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Abstract—Today, network operators typically reason about network behaviour by observing the effects of a particular configuration in 

operation. This configuration process typically involves logging configuration changes and rolling back to a previous version when a 

problem arises. Advanced network operators (more each day) use policy-based routing languages to define the routing configuration 

and tools based on systematic verification techniques to ensure that operational behaviour is consistent with the intended behaviour. 

These tools help operators to reason about properties of routing protocols. However, these languages and tools work in low-level, i.e. 

they focus on properties, parameters, and elements of routing protocols. However, network operators receive high-level policies that 

must be refined to low level parameters before they can be applied. These high-level policies should consider other properties (e.g. 

extensibility or reasoning capabilities), parameters (e.g. time period, localization or QoS parameters), and elements (e.g. AAA 

individuals or resources), when the network configuration is defined. We believe that there is a need of broader approaches in 

languages and tools for defining routing configurations that are more powerful and integrated to other network elements. This article 

provides the main ideas behind the specification of routing policies using formal languages which enable the description of semantics. 
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These semantics make easier the policy refinement process and allows describing an automated process for doing conflict detection on 

these policies. 
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I.  INTRODUCTION  

The Internet is composed of a large number of Autonomous Systems (AS) that are independently administered networks by one 

or more network operators (or network administrators), coupled by using an inter-domain routing infrastructure using the Border 

Gateway Protocol (BGP) [1]. The exchange of routing information between ASes is controlled by diverse policies, decided locally 

be each AS, and not directly observable from available BGP data.  

The network operator can typically specify the routing policy enforcing BGP data into configuration files directly applied to the 

managed routers. An advanced network operator can use a policy language such Routing Policy Specification Language (RPSL) [2] 

to describe their routing policies and store them at various Internet Routing Registry (IRR) databases including RIPE, RADB and 

APNIC [3]. The network operator can use tools such as IRRToolSet [4] for automated router configuration, routing policy analysis, 

and on-going maintenance. 

However, RPSL works with low-level policies, i.e. RPSL focus on properties, parameters, and elements of routing protocols. 

Network operators should consider other high-level requirements, when they specify the routing policy. These requirements of 

policies include maintaining business relationships between different ASes, ensuring resilience requirements even under overload, 

guaranteeing efficient internal operations and supporting growing customer demands to control their traffic flows. In most cases, 

network administrator receives a high-level policy that must be refined before it can be applied to the managed routers. There are 

many cases in which the network operator cannot refine the high-level policy received. One of the reasons is the lack of languages 

to support and extend high-level concepts. For example, a routing policy that could appear with a simple textual form such as “if 

the managed AS is multihomed, the internal network of the client A is not connected, and today is Sunday, then removing the 

peering link with the AS of the Provider A”. This policy can be defined by a customer AS who wants to reduce the bill that she 

pays to a provider AS for any traffic sent between the two networks. However, this policy implies a complex refinement task for 

the administrator. Moreover, the administrator is limited to the parameters supported by configuration files that could make 

impossible to deploy that policy. This policy refinement problem is especially relevant when the high-level policies are related to 

the description of conflictive situations. For example, the policy “we always should use the chipset connection” can raise a conflict 

when there are two connections and for any external problem it is being used the non-chipset connection. Usually, there are no 

parameters in the configuration files to manage this kind of circumstances (and then resolve this conflict, for example).  



The routing policy language may include support for other properties (e.g. extensibility or reasoning capabilities), parameters 

(e.g. time period, localization or QoS parameters), and elements (e.g. AAA individuals or resources) that permit to define high-

level routing policy. Moreover, the language may be extensible in order to enable the definition of new concepts and their 

semantics. The language may enable the definition of methods to detect and resolve conflicts. The adoption of languages that 

enable the representation of semantic for policy representation, i.e., the use of ontologies and Semantic Web [5] languages to 

specify them can provide a solution to these problems. For this reason, these languages have been used in this paper. Other existing 

routing policy languages cannot describe semantics and methods to detect and resolve conflict in the system, which it is an added 

value of the proposal being presented in this paper. 

The main contribution of this article is the definition of a framework based on the Semantic Web languages to specify high-

level routing policies. The routing information is defined in Ontology Web Language (OWL) using the BGP concepts available in 

the Common Information Model (CIM). As a result, Semantic Web Rule Language (SWRL) is used to define high-level routing 

policies whereas SWRL is also used to detected and resolve conflicts. The automatic reasoning capabilities available in these 

technologies and the wide set of friendly tools to define policies ease the configuration job of network operators. Although each 

application domain has different concepts and semantics, previous works have validated our information model for other 

application domains such as security services [6] and distributed firewall [7]. 

The rest of this paper is structured as follows. Section II provides the background on BGP concepts and further motivation and 

requirements of the designed policy language. Some related works are presented in the Section III. Section IV provides a 

semantics-aware policy representation where different kind of routing policies can be expressed. Section V describes the automated 

reasoning and the conflict detection in such specifications. Some indications about the deployment of semantic-aware routing 

policies related to this research work are described in section VI. Section VII discusses the performance and scalability of the 

proposal. Finally, section VIII outlines the main conclusions and some ideas behind the ongoing work on conflict resolution. 

II. BACKGROUND AND MOTIVATION 

A. BGP Autonomous System Types and Routing Policies 

In many cases, a BGP speaker is connected to more than one different speaker. This provides both greater efficiency in the form 

of more direct paths to different networks, and also redundancy to allow the internetwork to cope with either device or connection 

failures. It is possible for a BGP speaker to have neighbour relationships with other BGP speakers both within its own AS and 

outside it. A neighbour within the AS is called an internal peer, while a neighbour outside the AS is an external peer. BGP between 



internal peers is sometimes called Internal BGP (iBGP) while use of the protocol between external peers is External BGP (eBGP). 

You can see an example of BGP topology and the designation of internal and external peers in Fig. 1. 
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Figure 1. BGP Example Topology and Designations 

We can make a similar distinction between different types of ASes, based on how they are interconnected in the overall BGP 

topology. There are three main types of AS: Stub AS, which is an AS that is connected to only one other AS (AS 500 in our 

example of Fig. 1); Multihomed Non-Transit AS, which is an AS that is connected to two or more other ASes and transports only 

traffic originating or terminating on an host (or server) within the network (AS 400 in our example of Fig. 1); and Multihomed 

Transit AS, which is an AS that provides connections through itself to other networks (AS 100, AS 200, and AS 300 in our example 

of Fig. 1).  

To provide control over the carrying of transit traffic, BGP allows an AS to set up and use routing policies. These are sets of 

rules that govern how an AS will handle transit traffic. Some of the many options of an AS to handle transit traffic include: No 

Transit Policy: an AS can have a policy that it will not handle transit traffic at all. Restricted AS Transit Policy: an AS may allow 

handling of traffic from certain ASes but not others. In this case, it tells the ASes it will handle that they may send it traffic, but 

does not say this to the others. And Criteria-Based Transit Policy: an AS may use a number of different criteria to decide whether 

to allow transit traffic. For example, it might allow transit traffic only during certain times, or only when it has enough spare 

capacity.  



In a similar manner, policies can also be set to control how an AS will manage its own traffic received by other autonomous 

systems. These policies may be based on security considerations (if one connecting AS is deemed more secure than another), 

performance (one AS is faster than another), reliability or other factors. 

For example, Fig. 1 shows an AS 100 defined as a transit AS with criteria based on transit policy where the network operator 

establishes routing policies that specify which conditions the AS is willing to handle transit traffic. On the other hand, the AS 400 is 

a multihomed AS with no transit policy. However, the network operator establishes routing policies to determine route selection by 

specifying the conditions under which either AS100 or AS200 should be used. This example is used as running example on the rest 

of this paper. 

B. Requirements for High-Level Routing Policy Language 

One of the tasks in network administration is to transform the business policies into implementable routing policies using a 

formal representation. To do so, the administrator should use a policy language that assures that the representation of these policies 

will be unambiguous and verifiable. Other important requirements of any policy language are [8]:  

 Clear and well defined semantics. A semantics that include all policy concepts necessary to facilitate the task of the 

network operator. 

 Clear and well defined syntax. A syntax that can be easily used to share policy information between different kinds of 

computers, different applications, and different organizations.  

 Flexibility and extensibility. A policy language has to be flexible enough to allow new policy information to be expressed, 

and extensible enough to allow new semantics to be added in future versions of this language. 

In particular, for a routing policy language, the refinement process between the business policy and the routing configuration 

requires the system description, i.e. network topology, network state, functionality of each resource, etc. Other important 

requirements of any routing policy language are: 

 Languages for system description and policy description. The separation of system description and policy description 

permits us to analyze both specifications individually using different techniques.  

 Reasoning capabilities about system descriptions. These capabilities permit to query and access to policy information. 

 Reasoning capabilities about policy description. It permits rule-based reasoning that can be used to define techniques for 

conflict analysis, policy scheduling, consistence checking, and etcetera. 



A Semantic Web approach for system and policy representation can provide an adequate solution to these requirements since it 

provides high expressive languages to define concepts, semantics and policies. These languages are formal languages with a well-

known semantic, so called Description Logics [9], which provide reasoning capabilities about both system description and policy 

definitions. Moreover, the added value of enabling the definition of semantics is very useful to define both routing policies and 

policies to detect and resolve conflictive circumstances in the system.   

III. RELATED WORK 

There has been significant work in understanding and automating BGP network management. However, most of these 

approaches have been at the individual device level in terms of creating the right configuration files, and do not consider the high 

level network objectives.  In these sense, several network operators have developed tools to automate the configuration of parts of 

their routing policies. Among others, [10] describes tools to build the configurations of the eBGP sessions with customers in a large 

ISP network based on provisioning databases. No information is provided in [10] about the support of complex routing policies. 

Bohm et al [11] propose an XML-based configuration language that enables the expression of the network-wide routing policies in 

an ISP network. This XML configuration is then converted in RPSL format and the RPSL tools are used to generate the 

corresponding router configurations.  

In an effort to better understand the dynamics of configuration management, Chen et al [12] use a combination of TACAS logs, 

static configuration files and the router configuration of a Tier-1 ISP to build a Deterministic Finite Automaton (DFA) 

representation of network configuration. Feamster et al [13] use static analysis to detect configuration faults in BGP. Particularly, 

the authors derive configuration constraints from high level policy specifications and check BGP configurations against the derived 

constraints. Using this approach, they detect path visibility and route validity configuration faults. However, they do not deal with 

dynamic configuration changes. The Routing Policy Specification Language (RPSL) [2] is an object oriented language for 

specifying routing policies from which router configurations can be automatically generated. 

RPSL was initially proposed as a language to both document and verify that there are no conflicts among routing policies from 

different ASes. Some ASes rely on RPSL to document their peering relationships and some use the RPSL information to 

automatically generate part of their filters. However, it does not seem that RPSL is still used to verify the coherence of the routing 

policies. This is mainly because some operators do not provide their policies in RPSL format. Furthermore, RPSL does not allow 

operators to easily express complex policies. Moreover, RPSL does not support inference and is limited in expressiveness.  



The use of ontologies and Semantic Web in automating network management is new and so there are few proposals in this 

direction. Kodeswaran et al [14] proposes an alternate mechanism for policy based networking that relies on using additional 

semantic information associated with routes expressed as OWL ontology. Policies are expressed using SWRL to provide fine-

grained control where the routers can reason over their routes and determine how they need to be exchanged, but the policy 

conflicts are not discussed. 

Research in policy conflict analysis is being active for several years. However, most of the work in this area addresses general 

management policies rather than policies in use in routing. For example, Lupu et al [15] classify possible policy conflicts in role-

based management frameworks, and develop techniques to discover them. Some other works, although interesting as background 

are not directly applicable to the routing scenario; this is the case of Yagüe et al [16] which provides a semantic-aware access 

control model for web services, or the work of Al-Shaer et al [17] using a tree-based model with advanced techniques for conflicts 

and anomaly analysis for firewalls. 

IV. SEMANTIC WEB-BASED ROUTING POLICY REPRESENTATION 

Our proposal defines the System Description Language (SDL), which consists of an ontology based on Common Information 

Model (CIM) [18] to describe the system to be managed, and the Security Policy Language (SPL), which uses the concepts defined 

by SDL to create policy rules to express the desired behaviour for the administered network. Note that SDL and SPL represent a 

new way to express routing policies combining Semantic Web languages and CIM. The SDL language is defined as the usage of 

the Ontology Web Language (OWL) [19] in order to describe the system to be managed using the OWL representation of the CIM 

ontology. This fact enables the definition of semantics related to the system description and the extension of such description. As a 

result, a high level definition of the system to be managed is achieved in a standard format and all the advantages related to the 

formal methods associated to OWL such as the reasoning processes can be applied. The SPL language is defined as the usage of the 

Semantic Web Rule Language (SWRL) [20] to define policies using the concepts defined in the previous SDL language. 

OWL enables the definition of semantics like inheritance among concepts, transitiveness among properties, existential 

constraints, cardinality constraints, and etcetera. SWRL is used to represent rules on the Semantic Web and it extends OWL in 

order to provide a way to express conditional knowledge. The language itself is not decidable, but a syntactic restriction called DL-

Safe context [21] can be applied in order to restore the decidability. The combination of SWRL and OWL can be used to express 

not only the routing policy, but also more deductive processes on the system which may be relevant for routing decisions. For 

example, this language enables the definition of policies to detect and resolve conflict in the system. In case the reader is more 

interested in the syntax and semantics of these languages, OWL [19] and SWRL [20] provide a detailed description.  



The following subsections are focused on the routing policy representation using SDL and SPL, and show how different kinds 

of routing policies can be expressed.  

A. Ontological representation for system description 

Our representation is based on a well-recognized standard information model such as CIM, thus enabling the management of 

policy information in a uniform manner and guaranteeing the necessary extensibility to support any kind of routing policy. 

Moreover, the SDL representation uses the ontological language OWL. Our motivation for using OWL, besides being a W3C 

standard, is mainly its capabilities for expressing formal semantics, defining class hierarchies and their relationships, associated 

properties, cardinality restrictions while still retaining decidability and computational completeness. Using OWL for ontology 

specification makes the framework generic, flexible and more scalable than using proprietary labelling schemes that raise 

interoperability issues.  

Fig. 2 shows the UML representation for the CIM classes related to BGP routing concepts, which we have used in this paper as 

working example. 
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Figure 2. CIM BGP Routing Model 

AutonomousSystem is the base class in networking model. The aggregation RouterInAS establishes relationships between an 

AutonomousSystem and routers that it contains. BGPPeerGroup is a set of BGP speakers (two or more) that share the same set of 

restrictions that must be followed in order to work correctly with BGP peers. A BGPRouteMap is used to control and modify 

routing information as well as to define when a route is redistributed between autonomous systems. RouteMaps may use FilterLists 

to identify the route, and a BGPRouteMap is specific to a given AutonomousSystem that contains it. 

Our approach uses CIM ontology proposed by [22] to represent the routing concepts that are depicted in Fig. 2. The reason for 

this choice is twofold. On one hand, it holds many semantics description in the translation to OWL in contrast to the approaches 

which only preserves the expressiveness associated to the Resource Description Framework (RDF) Language [22]. The second 

reason is related to the way in which the relationships between CIM elements have been mapped. In this sense, some approaches 



propose the mapping of CIM relationships to OWL classes [23], whereas our choice defends to map CIM relationships to OWL 

properties. This approach confers simplicity to CIM models and, in turn, it allows to model semantic features applied to these 

properties. The text available in Table 1 shows an extract of the description in OWL of the administrative domain of the Fig. 1 

using RDF/XML syntax. 

<AutonomousSystem rdf:about="#AS100"> 

   <ASNumber>100</ASNumber> 

   <IsSingleHomed>false</IsSingleHomed> 

   <IsTransit>true</IsTransit> 

</AutonomousSystem> 

<AutonomousSystem rdf:about="#AS400"> 

   <ASNumber>400</ASNumber> 

   <IsSingleHomed>false</IsSingleHomed> 

   <IsTransit>false</IsTransit> 

</AutonomousSystem> 

<ComputerSystem rdf:about="#RTA"> 

   <Name>Router A</Name> 

   <Dedicated>router </ Dedicated> 

   <RouterInAS rdf:resource="#AS100"/> 

   <InBGPPeerGroup rdf:resource="#AS100_AS400"/> 

</ComputerSystem> 

<ComputerSystem rdf:about="#RTD"> 

   <Name>Router D</Name> 

   <Dedicated>router </ Dedicated> 

   <RouterInAS rdf:resource="#AS400"/> 

   <InBGPPeerGroup rdf:resource="#AS100_AS400"/> 

</ComputerSystem> 

<BGPPeerGroup rdf:about="#AS100_AS400"/> 

   <BGPRouteMap rdf:resource="#RouteMap100"/> 

</BGPPeerGroup > 

<BGPRouteMap rdf:about="#RouteMap100"> 

   <Direction>Both</Direction> 

   <Action>Permit</Action> 

   <HostedBGPRouteMap rdf:resource="#AS100"/> 

</BGPRouteMap> 

Table 1. Representation of two AS and their BGP link 

The text available in Table 1 shows the representation of AS100, AS400, and their BGP peering link. Each autonomous system 

is represented by the AutonomousSystem concept. This concept has some high-level attributes like ASNumber, IsMultihomed, and 

IsTransist. Both AS100 and AS400 are in the same BGPPeerGroup and each of them has a ComputerSystem (router), RTA and 

RTD, respectively. The BGPRouteMap associated to AS100 permits the transit traffic in both directions. The rest of the system 

description is not present because this syntax is very verbose. In any case, this extract is enough to show that the syntax and 

semantics are clear.  



B. Routing Policies 

The SPL language is represented by SWRL rules. These rules are defined in high-level abstract syntax. SWRL enable to define 

policies using the SDL ontology mentioned before. SWRL rules are in the form of an implication between antecedents (body) and 

consequents (head). The intended meaning can be read as: whenever the conditions specified in the antecedents hold, then the 

conditions specified in the consequents must also hold. 

For example, the network administrator may decide this basic routing policy using OWL extract above described: “IF AS400 

contains a router, THEN this router has a BGP peer with AS100”. The rule available in Table 2 shows the formal representation of 

this policy that can be directly mapped to SWRL. 

 

ComputerSystem (?CS) ^ Dedicated (?CS,’router’) ^ 

RouterInAS (?CS,#AS400) 

 

InBGPPeerGroup (?CS,#AS100_AS400) 

Table 2. Example of SWRL Routing Policy 

The rule body establishes a variable CS to specify the computer system. The property Dedicated identifies the computer system 

as a router and the property RouterInAS sets that the AS400 contains the router. Then the rule head establishes the association 

between the router and the BGP peer group that exists between AS400 and AS100.  

The network administrator can also decide more complex routing policies that include other parameters not related to routing, 

i.e. auxiliary measures such as time period, localization or QoS parameters. For example, the network administrator may decide the 

following routing policy: “IF AS has a peering link with a router located in ProviderA and today is Sunday; THEN AS has a 

peering link with AS100”. The following text shows the logic representation of this policy that can be mapped to SWRL. 

 

AutonomousSystem (?AS) ^  

ComputerSystem (?CS) ^ Dedicated (?CS,’router’) ^ 

RouterInAS (?CS,?AS) ^ LocatedIn (?CS, ‘ProviderA’) ^  

DayOfWeek (#Today, ‘Sunday’) 



 

InBGPPeerGroup (?CS,#AS100_ALLASES) 

Table 3. Example of SWRL Routing Policy 

The rule body establishes the localization with the property LocatedIn, and the time period with the property DayOfWeek. Both 

properties belong to CIM ontology and they permit the definition of routing policies that consider no BGP parameters. Moreover, 

the network operator could include elements not related to routing, i.e. identities such as AAA individuals or resources. For 

example, the network administrator may decide the following routing policy: “IF AS has a number of authenticated individuals 

greater than 1000, THEN AS has a peering link with AS100”.  

CIM ontology does not include all concepts that a network operator could need. However, CIM ontology is easy to combine 

with other ontologies, e.g. SOUPA ontology [24] for concepts related to ubiquitous and pervasive applications, or also SWRC 

ontology [25] for modelling entities of research communities. It permits a system description as wide as the network operator need 

it to define high-level routing policies. However, it is worth mentioning that each router managed in the system has to be able to 

interpret the information provided by the policies. 

V. REASONING CAPABILITIES AND CONFLICT DETECTION  

A. Ontology reasoning and rule-based reasoning 

The combination of the OWL-encoded CIM ontology and SWRL to specify behaviour rules for routing policies offers a clear 

advantage: it allows two different types of automated reasoning. The first one is ontology reasoning (i.e., reasoning over the 

structure and instances of the ontology) and the second one is rule-based reasoning (i.e., reasoning over the policy rules in system 

management tasks). 

Therefore, we identify an OWL reasoner and a rule based reasoner (see Fig. 3), where we use the word reasoner to refer to a 

specific program that performs the inference tasks, i.e., the process of deriving additional information that is not explicitly 

specified) and validation tasks, i.e. the process of ensuring that the system description and the policies are coherent and there is not 

inconsistencies therein. 
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Figure 3. Ontology and Rule Reasoning 

The main operations for an OWL reasoner are: 

 Validation. The OWL ontology language allows constraints to be expressed; the validation operation is used to detect when 

such constraints are violated by some data set, i.e., the validation consists in a global check across the schema and instance 

data looking for inconsistencies.  

 Querying the ontology, including instance recognition (i.e., testing if an instance is belonging to a given class) and 

inheritance recognition (i.e., testing if a class is a subclass of another class and if a property is a sub-property of another). 

For our example, a query using SPARQL [26] to obtain all routers associated to an Autonomous System is the following: 

 

SELECT ?cs  

WHERE { ?cs RouterInAS #AS100 }'; 

Table 4. Example of SPARQL language 

The rule reasoner performs inference about SWRL rules deriving new information (i.e., new OWL instances). For our previous 

SWRL rule (shown in Table 2), the rule reasoner infers new data when a new router is associated to the autonomous system AS400. 

In particular, the rule infers that this new router belongs to the BGPPeepGroup “AS100 AS400”. The text shown in Table 5 match 

with the OWL representation of the new router, and underlines data are the inferred results for the execution of the previous SWRL 

rule.  

<ComputerSystem rdf:about="#RTX"> 

   <Name>Router X</Name> 

   <Dedicated>router </Dedicated> 



   <RouterInAS rdf:resource="#AS400"/> 

   <InBGPPeerGroup rdf:resource="#AS100_AS400"/> 

</ComputerSystem> 

Table 5. Example of inference results provided by the reasoner 

Moreover, our proposal includes the property NoInBGPPeerGroup for the representation of a denied peering link to an 

Autonomous System. NoInBGPPeerGroup has been defined as disjoint property with InBGPPeerGroup that is expressed using the 

DisjointObjectProperties construct. In OWL semantics, two disjoint properties are those which can not belong to the same instance 

at same time. For example, the following statement shows the equivalent property to previous example, but denied: 

<NoInBGPPeerGroup rdf:resource="#AS100_AS400"/> 

The network administrator could define this statement when a new router is included into AS400. When the ontology does not 

include peering information for a router, i.e. no NoInBGPPeerGroup and InBGPPeerGroup is defined to the router, the peering 

decision is indeterminate, according to the OWL semantics. It is important to remark that this capability to define semantics such as 

the DisjointObjectProperties is an important added value of our proposal because enables the incorporation of semantics into any 

concept of the domain by the network administrators. The network operators can include this information according to the high-

level policies associated to the domain being administrated. 

B. Conflict detection 

An important functionality of the rule-based reasoner is that it enables the detection of conflicts. For example, conflict detection 

can discover security failures, undesired behaviours, configuration mistakes and contradictions, among others. Our proposal 

identifies a conflict between different policies from the point of view of semantics, when the data inferred by the policies generates 

an inconsistency in the system description. For example, disjoint properties can be a way to generate an inconsistency. Thus, thanks 

to the automatic generation performed by the reasoner, the system is able to identify when two disjoint properties appear 

simultaneously (inconsistence). 

In our example, an inconsistence can appear when an instance NoInBGPPeerGroup exists between AS100-AS400 and a router 

(meaning that this peering link is prohibited to the router), and then the rule reasoner infers a new instance InBGPPeerGroup 

between them (meaning that there is a peering link). The text in Table 6 shows the inconsistence in OWL using RDF/XML syntax. 

<ComputerSystem rdf:about="#RTX"> 



   <Name>Router X</Name> 

   < Dedicated>router </Dedicated> 

   <RouterInAS rdf:resource="#AS400"/> 

   <NoInBGPPeerGroup rdf:resource="#AS100_AS400"/> 

   <InBGPPeerGroup rdf:resource="#AS100_AS400"/> 

</ComputerSystem> 

Table 6. Example of an inconsistent situation 

The inconsistence is detected by the reasoner because an instance cannot belong to two disjoint properties simultaneously. 

Moreover, disjoint classes can also be a way to generate an inconsistency (that is expressed using the DisjointClasses construct). 

Thus, two classes which represent a conflictive pair are defined as disjoint classes in the application domain. In our example, an 

inconsistence could appear whether ComputerSystem and Service instances are representing the same individual because these 

classes are declared as disjoint. Additionally, OWL language provides other constructs for equivalence between instances, 

equivalence between classes, and complement of classes and properties that can be used to model the application domain. If the 

domain description is not consistent as defined by the OWL semantics, then the reasoner automatically will detect an inconsistence. 

Notice that OWL provides a set of semantics that enables to the network administrators to describe conflict in the system to be 

managed. Moreover, SWRL offers an important added value for which it enables the description of conflictive situations. Notice 

that an SWRL can define a conflictive situation in the antecedent part of the rule and to raise a conflict in the consequent part. This 

allows the network administrator to detect any conflict in the system that can be described in OWL/SWRL. For example, the 

conflict of interest and conflict of duties can be easily detected. While the former occurs when the autonomous system is able to 

perform actions which may conflict with its own interest, the later occurs when an autonomous system is obligated to perform 

incompatible actions. In these cases, a simple rule in which the conflictive actions are specified in the antecedent part can insert a 

disjoint definition among these actions to detect the conflicts.  

Finally, some conflict resolution is necessary to provide an automatic solution for conflict analysis. Policy conflicts can be 

detected using our proposal. However, there is no mean of deciding at run-time what the original intention of the network 

administrator was; for our example, whether the peering link should be established or not. To solve the conflict resolution, our 

proposal uses prioritization, where more recent descriptions take priority over older ones (obsolescence). This resolution strategy 

assumes that domain descriptions defined or inferred more recently are by consequence more ‘up-to-date’, and therefore relevant, 

while older descriptions become obsolete. Once detected, a decision can be made as how resolving the conflict. For our example, 



the conflict resolution decides to remove the description NoInBGPPeerGroup (meaning that the peering link can be established) 

because the inferred data (InBGPPeerGroup) is more recent. Notice that this resolution technique is independent of the kind of 

conflict detected. Because it depends on the time on which the information is available in the system rather than the kind of 

conflict. For this reason, the technique can be applied to all the different kinds of conflict detected in the system.  

VI. DEPLOYMENT OF SEMANTIC-AWARE ROUTING POLICIES 

SDL and SPL are languages used internally for the management framework. The administrator can use a graphic tool to define 

the system domain and policies, although they are stored and encoded by SDL and SPL, respectively.  

Moreover, the framework needs a PDP (Policy Decision Point) [27] [28] that evaluate the policies and system description to 

establish the BGP configuration in managed routers. Each managed router includes a PEP (Policy Enforcement Point) that applies 

BGP data into configuration files (see Fig. 4) and provides network information to the BGP PDP that completes the system 

description defined by administrator and returns monitoring information.   
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Figure 4. Managing routing policies 

The administrator defines the policy creating policy rules follow the if-then paradigm. Our proposal uses the ORE-GUI [29], 

which is a stand-alone application created in our research group and aimed to graphically edit, test, debug and validate ontology 

rules in any domain. ORE-GUI is a wizard guiding the administrator when editing rules and interpreting the reasoning results. It 

also allows debugging the high-level policy definition, which an added-value over other existing approaches. In fact, it helps the 

network administrator to test a given set of policies before they are applied in the real system. In case some of these policy rules are 

not behaving well, the network administrator has the possibility to change the definition, before the final policy rules are enforced 

to the BGP PDP (see Fig. 4). These policies enable the definition of high-level routing policies as well as policies to detect conflict 

in the system. 



A key element in the framework is the reasoner used in the BGP PDP. Our proposal uses Jena [30], as it provides a set of 

methods for loading and managing ontologies, together with a group of reasoning engines with different capabilities such as Pellet 

[31]. Jena is employed in the core part of the framework to obtain a working model from the domain ontology and also as a rule 

reasoning engine. Hence, the working model can be accessed by ORE according to the rule tasks to be performed. For example, 

ORE builds a domain concept hierarchy to be displayed when editing rules in the GUI, using for this the ontology working model 

given by Jena. 

The PDP/PEP information exchange must be real time to avoid that up-to-date PEP information is not considered on the 

reasoning process and to guarantee that BGP configurations are real-time enforced. Our proposal uses SNMP protocol, where the 

BGP PDP retrieves information through GET operations and sends BGP configuration updates through SET operations. The BGP 

PEPs will send data without being asked using TRAP operations. Moreover, our proposal uses BGP4 MIBs [32] that, for example, 

are sent when establishing peering or loss of a peer. 

The BGP PEP can be integrated on the routing software or be external software that enforces the BGP configuration using an 

additional protocol or mechanism, e.g. CLI commands via Telnet. Our proposal integrates the PEP functionality into GNU Zebra 

[33], where the BGP4 MIB support is limited and so we have extended to complete framework functionality.  

VII. PERFORMANCE 

In order to measure the performance of the proposal, several executions have been performed, starting from a simple scenario 

and bringing it more and more complex. This complexity is achieved by increasing the number of ontology instances present that, 

in turn, increase the number of statements of the knowledge base of the BGP PDP reasoner. The number of instances for a given 

execution is referred to as population. In order to decide the mathematical function to be used to set up the populations’ size, our 

system was stressed until it was overload in terms of memory and time response requirements. Once we knew the top level 

threshold of the system for the computer in which this experiment was carried out, we designed an exponential function in which 

the final step provided this number. It is common to make use of an exponential function to determine the size of these populations. 

Starting from the basis that the biggest population should be the one which shows impracticable performance results in terms of 

response time or amount of required memory, the following mathematical function has been empirically obtained: 

f (x) = 2000 · e
(x/2)

 

where x takes integer values from the interval [0; 10). These sizes will be used to evaluate the performance and scalability of the 

proposal. Notice that the last population has more than 180.000 instances which, in turn, will result in a big amount of statements 



whose exact number depends on the concrete scenario. For instance, a population of 180000 instances leads to more than 2.6 

millions of statements since each instance have properties and features associated that will be represented as statements in the 

knowledge base. 

Population Instances 

1 3297 
2 5436 
3 8963 
4 14778 
5 24364 
6 40171 
7 66230 
8 109196 
9 180034 

 

Table 7. Number of instances by population 

Once the population size has been defined, it is necessary to define the percentage of instances which will belong to each class 

of the application domain. This definition has been done bearing in mind the peculiarities associated to realistic scenarios. For 

example, typically there should be available much more number of BGP routes than autonomous systems. Moreover, there should 

be more routers than autonomous systems. In this sense, figure 5 depicts a graphic showing the percentage of instances belonging 

to each class. The distribution has been done following the common sense and the scenarios provided in other research works [1] 

[12] [13]. 

 

Figure 5. Instance distribution in populations 

These percentages intend to model a scenario and they will be used to generate the populations. Populations of instances are 

created in a driven way for representing realistic features on the generated scenarios. These populations are used to measure 

different timings associated to load populations, check consistence on knowledge base and get times on detecting conflicts, among 



others. Using the population size as metric to evaluate the reasoner performance provides a high level measure by directly 

considering the number of entities which are present in the managed system model. On the other hand, using the number of 

statements provides a lower level metric which measures the amount of data inside the reasoner. Moreover, reasoners performance 

is usually determined by the complexity of the ontology and the number of statements rather than considering the number of 

instances represented by such statements. Therefore, both the statements number and the population size will be taken into account 

for this analysis. 

Figure 6 shows a graphic depicting the relationship between population size and the number of statements for our scenario. As 

can be observed, the number of statements is bigger than the number of instances. The bigger a population is the greater amounts of 

statements appear, although this growth is not necessarily proportional. 

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10
Population

Statements

 

Figure 6. Statements and population relationship 

Different simulations have been done in order to evaluate the response time for our proposal. Also the detection method has 

been tested by measuring the time that is needed to identity a conflict in the knowledge base. The machine used to run the 

simulations has been a Core 2 Duo T7500 at 2.2 GHz with FSB 800 MHz and 4 GB RAM. Regarding the operating system, a 

common clear Ubuntu Linux in its version 8.0.4 has been used. Finally the used Java Virtual Machine has been the Sun JDK 1.6 

tuned up to 2 GB of maximum heap size. 

The testbed is basically composed of three different tests executed against ten incremental populations. The first test deals with 

the load time, i.e., the time needed to load fully the knowledge base with the information provided by the BGP PEP entities. The 

second one measures the time that the Pellet reasoner spends in consistence checking when the knowledge base does not hold any 

inconsistency fact. It should be noticed that a knowledge base is consistent when it does not contain any contradictory statements. 



Finally, the third test is about the time that the rule reasoner requires detecting the conflict when there is at least one inconsistency 

fact present in the ontology. This time deals with the consistency checking operation which will allow detecting the conflict be 

means of the reasoner. 

As a proof of concept, these testbeds have been executed in a prototypical implementation of the BGP PDP element. This 

software is simulating the BGP information provides by the BGP PEP elements in order to evaluate the performance of the PDP 

elements which in turn, it is the key element in the architecture. This information conforms each of the previous described 

populations and it is inserted in the PDP together with the policies. These policies (SPL information) are also automatically 

generated in the software in order to simulate realistic description of policies defined by administrator. Thus, the PDP perform the 

reasoning with all these information using the combination of Jena and Pellet reasoners as previously described. Figure 7 depicts 

the performance results obtained by the execution of the third aforementioned tests with the selected populations in this PDP 

element. This graphic illustrates two different metrics. One of them defines the time required to perform the consistency operation 

in a non conflictive scenario, whereas the other one defines the time spent to perform this operation in a conflictive situation. In 

conflictive scenarios detection rules will be fulfilled, causing the insertion of new facts in the knowledge base which, in turn, will 

cause inconsistency. It should be noticed that load times are included in the metric values in order to show the overhead introduced 

by loads. An added value of our approach is the expressiveness provided in the languages used to describe both the system 

descriptions and routing policies. This added value enables to define high-level policies whereas it also enables the definition of 

policies to detect conflicts in the system. Due to the well-known trade-off available between expressiveness provided in a language 

and computational time for carrying out reasoning processes over this language, Figure 7 has been included in order to demonstrate 

that our proposal provided acceptable convergence times dealing with big BGP systems whereas provide a high-level 

expressiveness in the language. These results are not comparable with other proposals. Notice that each proposal provides its own 

expressiveness in the language ranging from a simple configuration file to more complex scenarios with some inference processes 

therein. Each one has associated a computational time to carry out these inference processes and the high expressiveness provided 

in this proposal is not comparable to other existent solutions.  
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Figure 7. Scenario performance 

Some conclusions arise from these results. Firstly, all the ontologies have its own peculiarities and therefore the consistence 

checking operation shows different statistics, regardless the number of instances. In this sense, a BGP routing scenario is quite 

complex due to the amount of classes needed to model it. This leads the reasoner to require more time checking the consistence. 

However, we can establish a ceiling in a population over 15.000 instances (approximately 300 autonomous systems) requires more 

5 seconds for checking the consistence. Moreover, these results show that, in general, the time spent by the reasoner to check the 

consistency is quite higher when dealing with a consistent knowledge base than with an inconsistent one.  

Another tested has been simulated in order to analyze the impact of the ranging of the percentages shown in Figure 5 using a 

fixed population. This tested enables the analysis about how the different concepts available in Figure 5 provides different overload 

in the system. It has been used the population 5 shown in Table 1 to carried out this testbed. The ranging of the percentages has 

been ±15% to all the different concepts available in Figure 5. As a result, all the convergence times of the simulated scenarios 

provides similar convergence times. The results provide only a difference of 3% in the average convergence time of the system; this 

fact determines that the percentages of the different kinds of concepts available in the system do not affect much to the response 

time of the routing policies.  

VIII. CONCLUSIONS AND FUTURE WORK  

Policy-based management of routing configuration is a research field that still needs to make significant efforts to provide a 

final solution to the problem of automatic provision of configurations. Our proposal is focused on solving certain important 

limitations in current routing policy languages. 



In this sense, this article provides a detailed view of a Semantic Web based representation of routing management policies and a 

technique defined to detect policy conflicts. This representation has been described from the perspective of some of the advantages 

related with its use (e.g., reasoning capabilities) and a prototypical implementation where both representation and conflict detection 

technique have been successfully tested. 

As statement of direction [34], current work is being focused on the definition of taxonomy of conflicts existing in the routing 

area. We are also currently working in advanced resolution techniques that can provide an automated answer when a conflict 

appears. Prioritization of policies is a technique suitable for resolving the policy conflicts, but there are conflicts more subtle, hence 

prioritization may not be enough to resolve them. 
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