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We consider the weighted low rank approximation of the positive semidefinite Hankel matrix problem arising in signal processing.
By using the Vandermonde representation, we firstly transform the problem into an unconstrained optimization problem and then
use the nonlinear conjugate gradient algorithm with the Armijo line search to solve the equivalent unconstrained optimization
problem. Numerical examples illustrate that the new method is feasible and effective.

1. Introduction

Denote by 𝑅𝑛×𝑛 be the set of 𝑛 × 𝑛 real matrices and 𝐻+
𝑛

be the set of 𝑛 × 𝑛 positive semidefinite Hankel matrices.
The symbols 𝑉𝑅𝑚×𝑛 and 𝐷𝑅𝑛×𝑛 stand for the set of 𝑚 ×

𝑛 Vandermonde matrices and 𝑛 × 𝑛 diagonal matrices,
respectively.Thenotations rank(𝐴) and ‖𝐴‖

𝐹
refer to the rank

and the Frobenius norm of the matrix 𝐴, respectively.
In this paper, we consider the followingweighted low rank

approximation of the positive semidefinite Hankel matrix.

Problem 1. Given nonsingular matrices 𝐴, 𝐵 ∈ 𝑅
𝑛×𝑛, 𝑛 × 𝑛

Hankel matrix 𝐶, and an integer 𝑘, 1 ≤ 𝑘 < 𝑛, find a positive
semidefinite Hankel matrix𝑋 ∈ 𝐻

+

𝑛
of rank 𝑘 such that

󵄩󵄩󵄩󵄩󵄩
𝐴𝑋𝐵 − 𝐶

󵄩󵄩󵄩󵄩󵄩

2

𝐹

= min
𝑋∈𝐻
+

𝑛
,rank(𝑋)=𝑘

‖𝐴𝑋𝐵 − 𝐶‖
2

𝐹
. (1)

Problem (1) arises in certain control and signal processing
applications (see [1] for more details), which can be stated as
follows.The relationship between the impulse response of the
model and the state-space parameters is

𝑖 (𝑝) = ℎ𝐹
𝑙−1

𝑇, 𝑙 > 0, (2)

where ℎ, 𝐹, and 𝑇 are constraint matrices of sizes 1 × 𝑘, 𝑘 ×
𝑘, and 𝑘 × 1, respectively. The infinite Hankel matrix formed
from the impulse response sequence is

𝐻 =

[
[
[
[

[

𝑖 (1) 𝑖 (2) 𝑖 (3) ⋅ ⋅ ⋅

𝑖 (2) 𝑖 (3) 𝑖 (4) ⋅ ⋅ ⋅

𝑖 (3) 𝑖 (4) 𝑖 (5) ⋅ ⋅ ⋅

.

.

.
.
.
.

.

.

. ⋅ ⋅ ⋅

]
]
]
]

]

. (3)

For a given transfer function, the triplet (𝐹, 𝑇, ℎ) of a minimal
realization is unique modulo similarity (coordinate) trans-
formation. An interesting choice of coordinates leads to a
canonical form realization, with

𝐹 =

[
[
[
[

[

𝑎
1
1 0 ⋅ ⋅ ⋅ 0

𝑎
2
0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.
.
.
. ⋅ ⋅ ⋅

.

.

.

𝑎
𝑘
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

, (4)

where 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑘) are the transfer function parameters.

This is a form that directly relates the state-space model to
the transfer function parameters. The Hankel matrix𝐻 is an
operator from the past input to the future output, and it nec-
essarily has to be of rank 𝑘. This rank property is due to that
an impulse-response sequence admits of a finite-dimensional
realization of order 𝑘, if and only if the infinite Hankel matrix
formed from the sequence has rank equal to 𝑘. Usually,
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we need to find a lower rank positive semidefinite Hankel
matrix to approximate the Hankel matrix 𝐻 containing the
approximating signal. That is, given a Hankel matrix 𝐻, we
need to find a positive semidefinite Hankel matrix 𝐻̂ of given
rank 𝑘 such that ‖𝐻̂−𝐻‖2

𝐹
isminimized. It is clear especially in

the practical problem that there are a few noises added to the
rank-deficient signal, which leads to the following problem:

min
𝐻∈𝐻
+

𝑛
,rank(𝐻)=𝑘

‖𝐴𝐻𝐵 − 𝐶‖
2

𝐹
, (5)

where 𝐴 and 𝐵 are nonsingular matrices in 𝑅𝑛×𝑛, that is
problem (1).

In the last few years, there has been a constantly increas-
ing interest in developing the theory and numerical methods
for the Hankel matrix approximation problem due to its wide
applications inmodel reduction [2], system identification [3],
linear prediction [4], and so forth. Some results for solving
the Hankel matrix approximation problem are summarized
below.

For the Hankel matrix approximation problem without
the rank constraint, Maclnnes [5] proposed a method for
finding the best approximation of an arbitrary matrix 𝐶 by a
Hankelmatrix. By preserving the advantages of the projection
algorithm and Newton method, Al-Homidan [6] developed
a hybrid method for minimizing least distance function with
positive semidefinite Hankel matrix constraints. When using
interior point method for the nearest positive semidefinite
Hankel matrix approximation problem, it is important for
some algorithms to start from within the cone of positive
semidefinite Hankel matrices; that is, the initial point must
be a positive definite Hankel matrix [7]. Based on the
Vandermonde representation and bootstrapping techniques,
Varah [8] presented an iterative algorithm for finding an
optimal conditioned Hankel matrix of order 𝑛. Recently, Al-
Homidan et al. [9] proposed a semidefinite programming
approach for the Hankel matrix approximation problem.
The method is guaranteed to find an optimally conditioned
positive definite Hankel matrix within any desired tolerance.

For the case with the rank constraint, based on the
structured total least squares, Park et al. [10] developed a
numerical method for the low rank approximation of the
Hankel matrix, where the two means to generate a Hankel
matrix of the given rank were given. And these techniques
were extended to solve the Toeplitz low rank approximation
problem [11]. By applying Vandermonde representation and
spectral decomposition, three iteration algorithms for the
low rank approximation of the Hankel matrix were proposed
by Tang [12]. Meanwhile, he also made a further study
for low rank and weighted Hankel matrix approximation
problem by using interior point method. In [13], the low rank
positive semidefinite Hankel matrix approximation problem
was solved by twomethods. One is formulated as a nonlinear
minimization problem and then solved by using techniques
related to filter sequential quadratic programming. And
another is to formulate the problem as a smooth uncon-
strained minimization problem which is solved by the BFGS
method.

Although the Hankel matrix approximation problems
were extensively investigated, the results of the weighted
low rank approximation of the positive semidefinite Hankel
matrix approximation problem (1) are few as far as we
know. In this paper, we firstly characterize the feasible set
of problem (1) by using the Vandermonde representation.
Then, the problem (1) is transformed into an unconstrained
optimization problem, while the objective function is not
linear but instead quadratic. We use the nonlinear conjugate
gradient algorithm with the Armijo line search to solve
the equivalent unconstrained optimization problem, and the
most difficult point lies in how to compute the gradient of
the objective function. We derive the explicit expression for
the gradient of the objective function. Finally, two numerical
examples are tested to illustrate that the new method is
feasible to solve the problem (1).

2. Main Results

In this section, the problem (1) is transformed into an
unconstrained optimization problem by making use of the
Vandermonde representation. Then, the conjugate gradient
algorithm with Armijo line search is applied to solve the
equivalent unconstrained optimization problem. We begin
with some definitions and lemmas.

Definition 2 (see [14]). The matrix 𝐻 = [ℎ
𝑖𝑗
] of order 𝑛 is

called Hankel matrix if ℎ
𝑖𝑗
= ℎ
𝑖+𝑗−2

, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, which has
the following form:

𝐻 =

[
[
[
[

[

ℎ
1

ℎ
2

⋅ ⋅ ⋅ ℎ
𝑛

ℎ
2

ℎ
3

⋅ ⋅ ⋅ ℎ
𝑛−1

.

.

.
.
.
.

.

.

.
.
.
.

ℎ
𝑛
ℎ
𝑛−1

⋅ ⋅ ⋅ ℎ
2𝑛−1

]
]
]
]

]

. (6)

Definition 3 (see [14]). An 𝑛 × 𝑘 matrix 𝑉 is called Vander-
monde matrix if it has the following form:

𝑉 =

[
[
[
[

[

1 1 ⋅ ⋅ ⋅ 1

V
1

V
2

⋅ ⋅ ⋅ V
𝑘

.

.

.
.
.
.

.

.

.
.
.
.

V𝑛−1
1

V𝑛−1
2

⋅ ⋅ ⋅ V𝑛−1
𝑘

]
]
]
]

]

, (7)

where the 𝑗th column of matrix 𝑉 is the ratio of 𝑉
𝑗
(𝑗 =

1, 2, . . . , 𝑘) geometric sequence.

Lemma 4 (see [15, 16] (Vandermonde representation)). For
any positive semidefinite Hankel matrix 𝑋 of rank 𝑘, 1 ≤ 𝑘 ≤
𝑛, there exists an 𝑛 × 𝑘 Vandermonde matrix 𝑉 and a 𝑘 × 𝑘
diagonal matrix 𝐷 with positive diagonal entries such that

𝑋 = 𝑉𝐷𝑉
𝑇

. (8)
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Combining Lemma 4 and Definitions 2 and 3, we obtain
that the entries of the positive semidefinite Hankel matrix 𝑋
of rank 𝑘 can be written as

𝑋
𝑖𝑗
= 𝑉
𝑖
𝐷(𝑉
𝑇

)
𝑗

= (V𝑖−1
1
, V𝑖−1
2
, . . . , V𝑖−1

𝑘
) diag (𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑘
)

× (V𝑗−1
1
, V𝑗−1
2
, . . . , V𝑗−1

𝑘
)
𝑇

= 𝑑
1
V𝑖−1
1

V𝑗−1
1
+ 𝑑
2
V𝑖−1
2

V𝑗−1
2
+ ⋅ ⋅ ⋅ + 𝑑

𝑘
V𝑖−1
𝑘

V𝑗−1
𝑘

=

𝑘

∑

𝑙=1

𝑑
𝑙
V𝑖+𝑗−2
𝑙

, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(9)

where𝑉
𝑖
denote the 𝑖th row of the matrix𝑉, (𝑉𝑇)

𝑗
denote the

𝑗th column of the matrix 𝑉𝑇, and 𝐷 = diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑘
) is

a diagonal matrix. Equation (9) is identical to the result (3.4)
of [6].

Now, we begin to characterize the feasible set of the
problem (1); that is,

Φ = {𝑋 | rank (𝑋) = 𝑘, 𝑋 ∈ 𝐻
+

𝑛
} . (10)

By using Lemma 4 and (9) together with 𝑋 ∈ 𝐻
+

𝑛
, we obtain

that the entries of the matrix 𝐴𝑋 are

(𝐴𝑋)
𝑖𝑗
= 𝐴
𝑖
𝑋
𝑗

= 𝐴
𝑖
(𝑉𝐷𝑉

𝑇

)
𝑗

= (𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑛
)

× (

𝑘

∑

𝑙=1

𝑑
𝑙
V1+𝑗−2
𝑙

,

𝑘

∑

𝑙=1

𝑑
𝑙
V2+𝑗−2
𝑙

, . . . ,

𝑘

∑

𝑙=1

𝑑
𝑙
V𝑛+𝑗−2
𝑙

)

𝑇

=

𝑘

∑

𝑙=1

𝑑
𝑙
V1+𝑗−2
𝑙

𝑎
𝑖1
+

𝑘

∑

𝑙=1

𝑑
𝑙
V2+𝑗−2
𝑙

𝑎
𝑖2
+ ⋅ ⋅ ⋅ +

𝑘

∑

𝑙=1

𝑑
𝑙
V𝑛+𝑗−2
𝑙

𝑎
𝑖𝑛

=

𝑘

∑

𝑙=1

(𝑎
𝑖1
𝑑
𝑙
V1+𝑗−2
𝑙

+ 𝑎
𝑖2
𝑑
𝑙
V2+𝑗−2
𝑙

+ ⋅ ⋅ ⋅ + 𝑎
𝑖𝑛
𝑑
𝑙
V𝑛+𝑗−2
𝑙

)

=

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑗−2
𝑙

, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(11)

where 𝐴
𝑖
denote the 𝑖th row of matrix 𝐴 and 𝑋

𝑗
denote the

𝑗th column of matrix𝑋.
Similarly, the entries of the matrix 𝐴𝑋𝐵 are

(𝐴𝑋𝐵)
𝑖𝑗
=

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (12)

Hence, by making use of Lemma 4, the problem (1)
can be equivalently stated as the following unconstrained
optimization problem.

Problem 5. Given nonsingular matrices 𝐴, 𝐵 ∈ 𝑅
𝑛×𝑛, 𝑛 × 𝑛

Hankel matrix 𝐶 and an integer 𝑘, 1 ≤ 𝑘 ≤ 𝑛, find a Vander-
monde matrix 𝑉∗ ∈ 𝑉𝑅

𝑛×𝑘 and a diagonal matrix 𝐷∗ ∈
𝐷𝑅
𝑘×𝑘 such that

󵄩󵄩󵄩󵄩󵄩
𝐴𝑉
∗

𝐷
∗

(𝑉
∗

)
𝑇

𝐵 − 𝐶
󵄩󵄩󵄩󵄩󵄩

2

𝐹

= min
𝑉∈𝑉𝑅

𝑛×𝑘
,𝐷∈𝐷𝑅

𝑘×𝑘

󵄩󵄩󵄩󵄩󵄩
𝐴𝑉𝐷𝑉

𝑇

𝐵 − 𝐶
󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(13)

Set

𝐹 (𝑉,𝐷) =
󵄩󵄩󵄩󵄩󵄩
𝐴𝑉𝐷𝑉

𝑇

𝐵 − 𝐶
󵄩󵄩󵄩󵄩󵄩

2

𝐹

. (14)

Substituting (12) into (14), the objective function 𝐹(𝑉,𝐷) can
be rewritten as

𝐹 (𝜉) =

𝑛

∑

𝑖,𝑗=1

[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

2

, (15)

where

𝜉 = [𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑘
, V
1
, V
2
, . . . , V

𝑘
]
𝑇

,

𝑑
𝑖
∈ 𝐷, V

𝑖
∈ 𝑉, 𝑖 = 1, 2, . . . , 𝑘.

(16)

Next, we use the nonlinear conjugate gradient algorithm
withArmijo line search to solve the equivalent unconstrained
optimization problem (13). We first give the gradient of the
objective function (15) as follows.

Theorem 6. The gradient of the objective function (15) is

∇𝐹 (𝜉) = (
𝜕𝐹

𝜕𝑑
1

,
𝜕𝐹

𝜕𝑑
2

, . . . ,
𝜕𝐹

𝜕𝑑
𝑘

,
𝜕𝐹

𝜕V
1

,
𝜕𝐹

𝜕V
2

, . . . ,
𝜕𝐹

𝜕V
𝑘

)

𝑇

, (17)

where

𝜕𝐹

𝜕𝑑
𝑠

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

× [

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
V𝑝+𝑞−2
𝑠

𝑏
𝑞𝑗
]} ,

𝜕𝐹

𝜕V
𝑠

= 2𝑑
𝑠

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

× [

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

(𝑝 + 𝑞 − 2) 𝑎
𝑖𝑝
V𝑝+𝑞−3
𝑠

𝑏
𝑞𝑗
]} ,

𝑠 = 1, 2, . . . , 𝑘.

(18)
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Proof. According to the derivation rule, the partial deriva-
tives of (15) are

𝜕𝐹

𝜕𝑑
𝑠

=
𝜕

𝜕𝑑
𝑠

{

{

{

𝑛

∑

𝑖,𝑗=1

[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

2

}

}

}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

×
𝜕

𝜕𝑑
𝑠

[

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
]}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

×
𝜕

𝜕𝑑
𝑠

[

𝑘

∑

𝑙=1

𝑑
𝑙
(

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
)]}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

×
𝜕

𝜕𝑑
𝑠

[𝑑
𝑠

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
V𝑝+𝑞−2
𝑠

𝑏
𝑞𝑗
]}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

× [

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
V𝑝+𝑞−2
𝑠

𝑏
𝑞𝑗
]} ,

(19)

𝜕𝐹

𝜕V
𝑠

=
𝜕

𝜕V
𝑠

{

{

{

𝑛

∑

𝑖,𝑗=1

[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

2

}

}

}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

×
𝜕

𝜕V
𝑠

[

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
]}

= 2

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

×
𝜕

𝜕V
𝑠

[𝑑
𝑠

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
V𝑝+𝑞−2
𝑠

𝑏
𝑞𝑗
]}

= 2𝑑
𝑠

𝑛

∑

𝑖,𝑗=1

{[(

𝑘

∑

𝑙=1

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

𝑎
𝑖𝑝
𝑑
𝑙
V𝑝+𝑞−2
𝑙

𝑏
𝑞𝑗
) − 𝑐
𝑖𝑗
]

× [

𝑛

∑

𝑝=1

𝑛

∑

𝑞=1

(𝑝 + 𝑞 − 2) 𝑎
𝑖𝑝
V𝑝+𝑞−3
𝑠

𝑏
𝑞𝑗
]} ,

(20)

respectively.This completely finishes the proof ofTheorem 6.

Then, we construct the nonlinear conjugate gradient
algorithm with Armijo line search to solve the equivalent
unconstrained optimization problem (13).

Algorithm7 (this algorithm is to solve problem (13)). Wehave
the following steps.

Step 1. Initialize 𝜌 ∈ (0, 1), 𝛿 ∈ (0, 0.5), 𝜎 ∈ (𝛿, 0.5), and
tolerance error 0 ≤ tol ≪ 1. Choose the initial iterative vector
𝜉
0
∈ 𝑅
2𝑘×1. Set 𝑡 := 0.

Step 2. Compute 𝑔
𝑡
= ∇𝐹(𝜉

𝑡
). If ‖𝑔

𝑡
‖
𝐹
< tol, stop and output

𝜉
∗

≈ 𝜉
𝑡
.

Step 3. Determine the search direction 𝑑
𝑡
, where

𝑑
𝑡
=

{{

{{

{

−𝑔
𝑡
, 𝑡 = 0

−𝑔
𝑡
+

𝑔
𝑇

𝑡
𝑔
𝑡

𝑔
𝑇

𝑡−1
𝑔
𝑡−1

𝑑
𝑡−1
, 𝑡 ≥ 1.

(21)

Step 4. Confirm the step length 𝛼
𝑡
by applying Armijo line

search; that is, find the smallest nonnegative integer 𝑚
𝑡
such

that

𝐹 (𝜉
𝑡+1
) ≤ 𝐹 (𝜉

𝑡
) + 𝜎𝜌

𝑚
𝑡𝑔
𝑇

𝑡
𝑑
𝑡
. (22)

Set 𝛼
𝑡
= 𝜌
𝑚
𝑡 , 𝜉
𝑡+1
= 𝜉
𝑡
+ 𝛼
𝑡
𝑑
𝑡
.

Step 5. Set 𝑡 := 𝑡 + 1 and turn to Step 2.

By Theorem 4.3.5 [17, page 203], we can establish the
global convergence theorem for Algorithm 7.

Theorem8. Suppose the function𝐹(𝜉) is twice continuous and
differentiable; the level set

Ω(𝜉
0
) = {𝜉 ∈ 𝑅

2𝑘×1

| 𝐹 (𝜉) ≤ 𝐹 (𝜉
0
)} (23)

is bounded, and the step length 𝛼
𝑡
is generated by the Armijo

line search; then, the sequence {𝜉
𝑡
} generated by Algorithm 7 is

guaranteed to globally converge; that is,
lim
𝑡→∞

inf 󵄩󵄩󵄩󵄩∇𝐹(𝜉𝑡)
󵄩󵄩󵄩󵄩𝐹
= 0. (24)

3. Numerical Experiments

In this section, two numerical examples are tested to illustrate
that Algorithm 7 is feasible to solve the weighted low rank
approximation of positive semidefinite Hankel matrix prob-
lem. All experiments are tested in Matlab R2010a on a com-
puter with 2.70GHz of CPU and 4GB of memory.We denote
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Table 1: Results of Example 1 for 5 ≤ 𝑛 ≤ 30 with 𝑘 = 2 by
Algorithm 7.

𝑛 IT CPU (s) ‖∇𝐹(𝜉
𝑡
)‖
𝐹

𝐹(𝜉
𝑡
)

5 3 0.0624 2.6693 × 10
−4 1.4080

8 7 0.8892 2.3410 × 10
−4 3.9670

10 6 1.9344 1.6205 × 10
−4 4.1407

12 6 3.7128 1.3134 × 10
−4 13.1506

15 5 6.9857 7.2015 × 10
−4 14.8106

20 5 19.2814 7.9820 × 10
−4 29.3209

25 6 36.6710 3.3096 × 10
−4 31.7393

30 6 51.5880 4.8270 × 10
−4 55.6256

Table 2: Results for Example 2 with different rank by Algorithm 7.

rank 𝑘 2 3 4
IT 11 35 48

CPU (s) 3.4632 7.8937 24.7261

𝐹(𝜉
𝑡
) 11.3811 10.8091 10.8088

‖∇𝐹(𝜉
𝑡
)‖
𝐹

8.2125 × 10
−4

9.4795 × 10
−4

9.8057 × 10
−4

the gradient norm ‖𝑔
𝑡
‖
𝐹
= ‖∇𝐹(𝜉

𝑡
)‖
𝐹
, where 𝜉

𝑡
is the 𝑡th

iterative value in Algorithm 7. The stopping criterion is

󵄩󵄩󵄩󵄩𝑔𝑡
󵄩󵄩󵄩󵄩𝐹
< 1.0 × 10

−3

. (25)

And we choose the random matrix rand(2𝑘, 1) as the initial
value in the following examples, where the random matrix is
generated by the Matlab function rand(2𝑘, 1).

Example 1. The given matrixes 𝐴, 𝐵, 𝐶 are generated by 𝐴 =

eye(𝑛), 𝐵 = eye(𝑛), 𝐶 = hankel(𝑥, 𝑦), where 𝑥 = rand(1, 𝑛),
𝑦 = rand(1, 𝑛). In this example, we use Algorithm 7 to solve
the problem (13) for 5 ≤ 𝑛 ≤ 30 with given rank 𝑘 =

2. Some experimental results are listed in Table 1 including
the number of iteration (denoted by IT), cpu time (denoted
by CPU), the residual error 𝐹(𝜉

𝑡
), and the gradient norm

‖∇𝐹(𝜉
𝑡
)‖
𝐹
.

Example 2. In this example, ten samples of an exponential
with an amplitude 1 and frequency 2𝜋0.1111 were generated
and complex gaussian white noise added to it. A 10 × 10
Hankel matrix 𝐶 was formed from them; that is,

𝐶 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.7060 0.0318 0.2769 0.0462 0.0971 0.8235 0.6948 0.3171 0.9502 0.0344

0.0318 0.2769 0.0462 0.0971 0.8235 0.6948 0.3171 0.9502 0.0344 0.0540

0.2769 0.0462 0.0971 0.8235 0.6948 0.3171 0.9502 0.0344 0.0540 0.5308

0.0462 0.0971 0.8235 0.6948 0.3171 0.9502 0.0344 0.0540 0.5308 0.7792

0.0971 0.8235 0.6948 0.3171 0.9502 0.0344 0.0540 0.5308 0.7792 0.9340

0.8235 0.6948 0.3171 0.9502 0.0344 0.0540 0.5308 0.7792 0.9340 0.1299

0.6948 0.3171 0.9502 0.0344 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688

0.3171 0.9502 0.0344 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688 0.4694

0.9502 0.0344 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688 0.4694 0.0119

0.0344 0.0540 0.5308 0.7792 0.9340 0.1299 0.5688 0.4694 0.0119 0.3371

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (26)

where the weighted matrix 𝐴, 𝐵 are, respectively,

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.6837 0.7400 0.7894 0.4845 0.1123 0.1098 0.6733 0.0924 0.0986 0.5557

0.1321 0.2348 0.3677 0.1518 0.7844 0.9338 0.4296 0.0078 0.1420 0.1844

0.7227 0.7350 0.2060 0.7819 0.2916 0.1875 0.4517 0.4231 0.1683 0.2120

0.1104 0.9706 0.0867 0.1006 0.6035 0.2662 0.6099 0.6556 0.1962 0.0773

0.1175 0.8669 0.7719 0.2941 0.9644 0.7978 0.0594 0.7229 0.3175 0.9138

0.6407 0.0862 0.2057 0.2374 0.4325 0.4876 0.3158 0.5312 0.3164 0.7067

0.3288 0.3664 0.3883 0.5309 0.6948 0.7690 0.7727 0.1088 0.2176 0.5578

0.6538 0.3692 0.5518 0.0915 0.7581 0.3960 0.6964 0.6318 0.2510 0.3134

0.7491 0.6850 0.2290 0.4053 0.4326 0.2729 0.1253 0.1265 0.8929 0.1662

0.5832 0.5979 0.6419 0.1048 0.6555 0.0372 0.1302 0.1343 0.7032 0.6225

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(27)

Set 𝑘 = 2, and we use Algorithm 7 to solve the problem (13).
After 11 iterations and taking 3.4632 s, we get the minimum

𝜉
∗

≈ 𝜉
11
= (0.0748, 0.3282, 1.0317, −0.2309)

𝑇

. (28)

Hence, the closest positive semidefinite Hankel matrix 𝑋 of
rank 2 for the problem (1) is

𝑋 ≈

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.4030 0.0014 0.0971 0.0781 0.0857 0.0872 0.0903 0.0931 0.0960 0.0991

0.0014 0.0971 0.0781 0.0857 0.0872 0.0903 0.0931 0.0960 0.0991 0.1022

0.0971 0.0781 0.0857 0.0872 0.0903 0.0931 0.0960 0.0991 0.1022 0.1054

0.0781 0.0857 0.0872 0.0903 0.0931 0.0960 0.0991 0.1022 0.1054 0.1088

0.0857 0.0872 0.0903 0.0931 0.0960 0.0991 0.1022 0.1054 0.1088 0.1122

0.0872 0.0903 0.0931 0.0960 0.0991 0.1022 0.1054 0.1088 0.1122 0.1158

0.0903 0.0931 0.0960 0.0991 0.1022 0.1054 0.1088 0.1122 0.1158 0.1195

0.0931 0.0960 0.0991 0.1022 0.1054 0.1088 0.1122 0.1158 0.1195 0.1232

0.0960 0.0991 0.1022 0.1054 0.1088 0.1122 0.1158 0.1195 0.1232 0.1271

0.0991 0.1022 0.1054 0.1088 0.1122 0.1158 0.1195 0.1232 0.1271 0.1312

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (29)

For the above example, we use Algorithm 7 to solve the pro-
blem (13) with different rank. We list the number of iteration
(denoted by IT), cpu time (denoted by CPU), the residual
error 𝐹(𝜉

𝑡
), and the gradient norm ‖∇𝐹(𝜉

𝑡
)‖
𝐹
in Table 2.

Examples 1 and 2 show that Algorithm 7 is feasible and
effective to solve the weighted low rank approximation of the
positive semidefinite Hankel matrix problem.

4. Conclusion

The Hankel matrix approximation problem is a very popular
and interesting problem in signal processing, model reduc-
tion, system identification, and linear prediction. This paper
studies the weighted low rank approximation of the positive
semidefiniteHankelmatrix problemarising in signal process-
ing. By using the Vandermonde representation, the problem
is firstly transformed into an unconstrained optimization
problem. Then, we use the nonlinear conjugate gradient
algorithm to solve the equivalent unconstrained optimization
problem. Finally, two numerical examples are tested to show
that our method is feasible and effective.
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