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Abstract. This paper investigates the analytical approximate solutions of sin-
gular fourth order four-point boundary value problems using reproducing kernel
method (RKM). The solution obtained by using the method takes the form of a
convergent series with easily computable components. However, the RKM can
not be used directly to solve singular fourth order four-point boundary value
problems (BVPs), since there is no method of obtaining reproducing kernel
(RK) satisfying four-point boundary conditions. The aim of this paper is to fill
this gap. A method for obtaining RK satisfying four-point boundary conditions
is proposed so that RKM can be used to solve singular fourth order four-point
BVPs. Results of numerical examples demonstrate that the method is quite
accurate and efficient for singular fourth order four-point BVPs.
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1. Introduction

In this paper, we consider the following fourth order four-point boundary value
problems:

(1.1)





Lu(x) ≡ a0(x)u′′′′(x) + a1(x)u′′′(x) + a2(x)u′′(x)
+a3(x)u′(x) + a4(x)u(x) = f(x), 0 < x < 1,

u(0) = 0, u(α) = 0, u(β) = 0, u(1) = 0,

where α β ∈ (0, 1), ai(x), f(x) ∈ C[0, 1], i = 0, 1, 2, 3, 4 and maybe a0(0) = 0 or
a0(1) = 0. That is, the equation may be singular at x = 0, 1. We consider u(0) =
0, u(α) = 0, u(β) = 0, u(1) = 0 since the boundary conditions u(0) = γ0, u(α) =
γ1, u(β) = γ2, u(1) = γ3 can be reduced to u(0) = 0, u(α) = 0, u(β) = 0, u(1) = 0.
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Multi-point boundary value problems arise in a variety of applied mathematics
and physics. Two-point boundary value problems have been extensively studied in
the literature. Also, the existence and multiplicity of solutions of fourth order four-
point boundary value problems have been studied by many authors, see [1–3, 13,
15–18] and the references therein. However, research for methods for solving singular
fourth order four-point boundary value problems has proceeded very slowly. Geng
[7] proposed a method for a class of second order three-point BVPs by convert the
original problem into an equivalent integro-differential equation. In this paper, we
will apply reproducing kernel method (RKM) presented by Cui, Geng, et. al [4–6,
8–12, 14] to solve singular fourth order four-point BVP (1.1).

The rest of the paper is organized as follows. In the next section, the RK satisfying
four-point boundary conditions is constructed. The RKM is applied to (1.1) in
Section 3. The numerical examples are presented in Section 4. Section 5 ends this
paper with a brief conclusion.

2. Construction of RK satisfying four-point boundary conditions

By using the methods in [3–5, 7–12, 14], it is impossible to obtain reproducing kernel
(RK) satisfying four-point boundary conditions of (1.1). In this section, we will make
great efforts to fill this gap.

First, we construct a RK space W 5[0, 1] in which every function satisfies u(0) =
u(1) = 0.

W 5[0, 1] is defined as W 5[0, 1] = {u(x) | u(x), u′(x), u′′(x), u′′′(x), u′′′′(x) are
absolutely continuous real value functions, u(5)(x) ∈ L2[0, 1], u(0) = 0, u(1) = 0}.
The inner product and norm in W 5[0, 1] are given, respectively, by

(u(y), v(y))W 5 = u(0)v(0) + u(1)v(1) + u′(0)v′(0) + u′(1)v′(1) + u′′(0)v′′(0)

+
∫ 1

0

u(5)v(5)dy

and
‖ u ‖W 5=

√
(u, u)W 5 , u, v ∈ W 5[0, 1].

By [3, 5, 7–12], it is easy to obtain the following theorem.

Theorem 2.1. The space W 5[0, 1] is a RK Hilbert space. That is, there exists
k(x, y) ∈ W 5[0, 1], for any u(y) ∈ W 5[0, 1] and each fixed x ∈ [0, 1], y ∈ [0, 1], such
that (u(y), k(x, y))W 5 = u(x). The RK k(x, y) can be denoted by

(2.1) k(x, y) =
{

h(x, y), y ≤ x,
h(y, x), y > x,

where h(x, y) = 1
362880 [y((3x4 − 4x3 + 1)y8 − 9(x− 1)2x(2x + 1)y7 + 36(x− 1)2x2y6

+ 3x(x8 − 6x7 + 12x6 − 42x4 + 635100x3 − 907225x2 + 30240x + 241920)y3

− x(4x8 − 27x7 + 72x6 − 84x5 + 2721675x3 − 3991720x2 + 181440x + 1088640)y2

+ 90720(x− 1)2x2y + 362880(x− 1)2x2x + 1))].

Next, we construct a RK space W 5
αβ [0, 1] in which every function satisfies u(0) =

u(α) = u(β) = u(1) = 0.
W 5

αβ [0, 1] is defined as W 5
αβ [0, 1] = {u(x) | u(x) ∈ W 5[0, 1], u(α) = 0, u(β) = 0}.
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Clearly, W 5
αβ [0, 1] is a closed subspace of W 5[0, 1].

The following theorem give the RK of W 5
αβ [0, 1].

Theorem 2.2. If k(α, α)k(β, β) − k2(α, β) 6= 0, then the RK kαβ of W 5
αβ [0, 1] is

given by

kαβ(x, y) = k(x, y) +
k(x, β)k(α, y)k(α, β) + k(x, α)k(β, y)k(α, β)

k(α, α)k(β, β)− k2(α, β)

− k(x, β)k(β, y)k(α, α) + k(x, α)k(α, y)k(β, β)
k(α, α)k(β, β)− k2(α, β)

.(2.2)

Proof. It is easy to see that kαβ(x, α) = kαβ(x, β) = 0, and therefore kαβ(x, y) ∈
W 5

αβ [0, 1].
For ∀ u(y) ∈ W 5

αβ [0, 1], obviously, u(α) = 0, u(β) = 0, it follows that

(u(y), kαβ(x, y))W 5 = (u(y), k(x, y))W 5 = u(x).

That is, kαβ(x, y) is of “reproducing property”. Thus, kαβ(x, y) is the RK of
W 5

αβ [0, 1] and the proof is complete.

3. Application of RKM to (1.1)

In (1.1), it is clear that L : W 5
αβ [0, 1] → W 1

2 [0, 1] is a bounded linear operator. Put
ϕi(x) = k(xi, x) and ψi(x) = L∗ϕi(x) where k(xi, x) is the RK of W 1

2 [0, 1], L∗ is
the adjoint operator of L. The orthonormal system {ψi(x)}∞i=1 of W 5

αβ [0, 1] can be
derived from Gram-Schmidt orthogonalization process of {ψi(x)}∞i=1,

(3.1) ψi(x) =
i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, . . .).

By RKM presented in [3–5, 7–12], we have the following theorem.

Theorem 3.1. For (1.1), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the com-
plete system of W 5

αβ [0, 1] and ψi(x) = Lykαβ(x, y)|y=xi .

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1] and the solution of (1.1) is unique, then
the solution of (1.1) is

(3.2) u(x) =
∞∑

i=1

i∑

k=1

βikf(xk)ψi(x).

Now, the approximate solution un can be obtained by taking finitely many terms
in the series representation of u(x) and

un(x) =
n∑

i=1

i∑

k=1

βikf(xk)ψi(x).
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4. Numerical examples

In this section, two numerical examples are studied to demonstrate the accuracy of
the present method. The examples are computed using Mathematica 5.0. Results
obtained by the method are compared with the analytical solution of each example
and are found to be in good agreement with each other.

Example 4.1. Consider the following singular fourth order four-point BVP




x4(1− x)u′′′′(x) + e
x
2

2 u′′′(x) + 2ex sin
√

xu′′(x) + 2u′(x) + xu(x) = f(x),
0 ≤ x ≤ 1,

u(0) = 0, u( 1
2 ) = sinh 1

2 , u( 1
4 ) = sinh 1

4 , u(1) = sinh 1,

where f(x) = (1− x) sinh xx4 + sinh xx + 1
2ex/2 cosh x + 2 cosh x + 2ex sin

√
x sinh x.

The exact solution is given by u(x) = sinh x. Using our method, taking xi =
i−1
n−1 , i = 1, 2, · · ·, n, n = 6, 11, 51, the absolute errors | un(x) − u(x) | between the
approximate solution and exact solution are given in Figure 1.
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Figure 1. Absolute errors for Example 4.1 (n = 6, 11, 51) (The left: n = 6;
the middle: n = 11; the right: n = 51).

Example 4.2. Consider the following singular fourth order four-point BVP



sinx(ex − 1)2u′′′′(x) + e
x
2 u′′′(x) + 2 sin

√
xu′′(x) + sinh xu′(x) + xu(x) = f(x),

0 ≤ x ≤ 1,
u(0) = 0, u( 1

2 ) = sinh 1
2 , , u(1

4 ) = sinh 1
4 , u(1) = sinh 1,

where f(x) = (ex − 1)2 sin2 x+x sin x−2 sin
√

x sin x− ex/2 cos x+cos x sinhx. The
exact solution is given by u(x) = sin x. Using our method, taking xi = i−1

n−1 , i =
1, 2, ···, n, n = 6, 11, 51, the absolute errors | un(x)−u(x) | between the approximate
solution and exact solution are given in Figure 2.
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Figure 2. Absolute errors for Example 4.2 (n = 6, 11, 51) (The left: n = 6;
the middle: n = 11; the right: n = 51).
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5. Conclusion

In this paper, we apply RKM to singular fourth order four-point boundary value
problems and obtain approximate solutions with a high degree of accuracy. There-
fore, RKM is an accurate and reliable analytical technique for singular fourth order
four-point boundary value problems.
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