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Abstract

In this paper, a fast binary set mapping (FBSM) algorithm is proposed for expediting the conversion from histograms

to binary color sets. In comparison with the original mapping scheme, signi®cant reduction in the computation com-

plexity can be achieved. Such an e�cient mapping algorithm justi®es the practical usage of the pre®ltering technique in

the application to histogram-based image retrieval systems, especially to searching large image databases. Ó 2000

Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to the increasingly widespread dissemination of visual data, especially digital images, e�cient and
e�ective management of image databases is becoming more and more crucial for making full use of the
information. Content-based image retrieval (CBIR) systems (e.g., Flickner et al., 1995; Pass and Zabih,
1996; Wan and Kuo, 1996) recently have gained prominence over traditional keyword-based searching
engines. Among these visual features, e.g., color, texture, and shape, for representing images, color his-
togram is the simplest and most commonly used one. In addition to being easy-to-compute, histograms are
invariant to translation and rotation about the viewing axis (Swain and Ballard, 1991). Therefore, they turn
to be e�cient and robust in applications to image query based on the similarity comparison.

In general, the color histogram of an image is usually described as an M-dimensional vector,
h � fh�0�; h�1�; . . . ; h�M ÿ 1�g, where M is the number of color bins and h�m� �m � 0; 1; . . . ;M ÿ 1� denotes
the number of pixels with color m in the image. The similarity measure for comparing two histograms can
be simply de®ned in squared Euclidean distance as follows:

De�q; t� � �hq ÿ ht�T�hq ÿ ht� �
XMÿ1

m�0

hq�m�
ÿ ÿ ht�m�

�2
; �1�
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where hq and ht represent the normalized histograms (corresponding to the image sizes) of the query and
target images, i.e., q and t, respectively. In order to compare images of varying sizes, histograms are usually
explored via the following normalization:

~h�m� � h�m�PMÿ1
j�0 h�j� �m � 0; 1; . . . ;M ÿ 1�:

For the sake of convenience, hereafter we refer to histogram h as the normalized one. In other words,
06 h�m�6 1 and

PMÿ1
m�0 h�m� � 1.

It was shown by Smith (1997) that the squared Euclidean metric is a favourable candidate for use in
image indexing and retrieval applications, because of its simplicity and its consistently good performance as
compared with that of the quadratic counterpart introduced by Flickner et al. (1995). However, the high-
dimensional histogram vectors (e.g., values of M range from 64 to 8125 as suggested by Swain and Ballard
(1991)) usually make the traditional indexing techniques, such as the R-tree proposed by Guttman (1984),
unsuitable for image query applications. In terms of the computation complexity, for query-to-target image
comparison, the squared Euclidean metric De requires O�NM� ¯oating-point multiplications in order to
calculate the histogram dissimilarity, where N is the size of the database. Admittedly, as image databases
are growing larger, it is necessary for CBIR systems to address e�ciency issues in addition to the problem
of retrieval e�ectiveness.

In general, there is a tradeo� between the e�ciency and e�ectiveness of searching algorithms, i.e., to yield
better retrieval results requires more sophisticated methods which are computationally more expensive.
Recently, Smith (1997) proposed a two-stage pre®ltering method to improve the e�ciency of indexing and
searching, without compromising the e�ectiveness. In the ®rst stage, the system retrieves a set of p can-
didates from the N images (p � N ) in response to a query image by using an inexpensive and possibly crude
distance measure, e.g., Hamming distance metric. Even though the ranking of these images could be un-
satisfactory, it just needs to guarantee that relevant and useful images are contained in this set. In the
second stage, by using a more sophisticated matching technique, e.g., squared Euclidean distance, the
system compares the query image to these p candidates only (rather than to all the N images), and the most
relevant images are likely to be highly ranked in the resultant list.

In the pre®ltering framework, a mapping technique was employed to convert histograms to binary color
sets. It is noted that, with further derivation, the original mapping algorithm for the conversion from
histograms to binary color sets can be improved in terms of the computational e�ciency. To start with, a
brief description of binary color set is given in Section 2. The fast binary set mapping (FBSM) algorithm is
presented in Section 3, where it is also compared with the original one regarding the computation com-
plexity. Section 4 concludes the paper.

2. Binary color set

Since the use of histograms aims at representing the color information of images, we examine the
characteristics of color histograms of typical images. Although the image content may be spread out into
many colors, usually the histogram is de®ned by a few most signi®cant colors within a given image. This
observation indicates the following direction: to represent image colors, one could use compact feature sets,
such as binary color sets (Smith, 1997), instead of histograms. Speci®cally, the binary color sets are ob-
tained from the M colors as mentioned above.

Let BM be the M-dimensional binary space such that each axis in BM corresponds to one color, indexed
by m �m � 0; 1; . . . ;M ÿ 1�. A color set is a binary vector in space BM and determines a set of colors fmg in
an image. A binary set is equivalent to a thresholded histogram, where each color bin is thresholded into
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two levels. For example, given threshold sm for color m, a binary set b � fb�0�; b�1�; . . . ; b�M ÿ 1�g is ob-
tained by

b�m� � 1 if h�m�P sm;
0 otherwise:

�
�2�

In other words, the binary set indicates only those colors that are found above the threshold levels.
However, it works well for representing signi®cant color information within the image. If color m is not well
represented in an image, i.e., if b�m� is below threshold sm, it is ignored.

The binary sets had been utilized e�ectively in a number of applications, such as the VisualSEEk (Smith
and Chang, 1996a,b) and WebSEEk (Smith and Chang, 1997). In (Smith and Chang, 1996a,b), the authors
stressed that using binary color sets can provide a compact alternative to color histograms for representing
color information. In this way, color content is represented by the set of only the most prominent colors in
the images. Furthermore, with such a feature indexing scheme, the computational cost in calculating the
similarity between features can be greatly reduced. Hence it also substantially speeds up the query pro-
cessing. In (Smith and Chang, 1997), the authors also described the signi®cance of using binary sets as the
color information for searching the Web for content. They reported that setting the ``color signi®cance''
threshold adaptively to select only the 80±90% most signi®cant colors in the query histogram decreases
query time dramatically without degrading retrieval e�ectiveness.

3. Fast binary set mapping

This section describes an e�cient algorithm, called the FBSM, to determine the nearest binary set for an
arbitrary histogram. The objective is to ®nd the binary set b that minimizes its distance to the histogram h,
i.e., �c�h; b�. The distance �c is de®ned to be the root mean-square-error as follows:

�c�h; b� �
�����������������������������������������XMÿ1

m�0

h�m� ÿ b�m�
kbk

� �2

vuut ;

where kbk denotes the number of non-zero elements associated with binary set b, i.e., kbk �PMÿ1
m�0 b�m�. The

algorithm proceeds as follows:
1. The elements in histogram h are sorted in the descending order of their values: let M be the sorting

process, then g �Mh and g�0�P g�1�P � � � P g�M ÿ 1�. Note that, h can be readily obtained from g
by inverting the sorting process, i.e., h �Mÿ1g.

2. Starting from the single largest element, it generates a binary set of cardinality kbk � 1 that assigns a
value of one to this element, and zero to the others. Then, the error, �c�h; b�, between the histogram
and the resultant binary set is also calculated.

3. The process is repeated for the ®rst two largest elements in the histogram, then the ®rst three largest
elements, and so forth, until the collection of binary sets with cardinalities kbk � 0; 1; . . . ;M ÿ 1 is
generated.

4. From this collection, the binary set that minimizes the error, �c�h; b�, is the nearest binary color set for
the given histogram.

The mapping algorithm proposed by Smith (1997) for generating the nearest binary sets was based on two
steps. First, given cardinality n, let rn be a binary set such that krnk � n and

rn�m� � 1 m < n;
0 otherwise:

�
�3�
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Then, it is obtained that

�n
c�g; rn� �

������������������������������������������XMÿ1

m�0

g�m� ÿ rn�m�
n

� �2

vuut : �4�

The nearest binary set with cardinality n to the sorted histogram g��Mh� is given by rn. By using the
inverse sorting process Mÿ1, the nearest binary color set with cardinality n to histogram h is given by
bn �Mÿ1rn. Here, �n

c also corresponds to the distance between bn and h, since �n
c�g; rn� � �c�h; bn�. In the

second step, the overall nearest binary set b to histogram h is found by determining the nearest size n binary
color set bn for n � 1; 2; . . . ;M . In other words, the one which provides the minimum �n

c is the nearest binary
set for histogram h.

In a word, the above algorithm requires M log M comparisons or subtractions to sort the histogram, M2

multiplications and M2 additions to calculate the mean-square-error for n � 1; . . . ;M , and M comparisons
to determine the overall nearest binary set. That is, it demands O�M log M �M �M2� subtractions or
additions and O�M2� multiplications in total for the histogram to binary set conversion. Although in
practice, Smith's BSFM algorithm may terminate at an earlier point, such as when the color histograms
have a large number of zero bins. This is because BSFM includes an initial sorting to identify histogram
elements with zero value and would terminate once reaching a sorted histogram element with zero value.
Unfortunately this is not a general case in the conversion. As we observed, for unconstrained (natural)
images, the number of non-zero bins in an arbitrary color histogram varies largely. It is desired to ®nd a
faster conversion algorithm which is independent of the number of bins de®ned and value of histogram
elements in applications.

Based on the de®nition of the binary set of cardinality n, i.e., Eq. (3), we note that Eq. (4) can be
rewritten as follows:

�n
c�g; rn�� �2 �

XMÿ1

m�0

g�m�
�

ÿ rn�m�
n

�2

� 1

n2

XMÿ1

m�0

ng�m�� ÿ rn�m��2 �5�

� 1

n2

Xnÿ1

m�0

ng�m��
(

ÿ 1�2 � n2
XMÿ1

m�n

g2�m�
)

�6�

� 1

n2

Xnÿ1

m�0

n2g2�m�ÿ(
ÿ 2ng�m� � 1

�� n2
XMÿ1

m�n

g2�m�
)

� 1

n2
n2
XMÿ1

m�0

g2�m�
(

ÿ 2n
Xnÿ1

m�0

g�m� � n

)

�
XMÿ1

m�0

g2�m� ÿ 2

n

Xnÿ1

m�0

g�m� � 1

n

� Aÿ 1

n
2
Xnÿ1

m�0

g�m�
 

ÿ 1

!
;

where

A �
XMÿ1

m�0

g2�m� �
XMÿ1

m�0

h2�m�

902 T. Chen, L.-H. Chen / Pattern Recognition Letters 21 (2000) 899±906



can be treated as a constant for a given histogram h. Note that the derivation from Eq. (5) to Eq. (6) is
directed by the de®nition of Eq. (3). It is clear that minimizing �n

c�g; rn� is equivalent to maximizing the
following quantity:

B�n� � 1

n
2
Xnÿ1

m�0

g�m�
 

ÿ 1

!
: �7�

Furthermore, according to the condition that g�mÿ 1�P g�m��m � 1; . . . ;M ÿ 1�;B�n� satis®es the
following theorem.

Theorem 1. If B�n̂ÿ 1�6B�n̂� and B�n̂� 1�6B�n̂�, then B�nÿ 1�6B�n� for n < n̂ and B�n� 1�6B�n� for
n > n̂.

Proof. First, we can obtain the following two inequalities straightforwardly, according to the prerequisites
that B�n̂ÿ 1�6B�n̂� and B�n̂� 1�6B�n̂�.

B�n̂� ÿ B�n̂ÿ 1� � 1

n̂
2
X̂nÿ1

m�0

g�m�
 

ÿ 1

!
ÿ 1

n̂ÿ 1
2
X̂nÿ2

m�0

g�m�
 

ÿ 1

!

� 2

n̂
g�n̂ÿ 1� ÿ 1

n̂�n̂ÿ 1� 2
X̂nÿ2

m�0

g�m�
 

ÿ 1

!
P 0

) 2�n̂ÿ 1�g�n̂ÿ 1� ÿ 2
X̂nÿ2

m�0

g�m�
 

ÿ 1

!
P 0; �8�

B�n̂� ÿ B�n̂� 1� � 1

n̂
2
X̂nÿ1

m�0

g�m�
 

ÿ 1

!
ÿ 1

n̂� 1
2
X̂n

m�0

g�m�
 

ÿ 1

!

� ÿ 2

n̂� 1
g�n̂� � 1

n̂�n̂� 1� 2
X̂nÿ1

m�0

g�m�
 

ÿ 1

!
P 0

) ÿ2n̂g�n̂� � 2
X̂nÿ1

m�0

g�m�
 

ÿ 1

!
P 0: �9�

Based upon the property that g�mÿ 1�P g�m� �m � 1; . . . ;M ÿ 1�, the following inequalities can be
derived:

B�n̂ÿ 1� ÿ B�n̂ÿ 2� � 1

�n̂ÿ 1��n̂ÿ 2� 2�n̂
(

ÿ 2�g�n̂ÿ 2� ÿ 2
X̂nÿ3

m�0

g�m�
 

ÿ 1

!)

� 1

�n̂ÿ 1��n̂ÿ 2� 2�n̂
(

ÿ 1�g�n̂ÿ 2� ÿ 2
X̂nÿ2

m�0

g�m�
 

ÿ 1

!)

P
1

�n̂ÿ 1��n̂ÿ 2� 2�n̂
(

ÿ 1�g�n̂ÿ 1� ÿ 2
X̂nÿ2

m�0

g�m�
 

ÿ 1

!)
P 0;
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B�n̂� 1� ÿ B�n̂� 2� � 1

�n̂� 1��n̂� 2�

(
ÿ 2�n̂� 1�g�n̂� 1� � 2

X̂n

m�0

g�m�
 

ÿ 1

!)

� 1

�n̂� 1��n̂� 2�

(
ÿ 2�n̂� 1�g�n̂� 1� � 2g�n̂� � 2

X̂nÿ1

m�0

g�m�
 

ÿ 1

!)

P
1

�n̂� 1��n̂� 2�

(
ÿ 2�n̂� 1�g�n̂� � 2g�n̂� � 2

X̂nÿ1

m�0

g�m�
 

ÿ 1

!)

� 1

�n̂� 1��n̂� 2�

(
ÿ 2n̂g�n̂� � 2

X̂nÿ1

m�0

g�m�
 

ÿ 1

!)
P 0:

For those n < n̂ÿ 1 and n > n̂� 1, it can be shown in similar ways. Therefore, Theorem 1 gets proven. �

Therefore, it is apparent that B�n̂� � maxnfB�n�g �n � 1; . . . ;M�. In other words, while searching for the
maximum B�n�, one can stop as long as conditions B�n̂ÿ 1�6B�n̂� and B�n̂� 1�6B�n̂� are met. Normally,
n̂� M in practical applications. As a result, a computationally more e�cient mapping algorithm for
converting a given histogram h to its nearest binary color set is obtained. In general, the FBSM algorithm is
clearly shown to reduce the complexity for an arbitrary size of histograms, since it terminates once certain
conditions are met in the mapping process, no matter how many histogram elements are zero valued. The
FBSM algorithm can be recapitulated as follows:FBSM algorithm

Step 1: Convert the histogram h to g by using the sorting process M, i.e., g �Mh.
Step 2: Obtain the cardinality n̂ such that n̂ � arg maxnfB�n�g, using Eq. (7) and Theorem 1 as afore-
mentioned.
Step 3: Construct the corresponding binary set for the sorted histogram g

rn̂�m� � 1 m < n̂;
0 otherwise:

�
�10�

Step 4: The nearest binary set for histogram h is ®nally generated by using the inverse sorting process,
i.e., bn̂ �Mÿ1rn̂.

Concerning the computational cost, the FBSM algorithm demands M log M comparisons or subtractions to
sort the histogram h, n̂�n̂ÿ 1�=2 additions along with n̂ divisions or multiplications to search for n̂, i.e., for
the maximum B�n�. In other words, the FBSM algorithm totally requires O�M log M � n̂2� subtractions or
additions and O�n̂� multiplications. It is worth pointing out that n̂� M in practice, which is veri®ed ex-
perimentally with results shown in Fig. 1 for a collection of 500 natural images. As compared with the
computational requirement of the original mapping scheme, the proposed FBSM algorithm greatly cuts
down on the number of multiplication operations, which comprise the major part of the computational
load. Table 1 presents a comparison in computational complexity for di�erent schemes, where the Best-
BSFM refers to Smith's BSFM algorithm that terminates once all non-zero elements are considered. As a
result, the FBSM algorithm requires a much lower computational burden and therefore gives a good reason
for practical use of the pre®ltering technique in applications to image indexing and retrieval.

We believe that Smith's technique has certain potential in practical applications of content-based image
indexing and query. It is clear that the proposed FBSM helps to speed up the conversion from histograms
to binary color sets. The impact of FBSM becomes more signi®cant when the number of color bins used is
larger, which is necessary under some circumstances in order to achieve a higher e�ciency in query as
reported by Wan and Kuo (1996). As multimedia information is emerging at a rapid speed over the In-
ternet, the demand of techniques for searching and making use of them becomes unavoidable. We would
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also like to add that the e�ectiveness is another important issue to practical applications of pre®ltering
techniques. Previously the e�cacy of the pre®ltering technique was discussed by Smith (1997), and it was
concluded that false dismissals could be prevented by using the binary set bounding scheme. There may still
exist room for further investigation on the e�ectiveness of such an approach in this aspect. It is hoped that
the enhanced Smith's approach would hold more attraction from people to the application, improvement
and extension of pre®ltering schemes, especially for retrieving images from large databases.

4. Conclusion

This paper presents the e�ciency consideration for histogram to binary set conversion proposed to
pre®lter images in histogram-based image retrieval systems. Based on the original conversion scheme, a

Fig. 1. Over 500 test images, it is obtained that the average number of non-zero elements of the histograms is ~n � 19:6. The minimum

number of tries corresponds to n̂ used in the FBSM algorithm and its average is 5.3. Notice that the number of color bins of the

histograms is M � 64.

Table 1

Comparison in computational complexity, where ~n � 19:6 and n̂ � 5:3, respectively, on average over 500 images with M � 64

Algorithms Operations

Additions Multiplications

Smith's BSFM O�M log M �M �M2� O�M2�
Best-BSFM O�M log M � ~n� ~n2� O�~n2�
Proposed FBSM O�M log M � n̂2� O�n̂�
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FBSM algorithm is derived to expedite the pre®ltering process. The computational cost is signi®cantly
reduced in the proposed algorithm as compared to that of the original one. Although the binary set
conversion is currently an o�-line preprocessing operation, the reduction in computation complexity is
always a desired and pursued task in practice, especially for indexing and retrieving a voluminous set of
multimedia documents which is and will be an essential application in the future Internet and other
application domain. This further justi®es the potential use of the pre®ltering technique.
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