversion.

Since X̄ ≻ 0, a stabilizing G exists by the positive real

lemma. L̄ ∈ Sc since RL = R is stable, and L̄−1 ∈ Sc since

G is stabilizing and thus (RL − QLD−1
L PL) is stable. This

is the continuous time analog of [24].

If we have some non-Hermitian Ā ∈ Sc, (maybe singular),

and we want to find the norm ‖Ā‖, then we can equivalently

calculate: ‖Ā‖ =
√

‖L̄L̄∗‖ − 1, where L̄L̄∗ = Ā∗Ā+ I ≻ 0
is an outer factorization, and hence L̄ has a stable causal
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representation, L(s). Since ‖L̄L̄∗‖ = ‖L̄‖2 = ‖L(s)‖2
∞

we

can then use the Bounded Real Lemma for stable continuous

LTI systems [25] to find the infinity norm of L(s) and thus

A(s).

IV. SIGN FUNCTION FOR TRANSFER MATRICES

The matrix sign function [28] has been shown to be

a very powerful tool for finite dimensional linear systems

analysis and control synthesis (see [29] for an overview). The

Newton’s method of calculation (called the ‘sign iteration’,

see below) also converges extremely fast (locally quadrati-

cally [29]), making it one of the most efficient computational

techniques for solving Riccati equations and other common

control problems. In the following we will extend the sign

function definition, some convergence bounds, and numerical

robustness calculations from the finite dimensional case to

the rational transfer matrix case.

A. Definition

We can define the sign iteration and sign function:

Algorithm 1 Sign Iteration [28]

Z0 = X

Zk+1 =
1

2
(Zk + Z−1

k ), k = 0, 1, 2, ...

sign(X) = lim
k→∞

Zk

Extending Algorithm IV-A to stable rational transfer matri-

ces is straightforward; for some X̄ ∈ Sc we can consider the

above iteration to calculate sign(X̄) just as the finite matrix

sign computation at each complex matrix X(s0), ∀s0 ∈ ℑ,

although we actually perform the calculations using the Sc

realization arithmetic developed in section III. Just as in the

matrix case [28], if X̄ is regular then every Z̄k is regular.

Lemma 10: For some X̄ ∈ Sc, assume that λ(X̄) does

not touch the imaginary axis. Then Zk(s) converges uni-

formly on the extended imaginary axis, and sign(X(s)) is

continuous and bounded

Proof: X(s) is continuous on the extended imaginary

axis, which is compact, and hence the proof is formally

identical to that for the sign iteration on transfer functions

on the unit circle in [30].

We note that Z∞(s) = sign(X(s)) will not always be

rational, since the space of rational functions is not complete.

However, Z̄k ∈ Sc, ∀k < ∞ and thus we can approximate

sign(X̄) arbitrarily close in Sc, and the approximation

generated by the halted sign iteration converges locally

quadratically fast to sign(X̄) in operator norm, so in practice

this is not a problem.

B. Applications

As discussed in [31] and references therein, in finite

dimensions, the matrix sign function is useful for many

things in control analysis and design, such as checking matrix

stability(sign(X) = −I ⇔ λ(X) ∈ C−) and solving

Lyapunov and Riccati equations. Most of these results extend

directly to the sign function on rational transfer matrices in

a trivial way, e.g. sign(X(s)) = −I, ∀s ∈ ℑ ⇔ λ(X(s)) ∈
C−, ∀s ∈ ℑ) Hence we can extend many finite dimensional

results with the sign iteration, such as stability, H2 and

H∞ performance analysis, and controller synthesis to Sc

realizations. Please note, as pointed out in the introduction,

that rationally parametric Riccati equations often have exact

solutions that are irrational, but which can be approximated

to arbitrary accuracy by rational transfer matrices; it is these

high-order rational transfer matrices that our techniques will

produce.

C. Numerical Difficulties

The alert reader will also have noticed that the rational

order of the Sc realizations during the sign iteration approx-

imately double during each step, and thus repeated order-

reducing approximations, as mentioned in subsection III-B

must be used to prevent the complexity from blowing up (the

size of the finite dimensional Riccati equation (5) needed to

invert Z̄k is proportional to its order). Such iterative approx-

imations, if too aggressive, can cause numerical instability

in the sign iteration [31].

However, in linear systems analysis and control applica-

tions, a posteriori closed loop stability and performance(e.g.

H2, H∞), can be relaxed to ǫ-sub-optimal problems involv-

ing Lyapunov and Riccati inequalities. The verification of

solutions to such problems can thus be reduced to checking

the positive definiteness of a Hermitian matrix [31], which

can be simply checked using the Positive Real Lemma

(Lemma 4).

V. USE FOR LPV ANALYSIS AND SYNTHESIS

As we have outlined it above, we can check the positive

definiteness of operators (and hence check whether some

X(ρ) satisfies a useful LMI or Riccati inequality), and solve

Lyapunov and Riccati equations of the sort:

A(ρ)T (ρ) + T (ρ)A(ρ)T + Q(ρ) = 0

A(ρ)S(ρ) + S(ρ)A(ρ)T + Q(ρ) + S(ρ)R(ρ)S(ρ) = 0

to arbitrary accuracy over all ρ ∈ R̂+.

However, as discussed in section II, LPV analysis and

control for dynamically varying parameters requires more

than this: there is a derivative term in the inequalities. For

verifying solutions to such LMI’s, this provides no added

difficulty, for example:

Lemma 11:

A(ρ)S(ρ) + S(ρ)A(ρ)T + Q(ρ) + ρ̇
∂S(ρ)

∂ρ
≺ 0 (9)

over all ρ ∈ R̂+, ρ̇ ∈ [α, β] if and only if

A(ρ)S(ρ) + S(ρ)A(ρ)T + Q(ρ) + γ
∂S(ρ)

∂ρ
≺ 0

∀ρ ∈ R̂+ for both γ ∈ {α, β}.

Proof: (9) is convex in ρ̇.

where the derivative with respect to ρ can be calculated as:
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Lemma 12: Given X(ρ) = P (ρI − R)−1Q, bounded on

ρ ∈ R̂+,

∂X(ρ)

∂ρ
=

[
P 0

]
(

ρI −

[
R −I
0 R

])−1 [
0
Q

]

(10)

Proof: Chain rule.

note that (10) is in the usual first order LFT form in ρ,

which we can use the results of lemma 1 to change back

into a transfer matrix on s for further computations. Note

also that
∂X(ρ)

∂ρ is bounded on ρ ∈ R̂+ if X(ρ) is bounded

on ρ ∈ R̂+.

So verifying (9) is as easy as checking positive definiteness

of two parametric matrices over ρ ∈ R̂+, which can be

efficiently done in the s ∈ ℑ domain using the sign based

techniques in section IV-B.

However, actually finding such an S(ρ) is much more

difficult, and we give only a suggestion for solving such

problems. We propose the following strategy (for Lyapunov

inequalities): pick some ℘ ∈ R, and solve sequentially for

S0, S1, ... in:

A(ρ)S0(ρ) + S0(ρ)A(ρ)T + Q(ρ) = −ǫI

A(ρ)S1(ρ) + S1(ρ)A(ρ)T + Q(ρ) + ℘
∂S0(ρ)

∂ρ
) = −ǫI

A(ρ)S2(ρ) + S2(ρ)A(ρ)T + Q(ρ) + ℘
∂S1(ρ)

∂ρ
) = −ǫI

. . . (11)

Since A(ρ) is assumed stable, Si+1(ρ) is continuous in

℘∂Si(ρ)
∂ρ , and we showed in lemma 12 that

∂Si(ρ)
∂ρ is con-

tinuous in Si(ρ), assuming that Si(ρ) is bounded on ρ, there

thus exists a ℘ small enough such that Si(ρ) will converge

to a unique S∞(ρ) by the Banach Fixed Point Theorem [32],

satisfying

A(ρ)S∞(ρ) + S∞(ρ)A(ρ)T + Q(ρ) + ℘
∂S∞(ρ)

∂ρ
) = −ǫI

It then remains to check for what bounds ℘+ < ρ̇ < ℘−

our solution S∞ satisfies the inequality (9), a problem like

that in Lemma 11, which we can easily solve. We note that

this same idea works for the Riccati inequalities(where the

convergence follows using the analyticity results from [33]).

Of course, this will only provide a posteriori rate bounds

℘+ < ρ̇ < ℘− in which our closed loop system has stability

or performance, and it is not yet clear how to pick ℘ and

ǫ(or some other offset matrix) in (11) in order to achieve

a priori desired bounds. Future work will be devoted to

exploring this point, and testing the above described method

on dynamically parameter varying examples.

VI. AIRFOIL FLUTTER EXAMPLE

For now we will apply our method to a simple static

parameter model of a fluttering airfoil. Our model comes

from section 4.9 of [34], wherein a 2-D quasi-static flutter

model is derived for a ‘smart’ airfoil; i.e. one with trailing

edge flap actuators. The model has four states, one controlled

input (flap angle), and two measured outputs (angle of attack
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Fig. 1. Open loop eigenvalues(*) vs closed loop eigenvalues(·)

and vertical displacement), and is polynomially dependent on

the freestream velocity, v, in the following form:

ẋ = (A0 + A1v + A2v
2)x + (B2v

2)u, y = C0x

We would like to design a controller, u = −K(v)x that

stabilizes the system for all static values of v ∈ [5, 15]m
s .

We do this via LQR; by solving the parameter dependent

Riccati equation:

A(v)T X(v) + X(v)A(v) + CT C . . .

+X(v)B(v)BT (v)X(v) = 0

for X(v), and then using the feedback gain K(v) =
BT (v)X(v). Using our methods outlined above, we found

an approximate X̃(v) that satisfied the Riccati equation with

a residual error norm of only maxv∈[5,15] ‖A(v)T X̃(v) +

X̃(v)A(v)+CT C+X̃(v)B(v)BT (v)X̃(v)‖ ≈ 3.79×10−7.

In figure 1 we see a comparison of the open loop vs closed

loop spectrum: for open loop, the system goes unstable

around v = 10.5m
s , but for closed loop the system is stable

for the entire range v ∈ [5, 15]m
s .

This particular example is actually very ill-suited for

our technique. As discussed in [31], while the ultimate

convergence of the sign iteration for calculating sign(H)
is quadratic, the initial steps may be very slow, largely

dependent on the location of the spectrum of H . If the

elements of the spectrum are close to +1 or −1, are mostly

real, and stay away from the imaginary axis, convergence

will be fast, otherwise it will be initially slow and non-

monotonic, requiring high rational orders. In our case of

the flutter system above, as we see in figure 1, the closed

loop spectrum is badly damped, with a relatively very large

imaginary component, requiring ∼ 17 sign iterations for

convergence (usually 5-10 suffices).

VII. CONCLUSION

We have demonstrated a new computational approach for

efficiently and accurately finding parametric solutions to

rationally parametric Lyapunov and Riccati equations, and

shown how this might be used in a number of LPV analysis

and synthesis problems. We note that this might also be

useful in certain robust control applications, and that while
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we have only developed the framework for a single parameter

in this paper, all of the techniques should be extendable to

multiple parameters in the same way that the 1-D distributed

system techniques in [24] can be extended to n-D in [30].

Future work will be devoted to case study comparisons of

this technique with other control methods for parameter de-

pendent systems in terms of performance, and investigations

of under what conditions(on the closed loop spectrum) this

method provides significant gains in computational complex-

ity.
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APPENDIX

Proof of Lemma 1: Now since we assume that K(−s2)
is well posed for all s ∈ ℑ, then E must have no purely

real eigenvalues in C+. Hence −E has no purely real

eigenvalues in C−, and a unique real (−E)1/2 := Z exists

with ℜ(λ(Z)) > 0 [35]. We can hence rewrite:

K(−s2) = H − G [(sI + Z)(sI − Z)]
−1

F

or K(−s2) = H −
[
G 0

]
(sI −

[
−Z I
0 Z

]

)−1

[
0
F

]

. If

we then solve the Sylvester equation ZX + XZ + I = 0
for the unique X , and apply the similarity transformation[
I −X
0 I

]

, then we get:

K(−s2) = H −
[
G GX

]
(sI −

[
−Z 0
0 Z

]

)−1

[
XF
−F

]

which we cut into stable ‘causal’ and ‘anticausal’ parts:

K(ρ) = H −G(sI − (−Z))−1XF −GX(s∗I − (−Z))−1F

(note that for s on the imaginary axis, s∗ = −s). Where we

remember that ℜ(λ(−Z)) < 0 and thus both parts are stable.
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