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ABSTRACT 
This paper deals with the problem of comparing and testing 
evolutionary algorithms, that is, the benchmarking problem, from 
an analysis point of view. A practical study of the application 
domain of four representative evolutionary algorithms is carried 
out using a relevant set of real-parameter function optimization 
benchmarks. The four selected algorithms are the Covariance 
Matrix Adaptation Evolution Strategy (CMA-ES) and the 
Differential Evolution (DE), due to their successful results in 
recent studies, a Genetic Algorithm with real parameter operators, 
used here as a reference approach because it is probably the most 
familiar to researchers, and the Macroevolutionary algorithm 
(MA), which is not widely known but it shows a very remarkable 
behavior in some problems. The algorithms have been compared 
running several tests over the benchmark function set to analyze 
their capabilities from a practical point of view, in other words, in 
terms of their usability. The characterization of the algorithms is 
based on accuracy, stability and time consumption parameters 
thus establishing their operational scope and the type of 
optimization problems they are more suitable for. 

Categories and Subject Descriptors 
I.2.8 [Computing Methodologies]: Artificial Intelligence –
Problem Solving, Control Methods, and Search 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Evolutionary Algorithms, Algorithm Characterization, 
Optimization Benchmarks, Comparison Tests, Error Measures. 

1. INTRODUCTION 
The present work takes inspiration from the ever more frequent 
algorithm competitions in the field of Evolutionary Computation. 
These competitions are typically held during conferences in this 
area like CEC or GECCO, and the main objective of the 

organizers is to provide common benchmarks in order to fairly 
compare the large number of different algorithms that have been 
recently developed. Typically, when a new algorithm is presented 
in the literature, it is tested with problems that are chosen to 
highlight its capabilities. As a consequence, this kind of 
competitions are needed to evaluate the algorithms in a more 
systematic manner by specifying a common termination criterion, 
problem size, initialization scheme, linkages/rotation, etc 
[1][2][3].  

The main problem we have found when analyzing the results of 
these general competitions and comparison papers [4], is that they 
don’t provide useful conclusions or, in many cases, the 
appropriate data to characterize the algorithms from a practical 
point of view. Although typical optimization benchmarks classify 
functions depending on their features (separable, non-separable, 
continuous, discontinuous, etc), authors don’t provide general 
conclusions about the type of function that is more suitable for 
each type of algorithm. In this paper, we try to bridge this gap 
between the theoretical studies and the practical optimization, by 
applying error and performance measures that permit 
characterizing the algorithms according to the type of function 
they perform better at, and the computational cost they imply. 

The typical error measures established to compare the algorithms 
are related to the number of samples of the objective function 
necessary to achieve the optimum or to the mean error with 
respect to the optimal value after a fixed number of runs [5]. 
These are very relevant measures of the quality of the algorithm 
from a phenotypic (operational) point of view, but they don’t 
provide any indication about how different the genotype (the 
encoding) of the solution is with respect to the optimal. In 
practical terms, this is very useful information because solutions 
that are successful from a phenotypic point of view (near the 
optimum function value) may be far from the optimum point. In 
this work, we propose a new error measure to compare the 
algorithms from this perspective. 

The rest of the paper is structured as follows: section 2 presents in 
detail all of the elements involved in the tests that have been 
carried out. Section 3 contains the results obtained and their 
discussion and section 4 is devoted to the conclusions of this 
analysis from a practical point of view. 

2. EXPERIMENTAL SETUP 
This section is concerned with the presentation of all the elements 
involved in the comparisons we have carried out. 
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2.1 Benchmark function set 
In comparison tests, the selection of a general and relevant 
benchmark function set is very important. In this case, 23 real-
parameter optimization functions of different dimensionality were 
selected. This benchmark set was used by Yao in [6] and a 
modification of it in CEC 2005 competition [7]. The set has been 
divided into two main subsets based on the dimensionality of the 
benchmarks. Functions ƒ1-ƒ13 represent high-dimensional 
problems while the remaining ten functions (ƒ14-ƒ23) could be 
considered low-dimensional problems. This function set is widely 
used on testing evolutionary algorithms because it contains 
functions with different features like dimensionality, separability, 
modality and continuity. Table 1 summarizes the benchmark 
function set and their features. Formal expression of these 
functions can be found in [6]. 
To study the application domain of the algorithms, the function 
set was grouped in terms of their mathematical characteristics into 
three main categories:  

2.1.1 Unimodal vs. Multimodal 
Functions ƒ1-ƒ4 and ƒ6-ƒ7 are unimodal functions, These functions 
do not present local minima and they only contain one global 
minimum. On the other hand, functions ƒ5 and ƒ8-ƒ13 are 
multimodal functions, that is, they present more than one (several) 
local minima that increase exponentially with dimensionality. 
Some authors consider ƒ5 a unimodal function when working in 2 
dimensions. In this paper it will be used with higher 
dimensionalities, so ƒ5 will be taken as multimodal [8]. 
Low-dimensional functions are all multimodal, functions ƒ15 and 

ƒ17 have no local minima and each one has three or four global 
minima. Function ƒ16 presents four local minima and two global 
minima. The rest of the functions contain several local minima 
and only one global minimum. 

2.1.2 Separable vs. Non-separable 
The high-dimensional function set could be divided into separable 
and non-separable functions. A general condition for a function to 
be separable may be established by stating that [9]: 

 
argmin

x1

f x1 ,K( ),K ,argmin
xn

f K , xn( )= arg min
x1,K ,xn

f x1 ,K , xn( ) 

Which means that ƒ can be optimized through a sequence of n 
independent 1-D optimization processes. More specifically,  
separable functions may be classified into linearly separable 
functions and logarithmic separable functions. A function 
f :ℜn ⎯ → ⎯ ℜis linearly separable if there exist functions 

 f1,K , f n such that: 

 
 
f

r 
x ( )= f i x i( )

i∈S
∑  

On the other hand, we say that a function g :ℜn ⎯ → ⎯ ℜ is 
logarithmic separable if there exist functions   g1 ,K ,gn such that: 

 
 
g

r 
x ( )= gi x i( )

i∈S
∏  

In our benchmark function set ƒ1, ƒ2, ƒ4, ƒ6, ƒ7, ƒ8, and ƒ9 are all 
separable functions and ƒ3, ƒ5 and ƒ10-ƒ13 are non separable 
functions.  

Table 1. The benchmark function set 

496



2.1.3 Continuous vs. Discontinuous 
Finally, functions have been classified into continuous and 
discontinuous. ƒ1, ƒ3, ƒ5 and ƒ7-ƒ11 are continuous functions, and 
ƒ2, ƒ4, ƒ6, ƒ12 and ƒ13 are discontinuous. Obviously, discontinuous 
functions are more difficult to solve when running algorithms that 
use the current solution to generate a new one by performing 
small changes on the current solution. 

2.2 Evolutionary Algorithms 
To carry out the comparison tests, we have selected four 
evolutionary algorithms with very different features in order to 
perform a more general classification: a real-parameter Genetic 
algorithm (GA-REAL), which will be used as a reference, the 
CMA-ES algorithm, the Differential Evolution algorithm (DE) 
and the Macroevolutionary algorithm (MA). The CMA-ES and 
the DE algorithms were selected because they have provided the 
best results in recent similar studies [1], and their application is 
continuously increasing in recent works. Finally, the inclusion of 
the MA algorithm in this kind of comparison work has seldom 
been undertaken, but we consider that this algorithm is very 
interesting due to its differential features with respect to the 
typical evolutionary algorithms and because it has provided 
successful results in optimization problems [10][11]. 

2.2.1 Genetic Algorithms with real parameter 
operators 
Genetic algorithms (GAs) [12] have had a great deal of success in 
solving search and optimization problems [13]. They have been 
successfully applied to real parameter function optimization, 
which has implied the development of new operators for mutation 
and crossover. See [14] for a survey of this kind of operators. The 
version considered in this paper applies a BLX- α crossover 
operator [15] and a non-uniform mutation operator [16].  

2.2.2 CMA-ES 
The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) 
is an evolutionary algorithm for difficult non-linear non-convex 
optimization problems in continuous domains. It was presented 
first by Nikolaus Hansen and Andreas Ostermeier [17]. 
The CMA-ES is a second order approach and estimates a 
covariance matrix that is closely related to the inverse Hessian if 
it exists within an iterative procedure. For that reason, the method 
is feasible on non-separable and/or badly conditioned problems. 
CMA-ES does not use or approximate gradients and does not 
even presume or require their existence. Therefore, the CMA-ES 
is feasible on non-smooth, non-continuous, multimodal and noisy 
problems. This algorithm has several invariance properties [17]. 
In the CMA-ES, the sampling of a multivariate normal 
distribution generates a population of new search points: 
   xk ~ N (m,σ 2C ),k = 1K λ  

Where: 

• xk , is the k-th individual of the population. 
• m , is the mean value of the search distribution. 
• σ 2 , is the “overall” standard deviation or step size. 
• C , is the covariance matrix. 
• λ , is the population size. 

 

Every generation a new population is generated using the same 
normal distribution but updating m,σ and C  using the current 
population. The process followed by this algorithm consists in 
updating the distribution mean m  as a weighted average of μ  
selected points of the current population. This mean m  
implements a truncation selection by choosing μ < λ. Therefore, 
assigning different weights to the points must also be interpreted 
as a selection mechanism.  The best μ  points ( μ  parents) are 
selected from the population (non-elitist) and weighted 
intermediate recombination is applied.  
The next algorithm step consists on the step size control. Step size 
control is necessary because the covariance matrix update can 
hardly increase the variance in all directions simultaneously. To 
control step size, CMA-ES utilizes an evolution path, i.e. a sum of 
successive steps. The method can be applied independently of the 
covariance matrix update and is denoted as cumulative path 
length control.  
Finally, the update of the covariance matrix is performed. The 
covariance matrix adaptation learns all pairwise dependencies 
between variables; off-diagonal entries in the covariance matrix 
reflect the dependencies. It learns a rotated problem 
representation and a scaling of the independent components. The 
update of the covariance matrix uses the evolution path too. 
In this paper, the Restart CMA-ES with Increasing Population 
(here after IPOP-CMA-ES) is used. Anne Auger and Nikolaus 
Hansen designed this algorithm for the special session on real-
parameter optimization of CEC 2005 [18]. When one of the 
stopping criteria is met, an independent restart is performed with 
the population size increased by a factor of two.  

2.2.3 Differential Evolution 
Rainer Storn and Kenneth Price introduced the Differential 
Evolution algorithm (DE) in 1995 as a very simple population 
based, stochastic function minimizer [19]. The basic strategy it 
employs consists in generating a new chromosome vector, named 
trial vector, by adding the weighed difference of two randomly 
selected chromosome vectors to a third one, hereafter target 
vector. If the resulting chromosome vector yields a lower 
objective function value than a target, the newly generated 
chromosome, the trial vector, replaces the original one to which it 
was compared. 
The main feature of this algorithm is that it performs mutation 
based on the distribution of the solution in the current population. 
Search directions and possible step sizes depend on the location 
of the individuals selected to calculate the mutation values. Thus, 
extracting distance and direction information from the population 
to generate random deviations results in an adaptive scheme with 
excellent convergence properties. In order to increase the 
diversity of the population, it applies a differential evolution 
crossover operator to the trial vector, which consists in choosing 
some genes from the target vector and some from the trial vector. 
The execution of this operator is regulated by parameter CR that 
controls the influence of the parent over the generation of the 
offspring. Higher values for CR mean less influence of the parent. 
An F parameter scales the influence of the set of pairs of solutions 
selected to calculate the mutation value. 
Currently, there exist several variants of the original Differential 
Evolution algorithm. In this paper, we will apply the 
DE/rand/1/bin scheme, where “DE” means Differential 
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Evolution, “rand” indicates that the individuals to compute the 
mutation values are chosen at random, “1” is the number of pairs of 
solutions chosen and “bin” means that a binomial crossover is 
considered. In binomial crossover, the crossover is performed on 
each of the D variables whenever a randomly picked number 
between 0 and 1 is within the CR value. In our tests, the two 
parameters controlling the DE were chosen as follows [20]: 

• F =  0.9 for all functions. 
• CR = 0.1 for all separable functions 

0.9 for all non-separable functions. 

2.2.4 Macroevolutionary Algorithm 
The Macroevolutionary algorithm model (MA) was proposed by 
Marín and Solé [21] in 1999. It draws inspiration from the dynamics 
of an ecosystem based only on the relationship between species. 
Here, the individuals in the population are referred to as species. 
The biological model of macroevolution simulates the dynamics of 
species extinction and diversification for large time scales. The links 
between species are essential to determine the new state of every 
species each generation, the state of a species i is defined as: 

 Si t( )=
1, if the state is "alive"
0, if the state is "extinct"

⎧ 
⎨ 
⎩ 

 

The state of a species depends on its relationship to the other  
 
species in the population. This relationship is represented by the 
connectivity matrix W , where each item 

  
Wi, j t( ) i, j ∈ 1,K ,P{ }( ) 

measures the influence of species j on species i in generation t with 
a continuous value within the interval [-1,1]. 
Each generation in the Macro Evolutionary algorithm consists of the 
following steps: 
1) Selection operator: it permits calculating the surviving species 

through their relations, i.e. as a sum of penalties and benefits. 
The state of a given individual Si  will be given by: 

Si t +1( )=
1, if Wi, j t( )≥ 0

j =1

p

∑
0, otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

Where t is the generation and Wi, j = W pi , p j( ) is calculated 
as: 

  Wi, j =
f p i( )− f p j( )

pi − p j

 

being f the fitness of the species. 
2) Colonization operator: this operator allows for filling vacant 

sites that are freed by extinct individuals. This operator is 
applied to each extinct species in two ways. With a probability 
τ , a totally new solution pn ∈ Ω  will be generated. Otherwise 
exploitation of surviving solutions takes place through 
colonization. A surviving solution is randomly chosen and the 
extinct solution is “attracted” towards it. The parameter τ  may 
act as a temperature as it can decrease in evolutionary time so 
as perform a type of simulated annealing process. That is, 
when the temperature is low, the randomness is low, and, 
consequently, there is a tendency towards increased 
exploitation around the surviving individuals, and reduced 
exploration of new species. Mathematically, the colonization 
of extinct solution reads: 

 

pi t +1( )=
pb t( )+ ρλ pb t( )− pi t( )( ),  if ξ > τ

pn ,  if ξ ≤ τ

⎧ 
⎨ 
⎩ 

 

Where ξ ∈ 0,1[ ]  is a random number, λ ∈ −1,+1[ ] is also a 
random number and both with uniform distribution. ρ  and τ  
are given constants of the algorithm. ρ  describes a maximum 
radius around the surviving solution. For the tests here a value 
of 0.5 was used. A linear function of time (generations) was 
used to decrease τ : 

τ t;G( )= 1−
t
G

 

2.3 Error and performance measurement 
This section deals with the three measures used in this work to 
compare the algorithms: the success rate, the genotypic normalized 
root mean squared error (GNE) and the computational complexity. 

2.3.1 Success rate 
The absolute error is a typical error measure  in comparison tests 
[7], and provides an indication of the difference between the target 
and the solution provided by the algorithm. From an evolutionary 
point of view, it is a phenotypic measurement. The absolute error is 
calculated as follows: 

 
Abs_ error = f

r 
x ( )− f

r 
x *( ) 

Where: 

•  
r 
x  is the solution obtained. 

•  
r 
x * is the optimum solution. 

From the absolute error one can easily derive a performance 
measure called the success rate [7] that provides very useful 
information about how stable an algorithm is. We consider a solved 
run when the absolute error value is less than 1.0e-6. The success 
rate is a percentage value that is calculated using: 

Success_ rate =
# Solved _ runs
#Total _ runs

⋅100 . 

Where: 

• #Solved_runs, is the number of runs that reach an absolute 
error of 1.0e-6. 

• #Total_runs. is the number of runs for each algorithm. 

2.3.2 Genotypic Error 
Most comparisons in the literature deal with the errors obtained by 
the different algorithms with respect to an objective value (or 
function), but it is often as important to know how close to the 
optimum is the point achieved not in terms of the functional value 
but of its distance to the optimal point in genotypic space. To this 
end we have established the genotypic normalized root mean square 
error (GNE), which is a genotypic measure of the quality of a 
solution. As we are using an optimization function set with known 
solutions, it is easy to measure the distance between the expected 
variable values and the ones encoded in the chromosomes. The GNE 
calculation is performed as follows: 
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Table 3. Success rate values obtained by the four algorithms applied to benchmark functions ƒ1-ƒ13 

GNE =
xi − xi

*( )2

i=1

n

∑
n

 

Where: 

•   
r 
x  is the solution obtained. 

•   
r 
x * is the optimum solution. 

• n , is the solution’s size. 
This error measure is more reliable than the absolute error when we 
need accuracy in terms reaching the optimum point instead of 
reaching the optimum function value. For example, when trying to 
optimize a multimodal function, an algorithm could reach a local 
minimum with an absolute error similar to another solution that is 
closer to the global minimum. 

2.3.3 Computational complexity 
Computational complexity is another typical measure when 
comparing the performance of algorithms [7]. This parameter was 
calculated by obtaining values for these 3 different temporal 
parameters for each algorithm: 
1) Computing time T0: it is computed using a set of programming 

instructions that includes all the basic mathematical operations 
(this time depends on the machine and the programming 
language). See [7] for details. 

2) Computing time T1: using benchmark function ƒ10 to compute 
the time to run 200000 evaluations for each dimension D. 

3) Computing time T2: it is the complete computing time for the 
algorithm with 200000 evaluations of the same dimension D 
with benchmark function ƒ10. This step is executed five times to 
obtain T2’ = mean(T2).  

The complexity of the algorithm is calculated from these three 
parameters T2’, T1, T0 through: 

Complexity =
T ′ 2 − T 1

T 0
 

2.4 Experimental procedure 
After presenting the benchmark function set, the selected algorithms 
and the error and performance measures, we can now explain the 
experimental procedure followed to perform the tests:  

 

• For each pair, algorithm and benchmark function, 25 
independent runs were performed. 

• The high dimensional function set (ƒ1-ƒ13) was used to analyze 
the algorithm’s behavior when the complexity of the problem 
changes because the dimensionality could be scaled in these 
functions. Three complexity levels have been chosen for this 
function benchmark set: low, medium and high complexity, 
which correspond to 10, 30 and 50 dimensions respectively. 
These dimensionality values are the most commonly used in the 
analysis of evolutionary algorithms [7].  

• The other function subset (ƒ14-ƒ23) is made up of low 
dimensional functions. This set of functions was used to analyze 
the behavior of the algorithms when changing the initial 
population size but not the problem dimensionality. All of these 
functions are multimodal, and consequently they are more 
complicated that some functions in the other subset such asƒ1-ƒ4 
and ƒ6-ƒ7, even with a lower dimensionality.  

• A population analysis was performed for each algorithm 
problem dimension pair in order to choose the population size 
that provides the best results (see Table 2).   

• The number of function evaluations was fixed to n*10000. 
Where n is the dimensionality of the problem.  

• As commented before, the accuracy level was fixed to 1.0e-6 on 
the absolute error value, so a problem is solved when the 
absolute error reaches this accuracy level. 

Table 2. Population size results. 
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3. Comparison tests 
We have divided the experiments into three sections: high-
dimensional, low-dimensional and computational cost tests. 

3.1.1 High-dimensional function set 
Table 3 shows the success rate values obtained by the four 
algorithms when applied to the functions of the first benchmark 
subset (ƒ1-ƒ13). As observed in Table 3, for the low complexity case 
(n=10), the IPOP-CMA-ES algorithm obtains the best results 
providing a 100% success rate for all solved functions (f7-f9 are 
never solved). The DE algorithm results in a 20% success rate for 
function f9, which is never solved by IPOP-CMA-ES but it performs 
worse than IPOP-CMA-ES in the other functions. For functions ƒ8 
and ƒ9, the GA_REAL algorithm presents the best results, with a 
success rate of 16% and 64%, respectively. However, the GA-
REAL displays worst results than IPOP-CMA-ES for the remaining 
functions, much in the same way as the DE. The MA algorithm 
provides a success rate of 100% in all the functions it solves, which 
are only 6 out of 13 functions. 
When the dimensionality is increased to n=30, the DE algorithm 
improves its results. In this case a more detailed analysis should be 
performed as the IPOP-CMA-ES success rate and the DE success 
rate present similar values. Table 4 shows a summary of the success 
rate classified by function type as established in section 2.1. The 
grey-colored cells represent the best result for each type of function 
and each dimension. There is no remarkable difference between DE 
and IPOP-CMA-ES using the modality feature as a function 
classifier. The success rate has more or less the same value in these 
algorithms with a dimensionality of 30, but in the case of unimodal 
functions, the DE algorithm has a success rate of 83% as compared 

to 72% for the IPOP-CMA-ES. The difference is not significant on 
multimodal functions with a success rate of approximately 70% for 
the two algorithms. However, taking into account the separability 
feature, the IPOP-CMA-ES performs better than the DE in non-
separable functions with a success rate of 100% as compared to 
83% for the DE. However, the DE performs better than the IPOP-
CMA-ES on separable functions obtaining a success rate of 70% on 
this kind of functions. Here the IPOP-CMA-ES reaches only a value 
of 47%. Finally, regarding the continuity feature, the DE is the best 
performer when solving discontinuous functions achieving a success 
rate of 100%.  
The same analysis has been performed for high dimensionality 
(n=50). Taking into account the success rate, with this 
dimensionality the GA-REAL provides successful results. But 
performing a more detailed analysis (see Table 4), we observe that 
this algorithm is only competent solving separable functions. The 
IPOP-CMA-ES algorithm, on the other hand, stands out again on 
non-separable functions, and even behaving worse on discontinuous 
functions, it achieves the same success rate as the DE on them. 
Finally, the results obtained by the DE algorithm are not remarkable 
in this complexity level, although it is the best algorithm with the 
IPOP-CMA-ES on discontinuous functions and multimodal 
functions. 
Table 5 shows the results obtained using the GNE as comparison 
measure. The grey-colored cells represent the best result for each 
type of function and each dimension.  For n=10, the GA-REAL 
obtains the best GNE results for the functions for which it provides 
the best success rate results (functions ƒ1, ƒ2, ƒ8-ƒ10 and ƒ12). For 
functions ƒ3-ƒ5, ƒ11 and ƒ13, the IPOP-CMA-ES algorithm is the one 
with the best results. And for functions ƒ6 and ƒ7 the DE algorithm 
provides the best GNE results. If the dimensionality is increased to 

Table 5. GNE values obtained by the four algorithms applied to benchmark functions ƒ1-ƒ13 

Table 4. Success rate classified by function type on benchmark functions ƒ1-ƒ13 
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n=30, as we can observe in Table 5, the DE provides the best results 
in general. For functions ƒ1, ƒ2 and ƒ10-ƒ13 its results stand out 
against the other algorithms. The IPOP-CMA-ES algorithm stands 
out for functions f3-f5. Functions ƒ3 and ƒ5 are non-separable 
functions and, as commented before, the DE performs worse than 
the IPOP-CMA-ES in this kind of functions. With n=50, if the GNE 
is analyzed, the DE provides the best results for functions ƒ1, ƒ2, ƒ7 
and ƒ9-ƒ13 while the IPOP-CMA-ES is again the best on functions 
ƒ3-ƒ5.  
From these tests, we can conclude that the IPOP-CMA-ES 
algorithm is the most stable algorithm in high-dimensional 
problems. On average, it provides the best results based on success 
rate despite the fact that it has problems in solving functions such as 
ƒ6 and ƒ9 that are solved by other algorithms. Function ƒ6 requires a 
high accuracy level to be solved because it is a step function with 
high error values for each incorrect gene of chromosome. The DE 
algorithm is, in these conditions, the most accurate algorithm 
achieving the best values for the GNE according to the tests. 

3.1.2 Low-dimensional function set 
As introduced in section 2.1, benchmark functions ƒ14-ƒ23 are 
dimensionally fixed. These functions are all multimodal with 
different number of local and global minima, so it provides different 
degrees of difficulty to each function. 
The results of this analysis are displayed on table 6 and 7. As in the 
high-dimensional functions, the success rate and the GNE error are 
used to analyze the results.  On average the most successful 
algorithm is the MA. This result is very relevant and requires a 
deeper analysis: functions that belong to this set are all multimodal 
functions. Functions ƒ14 and ƒ18-ƒ23 all present several local minima 
and only one global minimum. For this type of functions, the MA 
obtains the best results. This algorithm can solve all the functions 
with a success rate greater than 96%, except function f20 that is 
solved with a success rate of 64%. The other algorithms display 
success rates lower than the MA success rate.  (see Table 6).  
The DE algorithm obtains similar results to those of the MA in 
terms of success rate values, except for functions ƒ21 and ƒ22 where 
the results are worse and for function ƒ20 where the DE algorithm 
performs better. If we observe the GNE results obtained by the DE 
and the MA algorithms, the DE algorithm provides, in general, 
better results than MA. 
It seems that the IPOP-CMA-ES has problems on this kind of 

functions where there are several local minima, as observed in the 
results of functions ƒ14 and ƒ21-ƒ23 in Table 6. The IPOP-CMA-ES 
never solves the ƒ14 function and provides a low success rate value 
for functions ƒ20-ƒ23. In terms of the corresponding value in Table 7 
related to the GNE error, the conclusion is that this algorithm always 
reaches a local minimum. If we observe the results of function ƒ15 
and ƒ17, the IPOP-CMA-ES provides the highest success rate 
results. These functions present three global and no local minima. 
Although the other three algorithms provide good results for 
function ƒ17, these results seems to confirm that the IPOP-CMA-ES 
fails in functions with several local minima but not in functions with 
no local minima. The IPOP-CMA-ES provides the worst GNE values 
for functions ƒ14, ƒ16 and ƒ18-ƒ23. All of these functions have several 
local minima. The GA-REAL algorithm achieves a 100% success 
rate for functions ƒ16-ƒ19 like the other three algorithms and fails in 
the remaining functions. 
The main conclusions that can be extracted from these results are 
that when the objective functions are low-dimensional, the MA 
algorithm is the best choice to solve functions with several local 
minima. To solve functions with no local minima, the best choice is 
the IPOP-CMA-ES.  

3.1.3 Computational cost tests 
After comparing the algorithms from an error point of view, we 
have performed comparison tests focusing on the time consumption 
of their application. This is a very relevant aspect of these types of 
population-based algorithms, because they can solve optimization 
problems where other algorithms fail, but at the cost of high 
computational costs.  
A MacOS X 10.5.1 based 2.2 GHz Intel Core 2 Duo with 2GB 667 
MHz DDR2 SDRAM and Java 5 were used in these tests. 
The results obtained using the computational complexity measure 
presented in section 2.3.3 for all the algorithms are shown on Table 
8. All computing times are measured in milliseconds. As we can see 
from the table, for low dimensionality (n=10), the GA-REAL has 
the lowest complexity value followed by the MA. But increasing the 
dimensionality, the DE algorithm provides the lowest complexity 
values of the four. The mutation operator of this algorithm is based 
on mathematical operations with a low computational cost such as 
additions, subtractions and products. In the case of the IPOP-CMA-
ES, it uses an incremental population and it is for this reason that it 
performs so poorly in terms of computational complexity. The 
population size reaches values of 640, 1920 and 3200 individuals 

Table 6. Success rate values obtained by the four algorithms applied to benchmark functions ƒ14-ƒ23

Table 7. GNE values obtained by the four algorithms applied to benchmark functions ƒ14-ƒ23 
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Table 8. Computational complexity results 

with initial populations of 10, 30 and 50 individuals. When the 
CMA-ES is used without incremental population, its computational 
complexity is similar to that of the DE but the results are worse. 

4. CONCLUSIONS 
Comparative results were presented for four evolutionary 
algorithms, selected by their relevance in optimization problems. 

They have allowed us to study their capabilities and application 
domains from a practical point of view. To do this, we have used a 
benchmark function set that covers a wide range of optimization 
problems. The algorithms were compared using accuracy, stability 
and time consumption parameters to establish the type of 
optimization function they are more suitable for. This way, in high 
dimensional problems, we have concluded that the IPOP-CMA-ES 
performs better than the others in non-separable functions while the 
DE provides the best results on separable and discontinuous 
functions. On low dimensional benchmarks, the MA algorithm 
provides the best results in functions with several local minima. To 
solve functions with no local minima and several global minima, the 
best choice is the IPOP-CMA-ES. Finally, regarding computational 
cost, the previous conclusions must be tuned taking into account 
that the computational cost of the DE algorithms is the lowest.  
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