
Application Domain Study of Evolutionary Algorithms
in Optimization Problems

P. Caamaño F. Bellas J.A. Becerra R.J. Duro
Grupo Integrado de Ingeniería

Escola Politécnica Superior
Universidade da Coruña

Spain

pcsobrino@udc.es fran@udc.es ronin@udc.es richard@udc.es

ABSTRACT
This paper deals with the problem of comparing and testing
evolutionary algorithms, that is, the benchmarking problem, from
an analysis point of view. A practical study of the application
domain of four representative evolutionary algorithms is carried
out using a relevant set of real-parameter function optimization
benchmarks. The four selected algorithms are the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) and the
Differential Evolution (DE), due to their successful results in
recent studies, a Genetic Algorithm with real parameter operators,
used here as a reference approach because it is probably the most
familiar to researchers, and the Macroevolutionary algorithm
(MA), which is not widely known but it shows a very remarkable
behavior in some problems. The algorithms have been compared
running several tests over the benchmark function set to analyze
their capabilities from a practical point of view, in other words, in
terms of their usability. The characterization of the algorithms is
based on accuracy, stability and time consumption parameters
thus establishing their operational scope and the type of
optimization problems they are more suitable for.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence –
Problem Solving, Control Methods, and Search

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Evolutionary Algorithms, Algorithm Characterization,
Optimization Benchmarks, Comparison Tests, Error Measures.

1. INTRODUCTION
The present work takes inspiration from the ever more frequent
algorithm competitions in the field of Evolutionary Computation.
These competitions are typically held during conferences in this
area like CEC or GECCO, and the main objective of the

organizers is to provide common benchmarks in order to fairly
compare the large number of different algorithms that have been
recently developed. Typically, when a new algorithm is presented
in the literature, it is tested with problems that are chosen to
highlight its capabilities. As a consequence, this kind of
competitions are needed to evaluate the algorithms in a more
systematic manner by specifying a common termination criterion,
problem size, initialization scheme, linkages/rotation, etc
[1][2][3].

The main problem we have found when analyzing the results of
these general competitions and comparison papers [4], is that they
don’t provide useful conclusions or, in many cases, the
appropriate data to characterize the algorithms from a practical
point of view. Although typical optimization benchmarks classify
functions depending on their features (separable, non-separable,
continuous, discontinuous, etc), authors don’t provide general
conclusions about the type of function that is more suitable for
each type of algorithm. In this paper, we try to bridge this gap
between the theoretical studies and the practical optimization, by
applying error and performance measures that permit
characterizing the algorithms according to the type of function
they perform better at, and the computational cost they imply.

The typical error measures established to compare the algorithms
are related to the number of samples of the objective function
necessary to achieve the optimum or to the mean error with
respect to the optimal value after a fixed number of runs [5].
These are very relevant measures of the quality of the algorithm
from a phenotypic (operational) point of view, but they don’t
provide any indication about how different the genotype (the
encoding) of the solution is with respect to the optimal. In
practical terms, this is very useful information because solutions
that are successful from a phenotypic point of view (near the
optimum function value) may be far from the optimum point. In
this work, we propose a new error measure to compare the
algorithms from this perspective.

The rest of the paper is structured as follows: section 2 presents in
detail all of the elements involved in the tests that have been
carried out. Section 3 contains the results obtained and their
discussion and section 4 is devoted to the conclusions of this
analysis from a practical point of view.

2. EXPERIMENTAL SETUP
This section is concerned with the presentation of all the elements
involved in the comparisons we have carried out.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–26, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

495

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357238921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1 Benchmark function set
In comparison tests, the selection of a general and relevant
benchmark function set is very important. In this case, 23 real-
parameter optimization functions of different dimensionality were
selected. This benchmark set was used by Yao in [6] and a
modification of it in CEC 2005 competition [7]. The set has been
divided into two main subsets based on the dimensionality of the
benchmarks. Functions ƒ1-ƒ13 represent high-dimensional
problems while the remaining ten functions (ƒ14-ƒ23) could be
considered low-dimensional problems. This function set is widely
used on testing evolutionary algorithms because it contains
functions with different features like dimensionality, separability,
modality and continuity. Table 1 summarizes the benchmark
function set and their features. Formal expression of these
functions can be found in [6].
To study the application domain of the algorithms, the function
set was grouped in terms of their mathematical characteristics into
three main categories:

2.1.1 Unimodal vs. Multimodal
Functions ƒ1-ƒ4 and ƒ6-ƒ7 are unimodal functions, These functions
do not present local minima and they only contain one global
minimum. On the other hand, functions ƒ5 and ƒ8-ƒ13 are
multimodal functions, that is, they present more than one (several)
local minima that increase exponentially with dimensionality.
Some authors consider ƒ5 a unimodal function when working in 2
dimensions. In this paper it will be used with higher
dimensionalities, so ƒ5 will be taken as multimodal [8].
Low-dimensional functions are all multimodal, functions ƒ15 and

ƒ17 have no local minima and each one has three or four global
minima. Function ƒ16 presents four local minima and two global
minima. The rest of the functions contain several local minima
and only one global minimum.

2.1.2 Separable vs. Non-separable
The high-dimensional function set could be divided into separable
and non-separable functions. A general condition for a function to
be separable may be established by stating that [9]:

argmin

x1

f x1 ,K(),K ,argmin
xn

f K , xn()= arg min
x1,K ,xn

f x1 ,K , xn()

Which means that ƒ can be optimized through a sequence of n
independent 1-D optimization processes. More specifically,
separable functions may be classified into linearly separable
functions and logarithmic separable functions. A function
f :ℜn ⎯ → ⎯ ℜis linearly separable if there exist functions

 f1,K , f n such that:

f

r
x ()= f i x i()

i∈S
∑

On the other hand, we say that a function g :ℜn ⎯ → ⎯ ℜ is
logarithmic separable if there exist functions g1 ,K ,gn such that:

g

r
x ()= gi x i()

i∈S
∏

In our benchmark function set ƒ1, ƒ2, ƒ4, ƒ6, ƒ7, ƒ8, and ƒ9 are all
separable functions and ƒ3, ƒ5 and ƒ10-ƒ13 are non separable
functions.

Table 1. The benchmark function set

496

2.1.3 Continuous vs. Discontinuous
Finally, functions have been classified into continuous and
discontinuous. ƒ1, ƒ3, ƒ5 and ƒ7-ƒ11 are continuous functions, and
ƒ2, ƒ4, ƒ6, ƒ12 and ƒ13 are discontinuous. Obviously, discontinuous
functions are more difficult to solve when running algorithms that
use the current solution to generate a new one by performing
small changes on the current solution.

2.2 Evolutionary Algorithms
To carry out the comparison tests, we have selected four
evolutionary algorithms with very different features in order to
perform a more general classification: a real-parameter Genetic
algorithm (GA-REAL), which will be used as a reference, the
CMA-ES algorithm, the Differential Evolution algorithm (DE)
and the Macroevolutionary algorithm (MA). The CMA-ES and
the DE algorithms were selected because they have provided the
best results in recent similar studies [1], and their application is
continuously increasing in recent works. Finally, the inclusion of
the MA algorithm in this kind of comparison work has seldom
been undertaken, but we consider that this algorithm is very
interesting due to its differential features with respect to the
typical evolutionary algorithms and because it has provided
successful results in optimization problems [10][11].

2.2.1 Genetic Algorithms with real parameter
operators
Genetic algorithms (GAs) [12] have had a great deal of success in
solving search and optimization problems [13]. They have been
successfully applied to real parameter function optimization,
which has implied the development of new operators for mutation
and crossover. See [14] for a survey of this kind of operators. The
version considered in this paper applies a BLX- α crossover
operator [15] and a non-uniform mutation operator [16].

2.2.2 CMA-ES
The CMA-ES (Covariance Matrix Adaptation Evolution Strategy)
is an evolutionary algorithm for difficult non-linear non-convex
optimization problems in continuous domains. It was presented
first by Nikolaus Hansen and Andreas Ostermeier [17].
The CMA-ES is a second order approach and estimates a
covariance matrix that is closely related to the inverse Hessian if
it exists within an iterative procedure. For that reason, the method
is feasible on non-separable and/or badly conditioned problems.
CMA-ES does not use or approximate gradients and does not
even presume or require their existence. Therefore, the CMA-ES
is feasible on non-smooth, non-continuous, multimodal and noisy
problems. This algorithm has several invariance properties [17].
In the CMA-ES, the sampling of a multivariate normal
distribution generates a population of new search points:
 xk ~ N (m,σ 2C),k = 1K λ

Where:

• xk , is the k-th individual of the population.
• m , is the mean value of the search distribution.
• σ 2 , is the “overall” standard deviation or step size.
• C , is the covariance matrix.
• λ , is the population size.

Every generation a new population is generated using the same
normal distribution but updating m,σ and C using the current
population. The process followed by this algorithm consists in
updating the distribution mean m as a weighted average of μ
selected points of the current population. This mean m
implements a truncation selection by choosing μ < λ. Therefore,
assigning different weights to the points must also be interpreted
as a selection mechanism. The best μ points (μ parents) are
selected from the population (non-elitist) and weighted
intermediate recombination is applied.
The next algorithm step consists on the step size control. Step size
control is necessary because the covariance matrix update can
hardly increase the variance in all directions simultaneously. To
control step size, CMA-ES utilizes an evolution path, i.e. a sum of
successive steps. The method can be applied independently of the
covariance matrix update and is denoted as cumulative path
length control.
Finally, the update of the covariance matrix is performed. The
covariance matrix adaptation learns all pairwise dependencies
between variables; off-diagonal entries in the covariance matrix
reflect the dependencies. It learns a rotated problem
representation and a scaling of the independent components. The
update of the covariance matrix uses the evolution path too.
In this paper, the Restart CMA-ES with Increasing Population
(here after IPOP-CMA-ES) is used. Anne Auger and Nikolaus
Hansen designed this algorithm for the special session on real-
parameter optimization of CEC 2005 [18]. When one of the
stopping criteria is met, an independent restart is performed with
the population size increased by a factor of two.

2.2.3 Differential Evolution
Rainer Storn and Kenneth Price introduced the Differential
Evolution algorithm (DE) in 1995 as a very simple population
based, stochastic function minimizer [19]. The basic strategy it
employs consists in generating a new chromosome vector, named
trial vector, by adding the weighed difference of two randomly
selected chromosome vectors to a third one, hereafter target
vector. If the resulting chromosome vector yields a lower
objective function value than a target, the newly generated
chromosome, the trial vector, replaces the original one to which it
was compared.
The main feature of this algorithm is that it performs mutation
based on the distribution of the solution in the current population.
Search directions and possible step sizes depend on the location
of the individuals selected to calculate the mutation values. Thus,
extracting distance and direction information from the population
to generate random deviations results in an adaptive scheme with
excellent convergence properties. In order to increase the
diversity of the population, it applies a differential evolution
crossover operator to the trial vector, which consists in choosing
some genes from the target vector and some from the trial vector.
The execution of this operator is regulated by parameter CR that
controls the influence of the parent over the generation of the
offspring. Higher values for CR mean less influence of the parent.
An F parameter scales the influence of the set of pairs of solutions
selected to calculate the mutation value.
Currently, there exist several variants of the original Differential
Evolution algorithm. In this paper, we will apply the
DE/rand/1/bin scheme, where “DE” means Differential

497

Evolution, “rand” indicates that the individuals to compute the
mutation values are chosen at random, “1” is the number of pairs of
solutions chosen and “bin” means that a binomial crossover is
considered. In binomial crossover, the crossover is performed on
each of the D variables whenever a randomly picked number
between 0 and 1 is within the CR value. In our tests, the two
parameters controlling the DE were chosen as follows [20]:

• F = 0.9 for all functions.
• CR = 0.1 for all separable functions

0.9 for all non-separable functions.

2.2.4 Macroevolutionary Algorithm
The Macroevolutionary algorithm model (MA) was proposed by
Marín and Solé [21] in 1999. It draws inspiration from the dynamics
of an ecosystem based only on the relationship between species.
Here, the individuals in the population are referred to as species.
The biological model of macroevolution simulates the dynamics of
species extinction and diversification for large time scales. The links
between species are essential to determine the new state of every
species each generation, the state of a species i is defined as:

 Si t()=
1, if the state is "alive"
0, if the state is "extinct"

⎧
⎨
⎩

The state of a species depends on its relationship to the other

species in the population. This relationship is represented by the
connectivity matrix W , where each item

Wi, j t() i, j ∈ 1,K ,P{ }()

measures the influence of species j on species i in generation t with
a continuous value within the interval [-1,1].
Each generation in the Macro Evolutionary algorithm consists of the
following steps:
1) Selection operator: it permits calculating the surviving species

through their relations, i.e. as a sum of penalties and benefits.
The state of a given individual Si will be given by:

Si t +1()=
1, if Wi, j t()≥ 0

j =1

p

∑
0, otherwise

⎧

⎨
⎪

⎩ ⎪

Where t is the generation and Wi, j = W pi , p j() is calculated
as:

 Wi, j =
f p i()− f p j()

pi − p j

being f the fitness of the species.
2) Colonization operator: this operator allows for filling vacant

sites that are freed by extinct individuals. This operator is
applied to each extinct species in two ways. With a probability
τ , a totally new solution pn ∈ Ω will be generated. Otherwise
exploitation of surviving solutions takes place through
colonization. A surviving solution is randomly chosen and the
extinct solution is “attracted” towards it. The parameter τ may
act as a temperature as it can decrease in evolutionary time so
as perform a type of simulated annealing process. That is,
when the temperature is low, the randomness is low, and,
consequently, there is a tendency towards increased
exploitation around the surviving individuals, and reduced
exploration of new species. Mathematically, the colonization
of extinct solution reads:

pi t +1()=
pb t()+ ρλ pb t()− pi t()(), if ξ > τ

pn , if ξ ≤ τ

⎧
⎨
⎩

Where ξ ∈ 0,1[] is a random number, λ ∈ −1,+1[] is also a
random number and both with uniform distribution. ρ and τ
are given constants of the algorithm. ρ describes a maximum
radius around the surviving solution. For the tests here a value
of 0.5 was used. A linear function of time (generations) was
used to decrease τ :

τ t;G()= 1−
t
G

2.3 Error and performance measurement
This section deals with the three measures used in this work to
compare the algorithms: the success rate, the genotypic normalized
root mean squared error (GNE) and the computational complexity.

2.3.1 Success rate
The absolute error is a typical error measure in comparison tests
[7], and provides an indication of the difference between the target
and the solution provided by the algorithm. From an evolutionary
point of view, it is a phenotypic measurement. The absolute error is
calculated as follows:

Abs_ error = f

r
x ()− f

r
x *()

Where:

•
r
x is the solution obtained.

•
r
x * is the optimum solution.

From the absolute error one can easily derive a performance
measure called the success rate [7] that provides very useful
information about how stable an algorithm is. We consider a solved
run when the absolute error value is less than 1.0e-6. The success
rate is a percentage value that is calculated using:

Success_ rate =
Solved _ runs
#Total _ runs

⋅100 .

Where:

• #Solved_runs, is the number of runs that reach an absolute
error of 1.0e-6.

• #Total_runs. is the number of runs for each algorithm.

2.3.2 Genotypic Error
Most comparisons in the literature deal with the errors obtained by
the different algorithms with respect to an objective value (or
function), but it is often as important to know how close to the
optimum is the point achieved not in terms of the functional value
but of its distance to the optimal point in genotypic space. To this
end we have established the genotypic normalized root mean square
error (GNE), which is a genotypic measure of the quality of a
solution. As we are using an optimization function set with known
solutions, it is easy to measure the distance between the expected
variable values and the ones encoded in the chromosomes. The GNE
calculation is performed as follows:

498

Table 3. Success rate values obtained by the four algorithms applied to benchmark functions ƒ1-ƒ13

GNE =
xi − xi

*()2

i=1

n

∑
n

Where:

•
r
x is the solution obtained.

•
r
x * is the optimum solution.

• n , is the solution’s size.
This error measure is more reliable than the absolute error when we
need accuracy in terms reaching the optimum point instead of
reaching the optimum function value. For example, when trying to
optimize a multimodal function, an algorithm could reach a local
minimum with an absolute error similar to another solution that is
closer to the global minimum.

2.3.3 Computational complexity
Computational complexity is another typical measure when
comparing the performance of algorithms [7]. This parameter was
calculated by obtaining values for these 3 different temporal
parameters for each algorithm:
1) Computing time T0: it is computed using a set of programming

instructions that includes all the basic mathematical operations
(this time depends on the machine and the programming
language). See [7] for details.

2) Computing time T1: using benchmark function ƒ10 to compute
the time to run 200000 evaluations for each dimension D.

3) Computing time T2: it is the complete computing time for the
algorithm with 200000 evaluations of the same dimension D
with benchmark function ƒ10. This step is executed five times to
obtain T2’ = mean(T2).

The complexity of the algorithm is calculated from these three
parameters T2’, T1, T0 through:

Complexity =
T ′ 2 − T 1

T 0

2.4 Experimental procedure
After presenting the benchmark function set, the selected algorithms
and the error and performance measures, we can now explain the
experimental procedure followed to perform the tests:

• For each pair, algorithm and benchmark function, 25
independent runs were performed.

• The high dimensional function set (ƒ1-ƒ13) was used to analyze
the algorithm’s behavior when the complexity of the problem
changes because the dimensionality could be scaled in these
functions. Three complexity levels have been chosen for this
function benchmark set: low, medium and high complexity,
which correspond to 10, 30 and 50 dimensions respectively.
These dimensionality values are the most commonly used in the
analysis of evolutionary algorithms [7].

• The other function subset (ƒ14-ƒ23) is made up of low
dimensional functions. This set of functions was used to analyze
the behavior of the algorithms when changing the initial
population size but not the problem dimensionality. All of these
functions are multimodal, and consequently they are more
complicated that some functions in the other subset such asƒ1-ƒ4
and ƒ6-ƒ7, even with a lower dimensionality.

• A population analysis was performed for each algorithm
problem dimension pair in order to choose the population size
that provides the best results (see Table 2).

• The number of function evaluations was fixed to n*10000.
Where n is the dimensionality of the problem.

• As commented before, the accuracy level was fixed to 1.0e-6 on
the absolute error value, so a problem is solved when the
absolute error reaches this accuracy level.

Table 2. Population size results.

499

3. Comparison tests
We have divided the experiments into three sections: high-
dimensional, low-dimensional and computational cost tests.

3.1.1 High-dimensional function set
Table 3 shows the success rate values obtained by the four
algorithms when applied to the functions of the first benchmark
subset (ƒ1-ƒ13). As observed in Table 3, for the low complexity case
(n=10), the IPOP-CMA-ES algorithm obtains the best results
providing a 100% success rate for all solved functions (f7-f9 are
never solved). The DE algorithm results in a 20% success rate for
function f9, which is never solved by IPOP-CMA-ES but it performs
worse than IPOP-CMA-ES in the other functions. For functions ƒ8
and ƒ9, the GA_REAL algorithm presents the best results, with a
success rate of 16% and 64%, respectively. However, the GA-
REAL displays worst results than IPOP-CMA-ES for the remaining
functions, much in the same way as the DE. The MA algorithm
provides a success rate of 100% in all the functions it solves, which
are only 6 out of 13 functions.
When the dimensionality is increased to n=30, the DE algorithm
improves its results. In this case a more detailed analysis should be
performed as the IPOP-CMA-ES success rate and the DE success
rate present similar values. Table 4 shows a summary of the success
rate classified by function type as established in section 2.1. The
grey-colored cells represent the best result for each type of function
and each dimension. There is no remarkable difference between DE
and IPOP-CMA-ES using the modality feature as a function
classifier. The success rate has more or less the same value in these
algorithms with a dimensionality of 30, but in the case of unimodal
functions, the DE algorithm has a success rate of 83% as compared

to 72% for the IPOP-CMA-ES. The difference is not significant on
multimodal functions with a success rate of approximately 70% for
the two algorithms. However, taking into account the separability
feature, the IPOP-CMA-ES performs better than the DE in non-
separable functions with a success rate of 100% as compared to
83% for the DE. However, the DE performs better than the IPOP-
CMA-ES on separable functions obtaining a success rate of 70% on
this kind of functions. Here the IPOP-CMA-ES reaches only a value
of 47%. Finally, regarding the continuity feature, the DE is the best
performer when solving discontinuous functions achieving a success
rate of 100%.
The same analysis has been performed for high dimensionality
(n=50). Taking into account the success rate, with this
dimensionality the GA-REAL provides successful results. But
performing a more detailed analysis (see Table 4), we observe that
this algorithm is only competent solving separable functions. The
IPOP-CMA-ES algorithm, on the other hand, stands out again on
non-separable functions, and even behaving worse on discontinuous
functions, it achieves the same success rate as the DE on them.
Finally, the results obtained by the DE algorithm are not remarkable
in this complexity level, although it is the best algorithm with the
IPOP-CMA-ES on discontinuous functions and multimodal
functions.
Table 5 shows the results obtained using the GNE as comparison
measure. The grey-colored cells represent the best result for each
type of function and each dimension. For n=10, the GA-REAL
obtains the best GNE results for the functions for which it provides
the best success rate results (functions ƒ1, ƒ2, ƒ8-ƒ10 and ƒ12). For
functions ƒ3-ƒ5, ƒ11 and ƒ13, the IPOP-CMA-ES algorithm is the one
with the best results. And for functions ƒ6 and ƒ7 the DE algorithm
provides the best GNE results. If the dimensionality is increased to

Table 5. GNE values obtained by the four algorithms applied to benchmark functions ƒ1-ƒ13

Table 4. Success rate classified by function type on benchmark functions ƒ1-ƒ13

500

n=30, as we can observe in Table 5, the DE provides the best results
in general. For functions ƒ1, ƒ2 and ƒ10-ƒ13 its results stand out
against the other algorithms. The IPOP-CMA-ES algorithm stands
out for functions f3-f5. Functions ƒ3 and ƒ5 are non-separable
functions and, as commented before, the DE performs worse than
the IPOP-CMA-ES in this kind of functions. With n=50, if the GNE
is analyzed, the DE provides the best results for functions ƒ1, ƒ2, ƒ7
and ƒ9-ƒ13 while the IPOP-CMA-ES is again the best on functions
ƒ3-ƒ5.
From these tests, we can conclude that the IPOP-CMA-ES
algorithm is the most stable algorithm in high-dimensional
problems. On average, it provides the best results based on success
rate despite the fact that it has problems in solving functions such as
ƒ6 and ƒ9 that are solved by other algorithms. Function ƒ6 requires a
high accuracy level to be solved because it is a step function with
high error values for each incorrect gene of chromosome. The DE
algorithm is, in these conditions, the most accurate algorithm
achieving the best values for the GNE according to the tests.

3.1.2 Low-dimensional function set
As introduced in section 2.1, benchmark functions ƒ14-ƒ23 are
dimensionally fixed. These functions are all multimodal with
different number of local and global minima, so it provides different
degrees of difficulty to each function.
The results of this analysis are displayed on table 6 and 7. As in the
high-dimensional functions, the success rate and the GNE error are
used to analyze the results. On average the most successful
algorithm is the MA. This result is very relevant and requires a
deeper analysis: functions that belong to this set are all multimodal
functions. Functions ƒ14 and ƒ18-ƒ23 all present several local minima
and only one global minimum. For this type of functions, the MA
obtains the best results. This algorithm can solve all the functions
with a success rate greater than 96%, except function f20 that is
solved with a success rate of 64%. The other algorithms display
success rates lower than the MA success rate. (see Table 6).
The DE algorithm obtains similar results to those of the MA in
terms of success rate values, except for functions ƒ21 and ƒ22 where
the results are worse and for function ƒ20 where the DE algorithm
performs better. If we observe the GNE results obtained by the DE
and the MA algorithms, the DE algorithm provides, in general,
better results than MA.
It seems that the IPOP-CMA-ES has problems on this kind of

functions where there are several local minima, as observed in the
results of functions ƒ14 and ƒ21-ƒ23 in Table 6. The IPOP-CMA-ES
never solves the ƒ14 function and provides a low success rate value
for functions ƒ20-ƒ23. In terms of the corresponding value in Table 7
related to the GNE error, the conclusion is that this algorithm always
reaches a local minimum. If we observe the results of function ƒ15
and ƒ17, the IPOP-CMA-ES provides the highest success rate
results. These functions present three global and no local minima.
Although the other three algorithms provide good results for
function ƒ17, these results seems to confirm that the IPOP-CMA-ES
fails in functions with several local minima but not in functions with
no local minima. The IPOP-CMA-ES provides the worst GNE values
for functions ƒ14, ƒ16 and ƒ18-ƒ23. All of these functions have several
local minima. The GA-REAL algorithm achieves a 100% success
rate for functions ƒ16-ƒ19 like the other three algorithms and fails in
the remaining functions.
The main conclusions that can be extracted from these results are
that when the objective functions are low-dimensional, the MA
algorithm is the best choice to solve functions with several local
minima. To solve functions with no local minima, the best choice is
the IPOP-CMA-ES.

3.1.3 Computational cost tests
After comparing the algorithms from an error point of view, we
have performed comparison tests focusing on the time consumption
of their application. This is a very relevant aspect of these types of
population-based algorithms, because they can solve optimization
problems where other algorithms fail, but at the cost of high
computational costs.
A MacOS X 10.5.1 based 2.2 GHz Intel Core 2 Duo with 2GB 667
MHz DDR2 SDRAM and Java 5 were used in these tests.
The results obtained using the computational complexity measure
presented in section 2.3.3 for all the algorithms are shown on Table
8. All computing times are measured in milliseconds. As we can see
from the table, for low dimensionality (n=10), the GA-REAL has
the lowest complexity value followed by the MA. But increasing the
dimensionality, the DE algorithm provides the lowest complexity
values of the four. The mutation operator of this algorithm is based
on mathematical operations with a low computational cost such as
additions, subtractions and products. In the case of the IPOP-CMA-
ES, it uses an incremental population and it is for this reason that it
performs so poorly in terms of computational complexity. The
population size reaches values of 640, 1920 and 3200 individuals

Table 6. Success rate values obtained by the four algorithms applied to benchmark functions ƒ14-ƒ23

Table 7. GNE values obtained by the four algorithms applied to benchmark functions ƒ14-ƒ23

501

Table 8. Computational complexity results

with initial populations of 10, 30 and 50 individuals. When the
CMA-ES is used without incremental population, its computational
complexity is similar to that of the DE but the results are worse.

4. CONCLUSIONS
Comparative results were presented for four evolutionary
algorithms, selected by their relevance in optimization problems.

They have allowed us to study their capabilities and application
domains from a practical point of view. To do this, we have used a
benchmark function set that covers a wide range of optimization
problems. The algorithms were compared using accuracy, stability
and time consumption parameters to establish the type of
optimization function they are more suitable for. This way, in high
dimensional problems, we have concluded that the IPOP-CMA-ES
performs better than the others in non-separable functions while the
DE provides the best results on separable and discontinuous
functions. On low dimensional benchmarks, the MA algorithm
provides the best results in functions with several local minima. To
solve functions with no local minima and several global minima, the
best choice is the IPOP-CMA-ES. Finally, regarding computational
cost, the previous conclusions must be tuned taking into account
that the computational cost of the DE algorithms is the lowest.

5. ACKNOWLEDGMENTS
This work was funded by the MEC of Spain through project
DPI2006-15346-C03-01and DEP2006-56158-C03-02

6. REFERENCES
[1] Special Session on Real-Parameter Optimization at CEC-05,

Edinburgh, UK, 2-5 Sept. 2005.
[2] Workshop on Parameter Setting in Genetic and Evolutionary

Algorithms (PSGEA 2005), June, 25-29, 2005, Washington,
D.C. USA

[3] Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, June 26, 2005, Washington D.C.

[4] Bui, L. T., Shan, Y., Qi, F., Abbass, H.A. Comparing Two
Versions of Differential Evolution in Real Parameter

Optimization, Tech. Report TR-ALAR-200504009, School of
ITEE, University of New South Wales, 2005.

[5] Costa, L. A., Parameter-less Evolution Strategy for Global
Optimization, Proc. 6th WSEAS International Conference on
Simulation, Modelling and Optimization, 2006, 622-627.

[6] Yao, X., Liu, L., Lin G. Evolutionary Programming Made
Faster, IEEE Transactions on Evolutionary Computation, Vol.
3, No. 2, 1999, 82-102.

[7] Suganthan, P. N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P.,
Auger, A., Tiwari, A. Problem Definitions and Evaluation
Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization, Technical Report, Nanyang Technological
University, Singapore, and KanGAL Report #2005005, IIT
Kanpur, India, 2005.

[8] Shang, Y. and Qiu, Y. A Note on the Extended Rosenbrock
Function. Evol. Comput. 14, 1, 2006, 119-126.

[9] Hansen, N. The CMA Evolution Strategy: A Tutorial, In
www.bionik.tu-berlin.de/user/niko/, 2007

[10] Becerra, J. A., Santos, J., Duro, R.J., Robot Controller
Evolution with Macroevolutionary Algorithms, Information
Processing with Evolutionary Algorithms From Industrial
Applications to Academic Speculations, 2005, 117-128

[11] Becerra, J. A., Díaz-Casás, V., Duro, R.J., Exploring
Macroevolutionary Algorithms: Some Extensions and
Improvements, Lecture Notes in Computer Science, vol. 4507,
Springer-Verlag, 2007, 308-315

[12] Holland, J.H. Adaptation in natural and artificial systems,
Univ. Michigan Press, 1975

[13] Goldberg, D.E. Genetic algorithms in search, optimization and
machine learning, Addison-Wesley, 1989

[14] Herrera, F., Lozano, M., Verdegay, J.L. Tackling real-coded
genetic algorithms: Operators and tools for behaviorial
analysis. Artificial Intellig. Review, 12(4), 1998, 265-319.

[15] Eshelman, L.J., Schaffer, J.D. Real-Coded Genetic Algorithms
and Interval Schemata, Foundations of Genetic Algorithms 2,
1993, 187-202.

[16] Michalewicz, Z. Genetic algorithms + Data Structures =
Evolution Programs. Springer-Verlag, 1992.

[17] Hansen, N. and A. Ostermeier. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary
Computation, 9(2), 2001, 159-195.

[18] Auger, A, and Hansen, N. A Restart CMA Evolution Strategy
With Increasing Population Size. In Proc. of the IEEE, CEC
2005, 2005, 1769-1776.

[19] Storn, R. and Price, K. Differential Evolution - a Simple and
Efficient Adaptive Scheme for Global Optimization over
Continuous Spaces Technical Report TR-95-012, ICSI, 1995.

[20] Rönkkönen, J., Kukkonen, S. Price, K. Real-parameter
optimization with differential evolution, Proc. of 2005 IEEE
Congress on Evolutionary Computation, 2005, 506-513.

[21] Marin, J., and Solé, R. V. Macroevolutionary algorithms: A
new optimization method on tness landscapes. IEEE Trans. on
Evolutionary Computation 3, 4, 1999, 272-286.

502

