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Abstract

This paper deals with video segmentation based
on motion and spatial information. Classically, the
motion term is based on a motion compensation error
(MCE) between two consecutive frames. Defining a
motion-based energy as the integral of a function of
the MCE over the object domain implicitly results
in making an assumption on the MCE distribution:
Gaussian for the square function and, more gener-
ally, parametric distributions for functions used in
robust estimation. However, these assumptions are
not necessarily appropriate. Instead, we propose to
define the energy as a function of (an estimation of)
the MCE distribution. This function was chosen to
be a continuous version of the Ahmad-Lin entropy
approximation, the purpose being to be more robust
to outliers inherently present in the MCE. Since a
motion-only constraint can fail with homogeneous
objects, the motion-based energy is enriched with
spatial information using a joint entropy formulation.
The resulting energy is minimized iteratively using
active contours. This approach provides a general
framework which consists in defining a statistical
energy as a function of a multivariate distribution,
independently of the features associated with the ob-
ject of interest. The link between the energy and the
features observed or computed on the video sequence
is then made through a nonparametric, kernel-based
distribution estimation. It allows for example to
keep the same energy definition while using different
features or different assumptions on the features.
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1 Introduction

Video segmentation aims at partitioning some video
frames into objects and background. (For simplicity,
it will be supposed that there is a single object.) This
task can be performed without motion computation. If
reference values of some descriptors are available (e.g.,
mean color, color variance, color distribution. . . of the
object of interest), an object can be segmented by min-
imizing a distance between the actual values of the de-
scriptors computed on a candidate object domain and
the reference values [21]. However, the lack of sensitiv-
ity of some descriptors near the object boundary (e.g.,
the color distribution might not vary significantly if the
candidate domain is slightly deformed) and the degree
of freedom of the object motion (a priori infinite) may
increase the number of potential solutions. Therefore,
the segmentation framework involving motion compu-
tation will be considered.

Let us first consider the motion estimation task.
Dense flow field estimation (i.e., one motion vector
per pixel) is an underdetermined problem. Moreover,
when using the first order approximation of the bright-
ness/color constancy constraint, only the motion com-
ponent in the direction of the image gradient can be
estimated. This limitation is known as the aperture
problem. Motion estimation is therefore an ill-posed
problem. It needs to be regularized, i.e., constrained.
On the one hand, the so-called global methods esti-
mate a dense flow field while imposing the solution
to be smooth [2, 8, 41]. On the other hand, local
methods constrain the motion to follow a parametric
model (e.g., translation, affine motion, homography)
with constant parameters, either in the whole image or
within blocks or regions [30, 33, 43]. Both approaches
have also been combined [10]. Given the link between
motion estimation and object segmentation in a video,
it can be noted that global methods require anisotropic
smoothing to preserve object boundaries [41] whereas
local methods are characterized by a chicken-and-egg
dilemma: (i) estimating motion knowing the object
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boundary while (ii) the boundary is defined as an op-
timal partition knowing the motion of the object and
its neighborhood. This suggests to perform motion es-
timation and segmentation jointly [17], which will be
the approach followed here.

Focusing on motion estimation again, imposing the
brightness/color constancy constraint is equivalent, in
variational terms, to minimizing a function of the mo-
tion compensation error (MCE), or of its first order
approximation, as already mentioned. There is a cor-
respondence between the choice of one such function
and an assumption on the distribution of the MCE,
e.g., the square function and the assumption of a Gaus-
sian distribution or the absolute value [43] and the as-
sumption of a Laplacian distribution. This point of
view will be referred to as parametric since the un-
derlying distribution is characterized by a small set of
parameters. In contrast, it is proposed to get rid of the
parametric assumption on the data by trying to esti-
mate the actual distribution as proposed for various re-
lated problems [13, 4, 27, 31] or in the context of shape
prior [14, 28]. This approach will be referred to as non-
parametric. Distribution approximation methods have
been developed in statistics, most notably Parzen win-
dowing [35, 40, 39] and the kth-nearest neighbor (kNN)
framework [22, 23].

In this nonparametric framework, we propose to
use a unique statistical measure to both estimate the
motion and segment the object. (A review of sta-
tistical methods in image segmentation was done re-
cently [15].) Among the popular measures such as en-
tropy [32], mutual information [42], or the Kullback-
Leibler divergence [36], the entropy [7, 24] was chosen
for its interesting properties (it is a measure of disper-
sion and it is robust to outliers - see Section 3.1) and
because manipulating a single distribution (the distri-
bution of the MCE) was preferred over taking the ref-
erence/target distribution comparison approach.

Motion-based segmentation can fail in areas insuf-
ficiently textured. In particular, the MCE is equal to
zero in any homogeneous region. Therefore, adding
such a region to, or subtracting it from, a given
segmentation still produces potential solutions. This
can be solved with the help of shape regulariza-
tion [17], by adding spatial terms to the motion-based
energy [9, 34], or by processing color and motion
sequentially [19]. This last alternative is interesting
but asks the difficult question of ordering the features,
say, by importance (especially if involving even more
features). The first two ones often requires a non-
trivial adjustment of the weighting of the different
terms. It will be shown that, using joint distributions,
an objective choice of the weighting of the motion
term and the spatial term can be made (namely, equal
weighting or, equivalently, weight-free).

In brief, we propose to define a single spatio-
temporal energy1 to perform joint motion estimation
and segmentation. To account for noise and model mis-
match, the energy will be based on a statistical mea-
sure, namely entropy. In order to adapt to the data, no
assumption will be made on the MCE or color distri-
butions; they will be estimated using a nonparametric
method. Finally, it will be shown that, with the pro-
posed approach, the motion term need not be weighted
relative to the spatial term. In a way, this offers a so-
lution to the implementation of the operator AND be-
tween several properties (related here to motion “and”
color) jointly describing the object of interest.

Also note that, although some equations below have
some similarities with existing, likelihood-based or
Bayesian methods, the philosophy here is different
and somewhat more general. Bayesian methods are
directly tied to the definition of the probability of the
(observed) image or sequence given a segmentation.
Assuming independence between the pixels, an energy
is derived, which usually writes as a sum or integral
of log probabilities. In the proposed approach, each
region of the segmentation is regarded as a set of
samples or realizations. The energy is defined as a
function of a multivariate distribution in order to
best fit the needs of the specific application. The link
between the energy and the samples is then made
through a nonparametric, Parzen-like or variable-size
kernel-based distribution estimation. This allows for
example to keep the same energy definition while
using different object features or different assumptions
on the features. In particular, one could think of dis-
carding the assumption of independence between the
pixels and use a patch-based (or neighborhood-based)
approach [3] to change the spatial information from
color to texture.

The paper is organized as follows: Section 2 de-
tails the problem statement. In Section 3, the classi-
cal parametric assumption on the MCE distribution is
discarded and the proposed nonparametric framework
for video segmentation, involving the actual residual
and color distributions, is described. A single spatio-
temporal energy is proposed to perform motion estima-
tion and motion-based segmentation simultaneously. A
piecewise motion model is introduced to allow enough
flexibility for segmenting articulated objects. An active
contour procedure is proposed in Section 4 to minimize

1Note that, here, the usage of the terms “temporal” and
“spatio-temporal” should be understood as “motion-based” and
“based on motion and color”, respectively. “Spatio-temporal”
more typically refers to a process performed in the xyt-space
where x and y are video frame coordinates and t is the time co-
ordinate. As far as active contours are concerned, such a process
would manipulate a tube oriented along the time dimension as
opposed to a planar curve here.
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the energy. Finally, Section 5 presents some results on
synthetic and natural video sequences.

2 Problem Statement

The motion of an object domain Ω can be computed
by choosing a motion model and finding the motion
parameters that minimize a function of the MCE over
Ω. At a pixel level, making the assumption of bright-
ness/color constancy, the MCE is classically equal to
the following residual

en(v(x), x) = In(x) − In+1(x+ v(x)) (1)

where x is a pixel of Ω, In is the nth grayscale or color
frame of the sequence, and v(x) is the apparent motion
between In and In+1 at x (known as the optical flow).
Ideally, en(v(x), x) is equal to zero up to some noise.
In grayscale, this condition provides a single equation
for two unknowns (the components of v(x)) and, both
in grayscale and color, it is likely that several pixels y
have the same value In+1(y). As a consequence, the
motion estimation problem cannot be solved without
additional constraints. A possible way to constrain the
problem is to assume that the motion is coherent with a
chosen model inside Ω [43]. Then, the motion estimate
v can be computed as

v = arg min
w

∫

Ω

ϕ(en(w, x)) dx (2)

where ϕ can be, for example, the square function, the
absolute value, or a function typical of the robust esti-
mation framework [5, 12].

The motion-based segmentation of frame In can be
formulated as the largest domain Ω inside which the
motion is coherent with model (2), formally,







Ω̂ = argmin
Ω

∫

Ω

ϕ(en(v(Γ), x)) dx

v(Γ) = arg min
w

∫

Ω

ϕ(en(w, x)) dx
(3)

where Γ is the boundary ∂Ω of Ω. Note that writing
v(Γ) or v(Ω) is only a matter of notation since Ω is
completely determined by Γ and conversely. Let us
denote by Et the following domain energy2

Et(Γ) =

∫

Ω

ϕ(en(v(Γ), x)) dx . (4)

Choosing ϕ results in making an assumption on the
distribution of the residual en in Ω. For example, if
ϕ is equal to the square function, the motion estima-
tion is performed based on the assumption that the
distribution is Gaussian; if ϕ is equal to the absolute

2Subscript t stands for temporal.

value, the distribution is assumed to be Laplacian3.
However, these assumptions may not be appropriate.
In particular, the presence of outliers in the residual
(e.g., due to occlusions, mismatch between the cho-
sen motion model and the actual motion, variation of
luminance. . . ) may result in a complex, multimode
distribution. As a consequence, the motion estimator
in (3) may be biased, leading to a loss of accuracy of
the motion-based segmentation.

3 Proposed segmentation en-

ergy

Three steps will be taken to derive the proposed energy:
the definition of an ideal energy, its simplification, and
its “symmetrization” (Sections 3.1, 3.2 and 3.3, respec-
tively).

3.1 Nonparametric, entropy-based en-

ergy

To account for the true distribution of the residual en,
and in general any feature that will be used for seg-
menting, it is proposed to make the energy depend on
an estimation of the feature distributions rather than
on the features themselves as it was the case in (4)
concerning the residual. For the present segmentation
task, the residual en will be combined with the spatial
feature In (similar combinations of geometry and ra-
diometry have been proposed [20, 29]). The proposed
energy has the following form







E(Γ) = − 1

|Ω|

∫

Ω

log f(en(v(Γ), x), In(x)) dx

v(Γ) = argmin
w
EΓ(w)

(5)

where f is the joint distribution of the residual en(v(Γ))
and the image color In inside the object domain Ω, and

EΓ(w) = − 1

|Ω|

∫

Ω

log f(en(w, x), In(x)) dx . (6)

Energy (5) is the continuous version of the Ahmad-Lin
approximation of differential entropy [1]. In both (5)
and (6), f is the joint distribution of the residual and
the color. The residual being a function of the motion,
f is itself a function of v(Γ) in the former and w in the
latter.

Let us see why this choice of energy is interesting.
First, entropy is a measure of dispersion. If the segmen-
tation is optimal, the residual should be distributed
around zero with a minimal dispersion. Similarly, if
the object is assumed to be piecewise homogeneous, the

3Approach (3) is referred to as parametric since the underly-
ing distributions are defined by a small number of parameters.
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color distribution has a small dispersion. Moreover, en-
tropy coincides locally asymptotically with likelihood
at the optimum4. Thus, a minimum entropy criterion
should have near optimal performances in case of a
parametric distribution while being able to adapt to
nonparametric cases. In particular, entropy appears to
be less sensitive to outliers in practice.

Note that this approach defines a general framework
for multimodal segmentation: the joint entropy allows
to combine an arbitrary number of features/modalities.
In practice, though, the number of modalities that can
be combined together is limited by the number of sam-
ples available, i.e., the number of pixels of the image
or sequence frame. Indeed, if the samples fill the dis-
tribution space too sparsely, then the entropy (or any
other statistical measure) cannot be approximated ac-
curately. This problem, known as the curse of dimen-
sionality, can be solved to a certain extent by the use
of estimators based on the kth-nearest neighbor (kNN)
framework [6, 22, 23].

3.2 Simplification using marginal dis-

tributions

A fixed-size kernel-based procedure will be employed to
estimate the distributions (see Section 3.5). To avoid
that the entropy estimation be biased as an effect of the
curse of dimensionality, energy (5) will be “simplified”.
Thus, the residual and the color will be assumed to be
independent (See Appendix B). As a consequence, en-
ergy (5) can be rewritten as the following sum involving
the marginal distributions

E(Γ) = − 1

|Ω|

∫

Ω

log ft(en(v(Γ), x)) dx

− 1

|Ω|

∫

Ω

log fs(In(x)) dx (7)

= Et(Γ) + Es(Γ) (8)

where subscript t, respectively s, in ft and Et, respec-
tively fs and Es, stands for temporal, respectively spa-
tial. Note that the second integral in (7) was proposed
for image segmentation [27].

The temporal energy in (7) is of the form

Et(Γ) =

∫

Ω

ψ(ft(en(v(Γ), x))) dx . (9)

One can say that the parametric approach (4) is ex-
tended to nonparametric distributions by substituting
for a function of the residual ϕ(en) a function of its
distribution ψ(ft(en)).

By making the assumption of independence, one ob-
tains a sum of two energies, meeting the philosophy

4This is interesting since the maximum likelihood estimator
is optimal when the distribution of data is parametric.

usually adopted when one want to simultaneously min-
imize several energies. However, in general, weighting
parameters are introduced to tune the influence of the
respective energies whereas, here, there are no such
weights (it seems indeed natural not to favor any of
the two terms since they have the same unit).

As suggested at the end of Section 3.1, this energy
simplification might not be necessary if the distribu-
tions were estimated using the kNN framework [22, 23]
as opposed to using the Parzen windowing approach
(see Section 3.5). There is one concern about using
the kNN framework in the present case though: as will
be shown in Section 4.1, estimation of the distribu-
tions will be necessary for the proposed active contour
process while kNN-based estimations are known to be
noisy.

3.3 Region competition

In practice, due to approximations and roundoff errors,
energy (7) might have the empty set as a unique global
minimizer. A common solution is known as region com-
petition: the energy of the background is added to the
energy (7) of the object. It is not mandatory to use
the same energy for the object and the background.
However, it can be appropriate to do so. As a result,
the segmentation will represent a tradeoff between the
minimization of the object energy and the minimiza-
tion of the background energy. It can also be inter-
preted as the maximal separation between object and
background descriptors [44], here, the respective joint
distributions.

To account for the relative areas of the object and
the background, or, in other words, to account for the
probability of a pixel to belong to either of them, the
following weighted sum will be used

Erc(Γ) =
|Ω|
|D| E(Γ) +

|Ωc|
|D| E(Γc) (10)

where Ωc is the complement of Ω in D, the image do-
main, and Γc is its boundary ∂Ωc (the division by |D|
of |Ω| and |Ωc| can be omitted since it has no influence
on the minimization).

Energy (10) can be rewritten as

Erc(Γ) = p(C = 1) E(Γ) + p(C = 0) E(Γc) (11)

where C is the characteristic function of the object and
p(C = i) denotes the probability of the event C = i.
As defined in (5), energy E(Γ) is (an approximation of)
the joint entropy of the residual and the color condi-
tional on C = 1. Let us denote it by H(en, In|C = 1).
Equivalently, E(Γc) is equal to H(en, In|C = 0). Then,
Eq. (11) is equal to

Erc(Γ) =
∑

i∈{0,1}

p(C = i) H(en, In|C = i) (12)
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Figure 1: Solid line: contour Γ = ∂Ω; Dashed blocks:
Bi; Gray-filled block: an example of a domain Ωi with
boundary Γi.

= H(en, In|C) . (13)

Therefore, energy (10) is equal5 to the conditional joint
entropy of the residual and the color H(en, In|C).

3.4 Motion estimation

As mentioned in Section 2, the motion v is assumed to
follow a given model inside Ω. For example, it can be
defined by a set of parameters p [33]. Then, estimating
v in (9) is only a matter of estimating p. This task is
certainly made easier if the relation between v and p is
linear

v(Γ) = M p(Γ) (14)

where M is a 2 × l matrix if p is an l-vector. Even
if the motion model is complex, it will hardly account
for general motions such as motions of articulated ob-
jects, and if it does, solving for the model parameters
is likely to be an ill-posed inverse problem. Instead, we
propose to keep the model simple while solving for its
parameters locally. Frame In is divided into k blocks
Bi of identical size, where k depends on the frame size.
Let Ωi be the intersection of Ω with Bi and let Γi be
the boundary ∂Ωi of Ωi (see Fig. 1). The temporal
energy (9) is replaced with

Elocal
t (Γ) = − 1

|Ω|

∫

Ω

log ft(en(v1, . . . , vk, x)) dx (15)

where vi is a short notation for v(Γi), the motion of
Ωi. (The consequence of using this local approach is
discussed in Appendix D.) In this context, the motion
model can simply be translation. Therefore, Eq. (1) is
replaced with

en(vi, x) = In(x) − In+1(x + vi), x ∈ Ωi . (16)

This local approach will be used when the object of
interest is articulated (see Section 5.4). In the other

5In fact, would be equal if the assumption of independence
between en and In had not been made (see Section 3.2).

experiments, a global translation will be used. It cor-
responds to decomposing In into a single block B1 cov-
ering the whole frame. Note that in the following, for
clarity, the notations Et and en(v(Γ), x) will be pre-
ferred over Elocal

t and en(v1, . . . , vk, x), respectively.
Finally, to minimize the influence of occlusions, ex-

pression (16) is regarded as the forward residual and
compared with the backward version as follows

en(v, x) = minabs{In(x)−In+1(x+v), In(x)−In−1(x−v)}
(17)

where minabs is equal to

minabs{a, b} =

{
a if min{|a|, |b|} = |a|
b if min{|a|, |b|} = |b| . (18)

Function (18) is not differentiable. However, in the
present work, it does not need to be differentiated (see
Appendix C).

3.5 Distribution estimation

Parzen windowing is a classical distribution estimation
procedure [35]. The following continuous version was
used

f(r) =
1

|Ω|

∫

Ω

Kσ(r − g(x)) dx (19)

where |Ω| is the measure of Ω, Kσ is a Gaussian kernel
with zero mean and a variance equal to σ2, and g is a
random variable whose distribution is to be estimated
(i.e., en(v(Γ)) or In). It is usual to adapt σ2 to the
data [40, 39].

4 Segmentation using active

contours

4.1 Shape gradient of the energy

Minimization of energy (7) requires the computation
of its derivative with respect to Γ. There exists an
infinite number of ways of deforming Γ. The shape
derivative [18, 25, 26, 4] of (7) can be interpreted as
the derivative in a direction F , a vector field defined
on Γ. It can be shown that the shape derivative of (9)
is equal to (see Appendix C)

dEt(Γ, F ) =
1

|Ω|

∫

Γ

[

log ft(en(v(Γ), s)) − 1 + Et(Γ)

+
1

|Ω|

∫

Ω

Kσ(en(v(Γ), s) − en(v(Γ), x))

ft(en(v(Γ), x))
dx

]

N(s) · F (s) ds (20)

where N is the inward unit normal of Γ.
Note that the distribution ft appears explicitly

in (20), hence the necessity to estimate it even though
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the kNN framework allows to compute (9) without
computation of the underlying distribution [22, 23].

The expression of dEs is similar to (20) (see Ap-
pendix C). Finally, the shape derivative of (7) is equal
to

dE(Γ, F ) = dEt(Γ, F ) + dEs(Γ, F ) . (21)

The shape derivative (21) has the following form

dE(Γ, F ) =

∫

Γ

((αt(s) + αs(s)) N(s)) · F (s) ds(22)

= 〈α N,F 〉 (23)

where 〈, 〉 is the L2-inner product on Γ. Therefore, α N
is, by definition, the gradient of (7) at Γ associated with
this inner product.

4.2 Region competition

The shape derivative of (10) can be obtained by ap-
plying the traditional differentiation rule (u v)′ =
u′ v + u v′ and determining the shape derivative of
|Ω| (see Appendix C.3). The terms related to the ob-
ject and the terms related to the background can be
gathered together by noting that Γ and Γc are iden-
tical up to a change of orientation. In particular, the
inward unit normal N c of Γc is equal to −N .

4.3 Evolution equation

Based on the notion of gradient defined in Section 4.1,
energy (10) can be minimized using a steepest descent
procedure in the space of contours. The following con-
tour evolution process is known as the active contour
technique [11, 25]: an initial contour6 is iteratively de-
formed in the opposite direction of the gradient until a
convergence condition is met. The evolution equation
of the active contour is written as follows







Γ(τ = 0) = Γ0

∂Γ

∂τ
= (αc − α) N

(24)

where τ is the evolution parameter and αc has the same
expression as α but is evaluated on Ωc. The conver-
gence condition is αc − α = 0.

5 Experimental results

5.1 Test settings

As a reminder, the proposed segmentation energy has
the following form

Erc(Γ) = |Ω| E(Γ) + |Ωc| E(Γc) (25)

6For example, a user-defined contour.

where

E(Γ) = Et(Γ) + Es(Γ) . (26)

For comparison purposes, energy (25) will also be used
in two incomplete forms: when Es is removed from the
definition of E in (26), the energy will be called tem-
poral energy; when Et is removed from the definition
of E, the energy will be called spatial energy. In its
complete form, it was already defined as the spatio-
temporal energy.

The tests were performed on synthetic and natu-
ral sequences composed of 300 × 300-pixel frames and
cif7 frames, respectively, all defined in the Y UV -color
space. The V channel was discarded. Therefore, the
distributions of In and en are functions from R

2 to R

with support [0, 255]2 and [−255, 255]2, respectively. In
computing en, In+1(x+ v) was bilinearly interpolated.
Independence between spatial and temporal informa-
tion was assumed in Section 3.2 in order to write E
as the sum of Et and Es. The computation of these
two components was also simplified by assuming inde-
pendence between the channels Y and U . As a con-
sequence, Et and Es were themselves estimated as the
sum of a Y -based entropy and a U -based entropy.

The standard deviation σ of the Parzen kernel (see
Eq. (19)) was adapted to the data8 by using the em-
pirical standard deviation σ̂ of the residual or the color
in Ω

σ = 0.9 min(σ̂, p̂/1.34) |Ω|−1/5 (27)

where p̂ is the interquartile range of the data in Ω.
Therefore, σ should be regarded as a function of Ω.
This would add some terms to the shape derivative
dE since expression (52) would not be valid anymore.
However, these terms can be neglected because σ does
not change significantly between two iterations of the
active contour process.

As mentioned in Section 3.4, translation was chosen
as the motion model. The motion estimation in (9) was
performed by fast, suboptimal (as opposed to exhaus-
tive) search [45] within a search window of -12/+12
pixels in both directions and a quarter of a pixel pre-
cision. This procedure was used whether the motion
was estimated globally in Ω or locally in each Ωi.

In the following, “segmentation” refers to object de-
tection with an initialization far from the solution (typ-
ically a circle) while “tracking” refers to object detec-
tion with an initialization obtained by translating by
vglobal the object contour as detected in the previous
frame, where vglobal is the motion of Ω computed by
the suboptimal procedure described above.

7The frame size cif corresponds to 352 × 288 pixels.
8Adapting the kernel bandwidth to the data is known as a

plug-in procedure [40].



PREPRINT – Published in International Journal on Computer Vision 7

Temporal only Spatial only Spatio-temporal

Figure 2: Segmentation of synthetic sequences account-
ing for motion, color, or both. First row: homogeneous
object over homogeneous background; second row: ho-
mogeneous object over textured background; third row:
textured object over homogeneous background; last
row: textured object over textured background.

5.2 Comparing spatial, temporal, and

spatio-temporal energies

In this section, motion is estimated globally on Ω (see
Section 3.4).

5.2.1 Synthetic sequences

Several synthetic sequences were designed by combin-
ing different textures and homogeneous areas with a
given motion scenario: an object is translating hori-
zontally by -3 pixels over a background translating hor-
izontally by 1 pixel. Segmentation was performed with
the spatial energy, the temporal energy, and the spatio-
temporal energy (see Fig. 2). These results suggest
that the temporal energy is adapted whenever there
is texture. On the contrary, the spatial energy seems
more reliable in homogeneous areas. Finally, the com-
bination of temporal and spatial information appears
appropriate for segmenting sequences that contain ho-
mogeneous areas, textured areas, or both.

Initialization Temporal only

Spatial only Spatio-temporal

Figure 3: Segmentation of frame 237 of sequence
‘Flowers and garden’ accounting for motion, color,
or both.

5.2.2 Standard test sequences

The same comparison as in Section 5.2.1 was performed
with standard test sequences ‘Flowers and garden’

and ‘Soccer’.

In sequence ‘Flowers and garden’, the sky bor-
dering the tree is rather homogeneous (see Fig. 3).
Therefore, oversegmentation occurs with the temporal
energy, as noted in Appendix A. With the spatial en-
ergy, the segmentation process also fails because part of
the houses in the background have colors similar to the
tree. Finally, the spatio-temporal segmentation mostly
excludes the sky since it has a different color (spatial
information) and also excludes the houses since they
have a different motion (temporal information).

In sequence ‘Soccer’, the soccer player has a com-
plex, articulated motion (see Fig. 4). The temporal
energy only captures the rigid part of the body while
the spatial energy does not capture the head as it has
colors similar to the background. The spatio-temporal
energy provides a good tradeoff, although it sometimes
miss a foot of the player (see Fig. 9) for which both the
temporal information and the spatial information (the
color of the shoe is similar to background colors in the
Y U -color space) are unreliable. This satisfying result
can be explained by the fact that the spatial energy
helps the temporal term when the motion model mis-
matches the actual motion, and the temporal energy
helps the spatial term when the color is not discrimi-
nating.
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Initialization Temporal only

Spatial only Spatio-temporal

Figure 4: Segmentation of frame 162 of sequence
‘Soccer’ accounting for motion, color, or both.

5.3 Parametric vs. nonparametric

In this section, motion is estimated globally on Ω (see
Section 3.4).

One can wonder the practical benefits of relying on
nonparametric estimations of the residual distribution
and the color distribution as opposed to using classical
error terms corresponding to parametric assumptions.
For a fair comparison, the parametric assumptions for
the residual and the color distributions have to be cho-
sen appropriately. The residual is corrupted by outliers
mainly due to noise, illumination variations, motion
model mismatch, and occlusion. The Sum of Absolute
Differences (SAD) [43] was chosen since it is robust to
outliers. Note that it follows from a Laplacian assump-
tion (see Appendix E.1).

It is clear that there is no ideal parametric assump-
tion concerning the spatial term. Nevertheless, noting
that the spatial entropy in (7) can be interpreted as a
piecewise color homogeneity criterion, it seems reason-
able to make the assumption of a Gaussian distribu-
tion9 (see Appendix E.2).

The continuous form of criteria (80) and (82) can be
linearly combined to define a parametric, space-time
segmentation energy

Ep(Γ) =

∫

Ω

(In(x) − µI(Γ))2 dx

+α

∫

Ω

|In(x) − In+1(x+ v(Γ))| dx (28)

9To be coherent with the piecewiseness property of entropy,
a mixture of Gaussians would be more appropriate. However,
the purpose of this section is to compare the proposed approach
with classical error terms such as the Sum of Squared Differences
(SSD).

Spatial only Temporal only

Spatio-temporal with α = 1 Spatio-temporal with α ≃ 9

Figure 5: Segmentation of frame 237 of sequence
‘Flowers and garden’ assuming parametric distribu-
tions and using the same initialization as in Fig. 3.
(Lower left) The spatio-temporal energy relies equally
on space and time and (Lower right) the spatio-
temporal energy favors the temporal term.

where






µI(Γ) =
∫

Ω
In(x) dx/

∫

Ω
dx

v(Γ) = argminw

∫

Ω |In(x) − In+1(x+ w)| dx

(29)
and α is a positive constant. The nonparametric en-
ergy (7) does not weight the spatial term relatively to
the temporal term. Therefore, to be coherent, α should
be equal to one. However, the results on sequence
‘Flowers and garden’ suggest to choose α greater
than one (see Fig. 5). In each experiment, the opti-
mal value was determined empirically. Moreover, to
give an idea of the behavior of each term of the para-
metric energy (28), segmentation was also performed
using each term separately (same procedure as in Sec-
tion 5.2). The parametric approach was also tested
on the other, more challenging sequence ‘Football’.
Even when assigning a higher weight to the temporal
term, the segmentation is not satisfying (see Figs. 6, 7,
and 8).

In light of these results, three intuitive conclusions
can be made. (i) As expected, when the parametric
assumptions are roughly in accordance with the actual
distributions (sequence ‘Flowers and garden’), the
parametric approach can perform well. (ii) The Lapla-
cian assumption for the residual distribution is more
reliable than the Gaussian assumption for the color
distribution. Indeed, with sequence ‘Flowers and

garden’, the correct segmentation is obtained only
when the temporal term is weighted significantly more
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Temporal only Spatial only

Spatio-temporal

Figure 8: Segmentation of frame 72 of sequence ‘Football’ with the nonparametric approach using the same
initialization as in Fig. 6.
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Initialization Temporal only

Spatial only Spatio-temporal

Figure 6: Segmentation of frame 72 of sequence
‘Football’ assuming parametric distributions. The
spatio-temporal energy relies equally on space and time
(α = 1).

Figure 7: Segmentation of frame 72 of sequence
‘Football’ assuming parametric distributions. The
spatio-temporal energy favors the temporal term (α ≃
9).

than the spatial term. (iii) Again, as expected, when
the parametric assumptions clearly mismatch the ac-
tual distributions for the motion being complex or the
object and background being composed of several col-
ors (sequence ‘Football’), the parametric approach
fails, as opposed to the proposed nonparametric ap-
proach (see Figs. 3 and 4).

5.4 Tracking and piecewise motion es-

timation

In this section, an object of interest is tracked in two
standard test sequences using the proposed method.
In both sequences, the object of interest is composed
of several colors and has a complex, articulated mo-
tion. Therefore, they are appropriate for compar-
ing the global (on Ω) motion approach and the local
(on Ωi) motion approach (see Section 3.4). Sequence
‘Soccer’ (already seen in Section 5.2.2) is less com-
plex than sequence ‘Football’ (already seen in Sec-
tion 5.3) since the latter suffers from motion blur. For
the piecewise motion estimation, each frame was di-
vided into 16 × 16 blocks Bi of size 22 × 18 pixels.
As a reminder, domain Ωi is defined as Ω ∩ Bi. The
comparison between the two approaches is presented
in Figs. 9 and 10. Although the local approach clearly
improves the segmentation, it is not perfect in sequence
‘Football’. This can be explained by the combined
effects of motion blur and a domain Ωi too small (which
may happen for blocks Bi that intersect Γ), resulting
in a less reliable local motion estimate.

6 Conclusion

The addressed problem was the segmentation of a video
sequence. A spatio-temporal approach was chosen in
order to make use of both spatial and temporal coher-
ence. As opposed to the classical approach consisting
in dealing with time by involving the MCE directly,
the proposed method is based on the use of the distri-
bution of the MCE. This allowed to combine temporal
and spatial information coherently using joint distribu-
tions. The distributions were estimated nonparametri-
cally to fit the data. Entropy was chosen as the energy
to minimize, in particular because, in practice, it is ro-
bust to outliers. In order to make the motion model
complex enough to describe articulated objects, it was
proposed to keep it simple (namely, translation) while
estimating its parameters locally.

The proposed method was qualitatively compared
with a classical, parametric approach followed by some
existing methods. Thorough comparison with specific
methods is out of scope of this paper, though. Never-
theless, on sequence ‘Flowers and garden’, our re-
sults (see Fig. 3) are comparable to those of recent
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Figure 9: Tracking on sequence ‘Soccer’: comparison
between the global motion approach (first column) and
the local motion approach (second column) on frames
162, 172, 182, 192, and 202. The segmentation is more
accurate with the local motion approach (the main dif-
ferences are highlighted by circles).

Figure 10: Tracking on sequence ‘Football’: com-
parison between global motion approach (first column)
and local motion approach (second column) on frames
73, 77, 81, 85, and 89. The segmentation is more ac-
curate with the local motion approach (the main dif-
ferences are highlighted by circles).
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segmentation methods [16, 38], Fig. 4 in both articles.

A Disambiguation using spatial

information

Energy (9) is well suited for segmenting objects over a
textured background. However, it might cause segmen-
tation to include homogeneous or quasi-homogeneous
areas of the background. Indeed, this type of areas
has a low residual even if compensated with the mo-
tion estimated for the object, at least as long as the
motion-compensated object domain remains in the ho-
mogeneous area. Therefore, the energy might increase
only negligibly when expanding in such areas. Since
the notions of object and background are arbitrary and
can be swapped for one another, one can note that
an equivalent undersegmentation phenomenon can oc-
cur if the object contains homogeneous areas near its
boundary.

On the other hand, the entropy of the object color in-
creases if the object domain includes some background
since it adds new colors to the object10 and, there-
fore, increases the dispersion of its color distribution.
Consequently, the joint entropy of the residual and the
color also increases.

B “Independence” between

residual and color

Let us consider the following sequence model

In+1(x) = In(T (x)) + n(x) (30)

where T is a transformation and n is a Gaussian white
noise. The residual is equal to

en(v(x), x) = In(x) − In+1(v(x)) . (31)

If the transformation T exists and the motion is
perfectly estimated, then v is equal to T−1 and
en(v(x), x) = −n(T−1(x)), which is independent of In.
However, model (30) is an approximation: in general,
there is no such transformation T , frame In+1 being
a projection on a two-dimensional plane of a three-
dimensional scene. Often, some parts of objects in In
become invisible in In+1 while others become visible.
Therefore, frame In+1 cannot be deduced entirely from
In. In the unpredictable areas, the residual is by def-
inition independent of In. Overall, whether a trans-
formation T exists or not, if the motion v(Γ) is fairly
well estimated, then the assumption of independence
should be acceptable.

10If the background has the same color as the object near the
boundary, there is no objective information to find the object
boundary.

C Energy derivative

C.1 Temporal energy

The temporal energy is equal to

Et(Γ) = − 1

|Ω|

∫

Ω

log ft(en(v(Γ), x)) dx (32)

where






ft(r) =
1

|Ω|

∫

Ω

Kσ(en(v(Γ), x) − r) dx

en(v(Γ), x) = minabs(In(x) − In+1(x+ v(Γ)),
In(x) − In−1(x− v(Γ)))

v(Γ) = arg min
w

− 1

|Ω|

∫

Ω

log ft(en(w, x)) dx

.

(33)
Note that, for simplicity, residual en has been defined
for a translation motion model. However, the following
development is valid for any motion model.

The definition of the shape derivative of (32) is based
on a domain transformation T whose amplitude contin-
uously depends on a parameter τ such that T (Ω, τ = 0)
is equal to Ω and T (Ω, τ) is equal to Ω(τ) [18, 25, 26, 4].
Functions of Ω, or Γ, can then be rewritten as functions
of τ . In this context, the shape derivative of

E(Γ) =

∫

Ω

G(Γ, x) dx (34)

is equal to

dE(Γ, F ) =
dE

dτ
(τ = 0) (35)

=

∫

Ω

∂G

∂τ
(τ = 0, x) dx

−
∫

Γ

G(Γ, s) N(s) · F (s) ds (36)

where F is a vector field defined on Γ and linked to T ,
s is the arclength parameter of Γ, G(Γ, s) is a short no-
tation for G(Γ,Γ(s)), and N is the inward unit normal
of Γ.

Let us define Et as follows

Et(Γ, w) = − 1

|Ω|

∫

Ω

log ft(en(w, x)) dx . (37)

Hence,
Et(Γ) = Et(Γ, v(Γ)) (38)

and
v(Γ) = arg min

w
Et(Γ, w) . (39)

Then, the shape derivative of (32) is equal to

dEt(Γ, F ) =
dEt

dτ
(τ, v(τ))|τ=0 (40)

=
∂Et

∂τ
(τ, v(τ))|τ=0

+
∂Et

∂w
(τ, v(τ))|τ=0

dv

dτ
(τ = 0) . (41)
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Recalling that τ = 0 corresponds to Γ and according
to (39), the second term in (41) is equal to zero. There-
fore, expression (41) is equal to

dEt(Γ, F ) =
∂Et

∂τ
(τ, v(τ))|τ=0 . (42)

Note that the derivative of Et is taken with respect
to the first variable, v(τ) being considered as a con-
stant (including in all the following calculations). The
classical rule for differentiating a product leads to (see
Section C.3 for the shape derivative of 1

|Ω| )

dEt(Γ, F ) =
Et(Γ)

|Ω|

∫

Γ

N(s) · F (s) ds

− 1

|Ω|
d

dτ

∫

Ω(τ)

log ft(en(v(Γ), x)) dx

∣
∣
∣
∣
∣
τ=0

(43)

=
1

|Ω|

[∫

Γ

Et(Γ) N(s) · F (s) ds−A
]

(44)

where ft is also seen as a function of τ

ft(en(v(Γ), x)) =
1

|Ω(τ)|

∫

Ω(τ)

Kσ(en(v(Γ), y)

−en(v(Γ), x)) dy . (45)

Remember that v(Γ) is considered as a constant and
not as a function of τ as a result of the decoupling (38).
Therefore, for clarity, en(v(Γ), ·) will be denoted by
en(·).

Term A can be computed by applying the general
rule (36) successively

A =

∫

Ω

∂ log ft

∂τ
(τ = 0, x) dx

−
∫

Γ

log ft(en(s)) N(s) · F (s) ds (46)

=

∫

Ω

B dx−
∫

Γ

log ft(en(s)) N(s) · F (s) ds .(47)

Then,

B =
∂ft

∂τ (τ = 0, x)

ft(en(x))
(48)

=
1

ft(en(x))

[
ft(en(x))

|Ω|

∫

Γ

N(s) · F (s) ds

+
1

|Ω|
d

dτ

∫

Ω(τ)

Kσ(en(y) − en(x)) dy

∣
∣
∣
∣
∣
τ=0

]

(49)

=
1

|Ω|

[∫

Γ

N(s) · F (s) ds+
C

ft(en(x))

]

. (50)

Finally,

C =

∫

Ω

dKσ(en(y) − en(v(x))

dτ
(τ = 0) dy

−
∫

Γ

Kσ(en(s) − en(v(x)) N(s) · F (s) ds (51)

= −
∫

Γ

Kσ(en(s) − en(x)) N(s) · F (s) ds (52)

since Kσ(. . .) does not depend on τ . Gathering all
the intermediate results together, the shape derivative
of (32) is equal to

dEt(Γ, F ) =
1

|Ω|

∫

Γ

(

Et(Γ) − 1 + log ft(en(s))

+
1

|Ω|

∫

Ω

Kσ(en(s) − en(x))

ft(en(x))
dx

)

N(s) · F (s) ds . (53)

C.2 Spatial energy

The spatial energy is equal to

Es(Γ) = − 1

|Ω|

∫

Ω

log fs(In(x)) dx (54)

where

fs(r) =
1

|Ω|

∫

Ω

Kσ(In(x) − r) dx . (55)

Following the same approach as in Section C.1, it can
be shown that the shape derivative of (54) is equal to

dEs(Γ, F ) =
1

|Ω|

∫

Γ

(

Es(Γ) − 1 + log fs(In(s))

+
1

|Ω|

∫

Ω

Kσ(In(s) − In(x))

fs(In(x))
dx

)

N(s) · F (s) ds . (56)

C.3 Shape derivative of |Ω| and 1
|Ω|

The shape derivative of |Ω| is equal to

d(|Ω|)(Γ, F ) = d

(∫

Ω

dx

)

(Γ, F ) (57)

=
d

dτ

∫

Ω(τ)

dx

∣
∣
∣
∣
∣
τ=0

(58)

=

[∫

Ω

∂1

∂τ
(τ = 0, x) dx

−
∫

Γ

N(s) · F (s) ds

]

(59)

= −
∫

Γ

N(s) · F (s) ds . (60)

The shape derivative of 1
|Ω| is equal to

d(1/|Ω|)(Γ, F ) =
d

dτ

1

|Ω(τ)|

∣
∣
∣
∣
τ=0

(61)
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= − 1

|Ω|2
d

dτ

∫

Ω(τ)

dx

∣
∣
∣
∣
∣
τ=0

(62)

=
1

|Ω|2
∫

Γ

N(s) · F (s) ds . (63)

D Piecewise motion decomposi-

tion

The following development should give some intuitions
to study the validity of the piecewise motion decompo-
sition. As will be clear from the concluding remarks,
it does not provide a full and rigorous analysis.

The frame In is divided into blocks Bi of identical
size. Let Ωi be the intersection of Ω with Bi and let
Γi be the boundary ∂Ωi of Ωi (see Fig. 1). For clarity,
v(Γi) will be denoted by vi. Energy (32) is replaced
with

Elocal
t (Γ) = − 1

|Ω|

∫

Ω

log ft(en(v1, . . . , vk, x)) dx (64)

where






ft(r) =
1

|Ω|

∫

Ω

Kσ(en(v1, . . . , vk, x) − r) dx

en(v1, . . . , vk, x) = minabs(In(x) − In+1(x+ vi),
In(x) − In−1(x− vi))

if x ∈ Ωi

vi = argmin
w

− 1

|Ω|

∫

Ωi

log ft(en(v1, . . . , vi−1, w,

vi+1, . . . , vk, x)) dx

.

(65)
Note that the motions vj , j 6= i, in the energy mini-
mized to solve for vi are irrelevant constants since they
are not used in the computation of the residual en on
Ωi.

Let us define E i
t as follows

E i
t (Γ, w1, . . . , wk) = − 1

|Ω|
∫

Ωi

log ft(en(w1, . . . , wk, x)) dx .

(66)

According to the remark on the residual above, it can
be concluded that E i

t is independent of wj , j 6= i.
Energy (64) is equal to,

Elocal
t (Γ) =

∑

i

E i
t (Γ, v1, . . . , vk)) (67)

and

vi = arg min
w

E i
t (Γ, v1, . . . , vi−1, w, vi+1, . . . , vk) . (68)

Then, the shape derivative of (64) is equal to

dElocal
t (Γ, F ) =

∑

i

dE i
t

dτ
(τ, v1(τ), . . . , vk(τ))|τ=0 (69)

=
∑

i

∂E i
t

∂τ
(τ, v1(τ), . . . , vk(τ))|τ=0

+
∑

i

∑

j

∂E i
t

∂wj
(τ, v1(τ), . . . , vk(τ))|τ=0

︸ ︷︷ ︸

Ai
j

×dvj

dτ
(τ = 0) . (70)

Recalling that τ = 0 corresponds to Γ (and, therefore,
vi(τ = 0) = vi), Ai

j is equal to zero if j is equal to i
because of (68). Moreover, according to the indepen-
dence of E i

t with respect to wj , j 6= i, Ai
j is also equal

to zero if j is not equal to i. Therefore, expression (70)
is equal to

dElocal
t (Γ, F ) =

∑

i

∂E i
t

∂τ
(τ, v1(τ), . . . , vk(τ))|τ=0 .

(71)
By definition, the shape derivative is based on a domain
transformation T operating on Ω (see Appendix C.1).
Energy E i

t is an integral over Ωi. Its shape derivative
is naturally related with the restriction of T to Ωi.
However, ft is still an integral over Ω. Keeping that in
mind, the approach of Section C.1 can be followed to
determine the shape derivative of (64)

dElocal
t (Γ, F ) =

Elocal
t (Γ)

|Ω|

∫

Γ

N(s) · F (s) ds

− 1

|Ω| ×

∑

i

d

dτ

∫

Ωi(τ)

log ft(en(v(Γ), x)) dx

∣
∣
∣
∣
∣
τ=0

(72)

=
1

|Ω|

[∫

Γ

Elocal
t (Γ) N(s) · F (s) ds

−
∑

i

Ai

]

. (73)

For clarity, en(v1, . . . , vk, ·) will be denoted by en(·).
Term Ai is equal to

Ai =

∫

Ωi

∂ log ft

∂τ
(τ = 0, x) dx

−
∫

Γi

log ft(en(s)) Ni(s) · F (s) ds (74)

=

∫

Ωi

B dx−
∫

Γi

log ft(en(s)) Ni(s) · F (s) ds

(75)
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where Ni is the inward unit normal of Γi. Term
B is identical to the corresponding term (50) in Ap-
pendix C.1, i.e.,

B =
1

|Ω|

∫

Γ

(

1 − Kσ(en(s) − en(x))

ft(en(x))

)

N(s) ·F (s) ds .

(76)
Gathering all the intermediate results together, the
shape derivative of (64) is equal to

dEt(Γ, F ) =
1

|Ω|









∫

Γ

(

Elocal
t (Γ) − 1

+
1

|Ω|

∫

Ω

Kσ(en(s) − en(x))

ft(en(x))
dx

)

×N(s) · F (s) ds

−
∑

i

∫

Γi

log ft(en(s)) Ni(s) · F (s) ds

︸ ︷︷ ︸

S









.

(77)

Let Bi and Bj be 2 adjacent blocks with boundaries
Γi and Γj , respectively. On their common boundary,
log ft(en) and F are uniquely defined. However, Ni

and Nj have opposite directions, each pointing inward
relatively to its (oriented) boundary. Therefore, the
sum of the integrals over Γi and Γj in S on this com-
mon boundary is equal to zero. When considering all
the blocks, the only portions of integral that remain
of S are the ones which are not in common with any
other block boundary. These portions sum to Γ. The
normalsNi on these portions are equal toN . In conclu-
sion, shape derivative (77) is identical to (53): it seems
that this hierarchical motion decomposition approach
can be safely used with minimal changes to the im-
plementation (only the residual computation changes).
However, one condition has not been mentioned so far.
The shape derivative framework is valid for smooth
contours. In particular, the presence of the contour
normal in the expressions implicitly requires that the
contour be at least continuously differentiable. Unfor-
tunately, the contours Ωi of the proposed partition of
Ω are not smooth, independently of the smoothness of
Ω. Actually, any paving of Ω using patches contains
multiple junctions. As a consequence, the previous de-
velopment is theoretically invalid. Nevertheless, the
set of singularities is finite and it might be possible
to rigorously confirm the result by studying the limit
of a related, smooth setting similar to some works on
classification [37]. Moreover, in practice, the (wrongly)
obtained result can be easily implemented since it does
not involve these singularities.

E Parametric assumptions

E.1 Residual

If the residual en is a spatially uncorrelated random
field with a Laplacian distribution with mean µe and
scale σ, the probability of having a given field, condi-
tional to a motion v, is equal to

p(en|v) =
1

(2σ)|Ω|

∏

x∈Ω

exp−|en(v, x) − µe|
σ

. (78)

The maximum log-likelihood estimation of v is given
by

arg min
v

∑

x∈Ω

|en(v, x) − µe| . (79)

In practice, choosing µe different from zero can only be
motivated by a global change of illumination occurring
between frames In and In+1. Making the assumption
that the global illumination remains constant, µe will
be set to zero. Therefore, estimation (79) is equivalent
to

arg min
v

∑

x∈Ω

|In(x) − In+1(x+ v)| (80)

which is the SAD criterion.

E.2 Color

If the color In is a spatially uncorrelated random field
with a Gaussian distribution with mean µI and stan-
dard deviation σ, the probability of having a given
field, conditional to a motion v, is equal to

p(In|v) =
1√

2π σ

∏

x∈Ω

exp− (In(x) − µI)
2

2σ2
. (81)

The maximum likelihood estimation of v is then equiv-
alent to minimizing the Sum of Squared Differences
(SSD)

arg min
v

∑

x∈Ω

(In(x) − µI)
2 . (82)

In practice, µI can be approximated by the mean of In
in Ω [26].
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