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ABSTRACT 
 

A simple isoparametric geometry mapping is applied to incorporate irregular four-node quadri-
lateral elements into Modified Nodal Integral Method for the two-dimensional, time-dependent, 
incompressible Navier-Stokes equations. The modified scheme has been applied to solve the two-
dimensional lid driven cavity problem with exact solution, solved over a sub-domain that 
necessitate non-rectangular elements for efficient coarse discretization permitted by nodal scheme. 
Numerical results show that accuracy of the modified nodal integral scheme can be maintained for 
irregular shaped cells, thus extending the efficiency and accuracy of such schemes to domains 
with curved boundaries.  
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1.  INTRODUCTION 
 
Nodal Integral Method (NIM) for the Navier-Stokes equations was first reported by Azmy and   
Dorning [1]. A Modified Nodal Integral Method (MNIM) was developed for the 2D and 3D,        
time-dependant, Navier-Stokes equations around 2003 [2] and 2005 [3], respectively. It shows 
high accuracy even with relatively coarse meshes. However, the local transverse integration 
procedure required to obtain the set of ordinary differential equations for each cell limits the 
MNIM to fluid flow fields that, in 2D, can be decomposed into rectangular cells. As a result, the 
efficiency achieved by using coarse meshes is adversely impacted due to the need to use finer 
rectangular cells for problems with complex boundaries. To overcome the abovementioned 
restriction, a hybrid approach combining nodal integral method (NIM) and finite element method 
was reported earlier [4]. 
 
Recently, a simple isoparametric geometry mapping approach, which has been widely used in 
finite volume and finite element methods, was successfully implemented to solve the Poisson 
equation and the convection-diffusion equation in arbitrary domains using the NIM [5]. The 
results showed that accuracy of nodal integral scheme can be maintained for irregular shaped 
cells. The isoparametric mapping approach developed for the Poisson and convection-diffusion 
equations is extended here by applying the same mapping to incorporate irregular quadrilateral 
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elements into MNIM for the two-dimensional, time-dependent, incompressible Navier-Stokes 
equations. 
 
 

2.  FORMULISM 
 

2.1.  Isoparametric Mapping 

 
Consider an arbitrary quadrilateral element in spatial domain ߗ෠ , and a square element in domain 
෠ߗ as shown in Fig. 1. Notice that ,ߗ  is characterized by global coordinates x and y, while ߗ by 
local coordinates ߦ and ߟ with -1൑ ,ߦ ߟ ൑1. Assume an isoparametric mapping from domain ߗ෠  to 
,ߦሺݔ such that ,ߗ ሻߟ ൌ ሾܮሺߦ, ,ߦሺݕ and ܠሻሿߟ ሻߟ ൌ ሾܮሺߦ,  where x and y denote column vectors ܡሻሿߟ
containing nodal values of the x and y coordinates, and the matrix  ሾܮሺߦ, ሻሿߟ ൌ ሾ݈௜ሺߦ, ;ሻߟ ݅ ൌ
1,2,3,4ሿ has bilinear Lagrange interpolation functions (see Appendix A) as its four components. 
The explicit form of this linear mapping can easily be shown to be [5] 
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where ሺݔ௜, ෠ߗ ௜ሻ indicates the ith node’s coordinates in global domainݕ . 
 
 

 
 

Figure 1. Mapping of the quadrilateral element to a (2×2) square element 
 
 

As usual we denote by ܥ଴൫ߗ෠൯ and ܥ଴ሺߗሻ the space of continuous functions defined over ߗ෠  and 
,ݔ෠ሺܨ respectively. For any continuous function ,ߗ ሻݕ א  ෠൯, by applying mapping (1), thereߗ଴൫ܥ
exists a corresponding continuous function  ܨሺߦ, ሻߟ א  ሻ such that [5]ߗ଴ሺܥ
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,ߦሺܨ ሻߟ ൌ ,ߦሺݔ෠൫ܨ ,ሻߟ ,ߦሺݕ  ሻ൯                                                 (2)ߟ

 
Further, notice that mapping (1) is one-to-one and onto, which guarantees the existence of an 
inverse function ܨ෠ሺݔ, ሻݕ א  ෠൯ such that [5]ߗ଴൫ܥ
 

,ݔ෠ሺܨ ሻݕ ൌ ,ݔሺߦ൫ܨ ,ሻݕ ,ݔሺߟ  ሻ൯                                                 (3)ݕ
 
Moreover, if the function ܨ෠ሺݔ, -ሻ is differentiable, then its first and second order partial deriݕ
vatives with respect to x and y are [4] 
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Thus, we can map an equation whose spatial variables are defined over a generic quadrilateral 
element in ߗ෠  onto a target equation having spatial variables defined over a square element in 
domain ߗ by transforming the original equation term by term using the above mapping, as long 
as each term represents a continuous function. 
 

2.2.  Original and Transformed Navier-Stokes Equations 

 
The two-dimensional, time-dependent, incompressible Navier-Stokes equations in primitive  
variable form are 
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in which x, y and t denote independent spatial variables and time variable respectively, while ෠ܾ

௫ 
and ෠ܾ

௬ represent body force terms [2]. The three dependent variables ݑො  are unknowns ̂݌ ො, andݒ ,
to be solved, with hat indicating that they are defined in the global domain ߗ෠ . The continuity 
equation (Eq. 6) is often replaced by a Poisson type equation for the pressure variable [6], given 
by 
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where the dilatation term ܦ෡ is given by 
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Equations (7), (8) and (9) are mathematically equivalent to the original set of Navier-Stokes 
equations, yet have unique merit in numerical computation. For a space decomposed into 
arbitrary quadrilateral elements in the global domain ߗ෠ , these equations can be mapped, by 
applying the mapping technique introduced earlier, within each cell to another set of transformed 
governing equations over a square with side length of two in the local domain ߗ, as follows 
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where ݑ௣ and ݒ௣ in Eqs. (11-12) represent the ݑ and ݒ velocities from the previous time step. 
The introduction of terms with ݑ௣ and ݒ௣ are intended to efficiently treat the nonlinear terms [2]. 
R in Eq. (13) represents the complex expression from the right hand side of Eq. (9), and will be 
next lumped into the pseudo-source term. 
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2.3.  Transverse-Integration Procedure 

 
The following local transverse-integrated ordinary differential equations are obtained after apply-
ing the transverse integration procedure [2] to Eqs. (11-13) 
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where the right hand side terms are the zeroth order Legendre expansion of pseudo-source terms, 
and the transverse-integrated unknowns are formally defined as 
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2.4.  Solutions to the Local Transverse-Integrated Equations 

 
Eqs. (14-19) and (20-21) are groups of second and first order linear ordinary differential equa-
tions, respectively. The introduction of the pseudo-source terms decouples the original set of 
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coupled equations and thus makes each one solvable within the local square element ߗ. The 
solutions of Eqs. (14-19) are either of constant+linear+exponential form [2] or quadratic, de-
pending on the geometry of the irregular cell specified in domain ߗ෠; while Eqs. (20-21) have 
simple linear solutions. 
 
For example, the solution of Eq. (14) is 
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if  ߟ௫ݑ௣ ൅ ௣ݒ௬ߟ െ ௫௫ߟ൫ߥ ൅ ௬௬൯ߟ ൌ 0, and 
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if  ߟ௫ݑ௣ ൅ ௣ݒ௬ߟ െ ௫௫ߟ൫ߥ ൅ ௬௬൯ߟ ് 0. 
 
The solution of Eq. (20) is 
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where ܥ௜ (i=1, 2, 3, …) are arbitrary constants. 

2.5.  Continuity Conditions and Constraint Conditions 

 
Following MNIM [2], continuity of 8 unknowns (ݑതక௧, ,തఎ௧ݑ ,തకఎݑ ҧݒ క௧, ,ҧఎ௧ݒ ҧݒ కఎ, ,ҧక௧݌  ҧఎ௧) and their݌
derivatives on interface of neighboring elements are imposed to obtain a set of 16 discrete 
algebraic equations containing 8 unknown pseudo-source terms. Constraint conditions are then 
applied to eliminate the pseudo-source terms [1]. Three of the eight constraint conditions are 
obtained by ensuring that Eqs. (14-21) can be satisfied within each element in an integral sense, 
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uniqueness of the transverse-integrated unknowns leads to the other five constraint conditions  
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തక௧ఎݑ ൌ
1
2

න ሻߟതక௧ሺݑ
ଵ

ିଵ
ߟ݀ ൌ

1
଴ݐ2

න ሻݐതకఎሺݑ
௧బ

ି௧బ

ݐ݀ ൌ  തకఎ௧                                      ሺ28ሻݑ

 
The final set of 8 discrete algebraic equations for the 8 surface- or element-averaged unknowns 
are then obtained after eliminating the pseudo-source terms by applying the constraint equations. 
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The set of discrete algebraic equations are then solved iteratively, using Gauss-Seidel iterative 
procedure in conjunction with a SIMPLE-like algorithm [2]. 
 
 

3.  NUMERICAL RESULTS AND DISCUSSION 
 
In this section, a variation of the classical lid driven cavity problem—the modified lid driven 
cavity problem [7, 2]—is discussed. This problem was first proposed by Shin el al. [7], and it has 
an exact analytic solution with a prescribed lid velocity as well as an artificial body force term. 
Exact solution for both the velocity and pressure field of the modified lid driven cavity problem 
is respectively given by [7] 
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,ݔሺݒ ሻݕ ൌ െ8ሺ2ݔ െ ଶݔ6 ൅ ଶݕଷሻሺെݔ4 ൅  ସሻ                                (30)ݕ
 

,ݔሺ݌ ,ݕ ܴ݁ሻ ൌ
଼

ோ௘
ቀ24 ቀ

௫య

ଷ
െ

௫ర

ଶ
൅

௫ఱ

ହ
ቁ ݕ ൅ ሺ2ݔ െ ଶݔ6 ൅ ݕଷሻሺെ2ݔ4 ൅ ଷሻቁݕ4 ൅ 64 ቀ

௫ర

ଶ
െ ହݔ2 ൅

଺ݔ3 െ ଻ݔ2 ൅
௫ఴ

ଶ
ቁ ሺെሺെ2ݕ ൅ ଷሻଶݕ4 ൅ ሺെ2 ൅ ଶݕଶሻሺെݕ12 ൅  ସሻሻ                (31)ݕ

 
where Re denotes to the Reynolds number. Note that the lid velocity is given by 
 

ሻݔ௟௜ௗሺݑ ൌ ,ݔሺݑ ݕ ൌ 1ሻ ൌ 16ሺݔଶ െ ଷݔ2 ൅  ସሻ                                  (32)ݔ
 
 

 
 

Figure 2. Schematic diagram for the modified lid-driven cavity problem 
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The new implementation of MNIM developed earlier in this paper is tested by calculating the 
velocity and pressure field over a parallelogram within the unit cavity. The parallelogram ABCD, 
shown in Fig. 2, is centered in the cavity, with a uniform edge length of 0.5.  It can deform 
continuously as the angle ߠ measured between the edge AD and the horizontal line is changed 

continuously. Simulations are carried out for three ߠ values—
ହగ

ଵଶ
,

గ

ଷ
,

గ

ସ
. Dirichlet boundary condi-

tions are imposed upon the four external edges of the parallelogram ABCD using the exact solu-
tions given in Eqs. (29-31). Though exact edge-averaged values can be evaluated and specified 
as boundary conditions, results reported below are evaluated using the point values at the center 
of the edge as boundary conditions. The time-independent, modified lid driven cavity problem 
can be solved by marching in time from an arbitrary initial condition (both the velocity and 
pressure fields are set uniformly to zero as the initial condition in this work) till steady state is 
achieved [2]. Numerical results reported below are for Reynolds number Re = 1. Note that the 
velocity field in this manufactured problem is not affected by the Reynolds number. The 
numerical results showed very good agreement with exact solution for all eight unknowns in this 
problem. As an example, Fig. 3 shows qualitative comparison between exact and numerical 
solutions for  ݑതకఎ and  ݌ҧఎ௧ (8×8 mesh, ߠ ൌ

஠

ସ
). The x- and the y-axis in the figure indicate the 

edge number along boundaries of the parallelogram ABCD. 
 
 

 
Figure 3a. Exact solution for ݑതకఎ

 
Figure 3b. Numerical solution for ݑതకఎ

 
Figure 3c. Exact solution for ݌ҧఎ௧

 
Figure 3d. Numerical solution for ݌ҧఎ௧

 
Figure 3. Global comparison of exact and numerical solutions for ࢛ഥࣁࣈ and ࢖ഥ࢚ࣁ.  
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Figure 4a. ݑതఎ௧values along EF (8×8 mesh, ߠ ൌ
ହగ

ଵଶ
) Figure 4b. ݑതక௧values along GH (8×8 mesh,  ߠ ൌ

ହగ

ଵଶ
)

Figure 4c. ݑതఎ௧values along EF (8×8 mesh, ߠ ൌ
గ

ଷ
) Figure 4d. ݑതక௧values along GH (8×8 mesh,  ߠ ൌ

గ

ଷ
) 

Figure 4e. ݑതఎ௧values along EF (8×8 mesh, ߠ ൌ
గ

ସ
) Figure 4f. ݑതక௧values along GH (8×8 mesh,  ߠ ൌ

గ

ସ
) 

 

Figure 4. Comparison of exact and numerical solutions along lines EF and GH.  
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Figure 4 shows the numerical edge-averaged u velocities ݑതఎ௧ and ݑതక௧ along the two lines EF and 

GH (as shown in Fig. 2) respectively for three ߠ values (8×8 mesh, ߠ ൌ
ହ஠

ଵଶ
,

஠

ଷ
,

஠

ସ
). Points E, F, G 

and H bisect edges AB, CD, BC and AD, respectively. Also shown in Fig. 4 are the exact values 
of u at the center of the edge for comparison. 
 

RMS errors in ݑതక௧, ݒҧఎ௧, ݌ҧక௧,and ݌ҧఎ௧are reported for different mesh sizes as well as different ߠ 
values in Tables I-III. Mesh refinement study shows that the scheme is of second order. 

Moreover, as the elements are distorted from ߠ ൌ ହ஠

ଵଶ
  to ߠ ൌ ஠

ସ
, there is no significant increase in 

the RMS errors. 
 

 

Table I. RMS errors for ࣂ = ૞ૈ/૚૛ 
 

Mesh ݑതక௧ ݒҧఎ௧ ݌ҧక௧ ݌ҧఎ௧ 
4×4 0.28364×10-1 0.79798×10-2 0.96540×10-2 0.52180×10-2 
8×8 0.63235×10-2 0.35691×10-2 0.22393×10-2 0.12492×10-2 

16×16 0.14737×10-2 0.16972×10-2 0.52121×10-3 0.29883×10-3 
 
 

Table II. RMS errors for ࣂ = ૈ/૜ 
 

Mesh ݑതక௧ ݒҧఎ௧ ݌ҧక௧ ݌ҧఎ௧ 
4×4 0.29686×10-1 0.12550×10-1 0.10575×10-1 0.71241×10-2 
8×8 0.65353×10-2 0.56231×10-2 0.23918×10-2 0.16714×10-2 

16×16 0.15072×10-2 0.26725×10-2 0.54520×10-3 0.39126×10-3 
 
 

Table III. RMS errors for ࣂ = ૈ/૝ 
 

Mesh ݑതక௧ ݒҧఎ௧ ݌ҧక௧ ݌ҧఎ௧ 
4×4 0.28833×10-1 0.12162×10-1 0.99758×10-2 0.72032×10-2 
8×8 0.63403×10-2 0.54619×10-2 0.22512×10-2 0.16932×10-2 

16×16 0.14693×10-2 0.25943×10-2 0.51814×10-3 0.39555×10-3 
 
 

4.  CONCLUSIONS 
 
Using a simple isoparametric geometry mapping and thus transforming irregular four-node 
quadrilateral elements into square elements, the modified nodal integral scheme is applied to the 
transformed Navier-Stokes equations. This approach has often been used in finite volume and 
finite element schemes. While the transformation of the quadrilateral elements to square ele-
ments is straight forward, the transformed set of the momentum equations are significantly more 
complicated, including additional nonlinear convective terms; linear convective terms; linear 
combination of pressure gradients in the two directions; as well as mixed derivative terms similar 
to the diffusion term (Eqs. (11-12)). The transformed pressure equation is more complicated as 
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well, with additional terms including the convection-like first derivative terms with constant 
coefficients. The appearance of the additional terms can be explained based on physical grounds. 
No approximations are introduced in the transformation of the element and the governing equa-
tions from (x, y) to (ξ, η) space. 
 
The modified scheme is applied to solve the two-dimensional lid driven cavity problem with       
exact solution, solved over a sub-domain that necessitate non-rectangular elements for efficient 
coarse discretization permitted by the nodal scheme. Numerical results show that accuracy of the    
modified nodal integral scheme can be maintained for irregular shaped cells, thus extending the 
efficiency and accuracy of such schemes to domains with curved boundaries. Though RMS 
errors are small, they may decrease even more once the averaged values calculated numerically 
are compared with averaged values from the exact solution (rather than the point values). 
 
Mesh refinement (Tables I-III) show that the scheme is of second order for edge averaged values 
തక௧ݑ) ҧఎ௧݌ , , etc). The RMS errors do not increase significantly for the problem studied as the 
element distortion was increased over a limited range (

గ

ସ
>ߠ ≥

గ

ଶ
). 

 
Approximations introduced in the development of the numerical scheme are similar to those 
made in conventional nodal schemes. One additional approximation made is that the mixed deri-

vative terms (see Eqs. (11-13))  
డమ௨

డకడఎ
, 

డమ௩

డకడఎ
 and 

డమ௣

డకడఎ
 also need to be approximated as they lead to 

corner values in the final set of discrete equations. A logical extension of the work reported here 
is to use more general, rather than linear, mapping to allow more accurate representation of 
elements with curved boundaries in the transformed space. 
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APPENDIX A 

 
Bilinear Lagrange interpolation functions for two-dimensional, 4-node interpolation is given by 
 

݈௜ሺߦ, ሻߟ ൌ ෑ ෑ
൫ߦ െ ߟ௝൯ሺߦ െ ௞ሻߟ

൫ߦ௜ െ ௜ߟ௝൯ሺߦ െ ௞ሻߟ

ସ

௞ୀଵ
௞ஷ௜

ସ

௝ୀଵ
௝ஷ௜

     ሺ݅ ൌ 1, 2, 3, 4ሻ                                ሺAሻ 

 
where ߦ௜ and ߟ௜ indicate the nodal values of the ith node’s ߦ and ߟ coordinates. 


