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The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop

fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads

at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which

gets larger with increasing impact velocity, before surface tension drives its recession. This recession can

promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession

converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism.

At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which

subsequently fragment. For this latter mechanism the number N / We3 and the size distribution of

the daughter drops pðdÞ / d�4 as a function of the impact Weber number We are explained on the basis of

the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid

sheets might be relevant for other configurations.
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A drop impacting onto a deep liquid bath is well known
to transiently open a crater in the bath and possibly eject a
liquid sheet and a jet. Since Worthington’s drawings and
photographs more than a century ago [1,2], much attention
has been paid to the impact with identical or miscible
drop and bath liquids. Although the long term state itself,
the coalescence of the drop, was not an issue, the descrip-
tion of the transient structures [3–6] was motivated by
the possible ejection of drops in the atmosphere, bubble
entrainment [7,8], and the underwater noise of the rain [9].
By contrast, we study here the impact of a drop onto an
immiscible bath with particular focus on the nontrivial
final state: the dispersion of the impacting drop into a
collection of noncoalescing daughter drops. This configu-
ration has applications for many industrial processes,
among which: metallic melt quenching [10], accidental
release of metallic liquid into hot pools [11] or drop
encapsulation by immersion into a reacting liquid bath
[12]. We first describe the different fragmentation behav-
iors that are observed for an increasing impact velocity
and then focus on the high velocity regime for which
both the number of daughter drops and the universal
structure of their size distribution are derived.

Our experiment consists of a water drop (with density �
and surface tension � [13]), impacting perpendicularly onto
the horizontal surface of a bath of silicone oil. Four different
silicone oils with viscosities �B ¼ 0:65, 10, 50, and
200 mm2 s�1 are used [13]. Both liquids are immiscible.
The drop is formed in a quasistatic way at the tip of a vertical
syringe needle. It detaches by gravity at a reproducible
size d0 ¼ 2:92� 0:03 mm, which is measured by weighing
the drop and kept constant for all the experiments, and
then falls perpendicularly onto the bath surface. The drop
velocity V is adjusted from the height of the needle and

measured just before impact within 1% error with a fast
camera.
Figure 1 illustrates the impact subsurface dynamics for

increasing velocities, corresponding toWe ¼ 21, 205, and
305, respectively, where We ¼ �V2d0=� is the Weber
number which compares the kinetic to the surface energy
of the drop. At impact the drop sets the surrounding bath
liquid into motion and opens a crater. This crater eventu-
ally reaches a maximal size, where the flow in the bath
essentially vanishes, and then collapses, driven by buoy-
ancy forces. At the same time, the drop flattens and spreads
just below the crater surface in a way reminiscent of the
impact of a drop onto a solid [14,15] or even more onto a

FIG. 1 (color online). Subsurface view of a water drop
(d0 ¼ 2:92 mm) impact onto a deep silicone oil bath
(�B ¼ 10 mm2 s�1) showing the drop recession after spreading,
for increasing impact velocities: (a) V ¼ 0:73 m s�1,
(b) V ¼ 2:26 m s�1, (c) V ¼ 2:96 m s�1. For each sequence,
the images are taken at the same time t after the first contact.
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deformable surface [16]. Surface tension then drives the
recession of the flattened drop and depending on the impact
velocity, three different regimes, respectively illustrated
in Figs. 1(a)–1(c), are observed: (1) At low velocity the
drop does not fragment. (2) At moderate velocity the drop
shapes into a single ligament and fragments into only a
few droplets along the (vertical) axis of symmetry. (3) At
high velocity the edge of the flattened drop destabilizes
during the recession into many small azimuthal droplets.

Above the surface, at moderate We, a silicone oil jet is
ejected into the air, as in Fig. 2(b). At larger We, a silicone
oil sheet, initially covered by the flattened drop, is ejected
at the periphery of the crater. Above We�103, the sheet
destabilizes and eventually fragments. The drop recession
is, however, faster than this destabilization, and the drop
fragmentation is essentially not influenced by that of the
sheet.

Figure 2 shows the number of daughter drops N gener-
ated per impact for increasing We together with the
separations between the three fragmentation regimes. N
is obviously equal to one in regime 1. It globally increases,
although nonmonotonically, with respect to We up to
typically ten in regime 2 and then increases regularly and
strongly with We in regime 3 (a dependency we explain
below) to reach 300 daughter drops per impact at
We ¼ 1250, the limit in our experimental setup.

Regime 2 is due to the breakup of the ligament-shaped
drop by a Plateau-Rayleigh mechanism. The number of
drops produced depends in a discrete but reproducible way
on which particular oscillation mode of the drop is excited;
this is why N does not increase monotonically with

We in this regime (by contrast with regime 3 where the
nonmonotonic increase in N is due to small random
scatter). The ligament formation is a consequence of the
flow-focussing on the axis of symmetry during the crater
collapse. We will not concentrate here on this fragmenta-
tion regime, but only remark that it shows similarities with
the breakup of the central jet ejected for miscible drop
impact [2] or bursting of surface bubbles [17]. We indeed
observe in our experiments that, in regime 2, not all daugh-
ter drops stay in the bath: Some are actually ejected above
the surface into the atmosphere. A similar fragmentation
regime, i.e., with axial breakup after radial recession, is
also observed for drops impacting on solid hydrophobic
surfaces (see for instance images in [18]).
Regime 3, on the other hand, is due to the azimuthal

destabilization of the retracting flattened drop edge which
is illustrated in Fig. 3. Here also, the process shows com-
mon features with miscible drop impact where the liquid
sheet which is ejected around the crater develops a rim
which is likely to destabilize in the azimuthal direction,
the so-called crown, and to fragment into small droplets.
Reference [4] attributed this fragmentation to the Plateau-
Rayleigh breakup of the toroidal rim. A similar pattern is
also observed for impact on solid surfaces [14] where
the fragmentation of the rim bordering the flattened
drop is attributed to a Rayleigh-Taylor [19–21] mecha-
nism. This mechanism should however have less influence
here, since the density difference between the drop and
the bath is relatively much smaller than for a drop receding
into air.
Having reported the different fragmentation behaviors,

we now focus on regime 3, relevant for high velocity
impacts and large numbers of daughter drops. In order to
elucidate the fragmentation dynamics and its products, we

FIG. 2 (color online). Number of drops N produced per impact
versus Weber number We, for �B ¼ 10 mm2 s�1. The black
vertical lines separate the no-fragmentation regime (1), the axial
(2), and azimuthal (3) fragmentation regimes. The red line is
N �We3 according to equation (2). Inset: Diameter d of the
largest (filled circle) and second largest daughter drops (hollow
circle).

FIG. 3. Bottom view of the flattened drop recession after
impact emphasizing the azimuthal destabilization of the reced-
ing drop edge. The white line follows the drop contour.
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measured the spreading of the drop at impact. Figure 4
shows the maximal area �m covered by the drop onto the
crater surface (see Fig. 1) normalized by the impacting
drop cross section �0 ¼ �d20=4 versus We. It is measured

from the side view assuming cylindrical symmetry of the
flattened drop, which holds before fragmentation begins.
For each bath viscosity we observe that �m increases as

�m=�0 � 1 / We (1)

with a proportionality factor slowly decreasing with
increasing bath viscosity and possibly depending on the
balance between �, �B, and �DB. This means that for a
given bath viscosity the same fraction of the drop kinetic
energy ��V2d30=12 is converted into the surface energy

ð�þ �DB � �BÞ�m of the flattened drop. It equivalently
means that the energy dissipated during the spreading of
the drop is proportional to �m. This dissipation is certainly
localized in, or closely around, the drop since we measured
that the sum of the surface energy, the bath gravity poten-
tial energy, and the energy dissipated in the far flow rep-
resents less than 50% of the initial kinetic energy of the
drop for We * 100 (see Supplemental Material B [13]).
For small bath viscosity, the discrepancy between Eq. (1)
and the measurements at large We is a signature of the onset
of the azimuthal fragmentation regime (and also of the extra
dissipation associated with the chaotic motion observed for
the largest Reynolds numbers d0V=�B ’ 2� 104 reached
with �B ¼ 0:65 mm2 s�1). Indeed, the smaller the viscosity,
the smaller the critical Weber number for fragmentation as
the inset of Fig. 4 reveals.

The maximal spreading �m has important consequences
on the drop’s subsequent fragmentation. During the reces-
sion of the flattened drop the drop liquid is progressively
collected at the edge. The edge develops azimuthal
modulations which are eventually torn outward into radial
ligaments as a consequence of the edge inward motion.
The ligaments then pinch off by a Plateau-Rayleigh
mechanism to form the population of daughter drops as
illustrated in Fig. 1. Similar configurations leading to
identical destabilization patterns are observed for the
bursting of water films in a viscous environment [22], the
recession of a water film between colliding viscous drop-
lets [23] or the rising of a bubble through the interface
between two immiscible liquids [24]. References [22,23]
concluded that, although the viscous drag is involved in
the tearing of the ligaments, the instability of the edge
at the root of the drop fragmentation is of a Plateau-
Rayleigh type.
In our experiments at large We the flattened drop edge

permanently destabilizes and empties into the radial liga-
ments while receding (see Fig. 3). Direct observations
suggest that the ligament radius r is always comparable
with the current drop thickness h and we therefore assume
r� h. Since the ligaments’ breakup time is of the same
order as the typical evolution time of the recession (see
Supplemental Material C [13]), the ligaments pinch off
before they are substantially stretched. Then, according to
the Plateau-Rayleigh paradigm the most unstable wave-
length of the pinch-off is � ’ 9r [25], which together with
r� h and mass conservation yields for the daughter drops
diameter d� h. Assuming now that the flattened drop has
a uniform thickness h, at maximal spreading h ¼ hm �
d30=�m from mass conservation. Considering lastly that a

non-negligible portion of the impacting drop fragments,
the typical number of daughter drops is

N � d30=d
3 � d30=h

3 � �3
m=d

6
0 �We3; (2)

by making use of (1) in the limit �=�0 � 1. This scaling
law for N is shown in Fig. 2. It is in good agreement with
measurements for high We, i.e., for the regime 3 we are
discussing now.
The same assumption r� h can also explain the

structure of the daughter drops population, i.e., the disper-
sion in their diameters d. For the high We (* 102) we are
considering, h is much smaller than the typical size of
the crater and we can therefore consider it as a disk with
time-dependent area �. This cylindrical drop fragments
at its edge while receding. Our measurements of the size of
the largest and second largest daughter drops (inset of
Fig. 2) show that if the latter is decreasing with We as
one expects, the former is by contrast rather constant at
approximately 0:8d0. This means that although the impact-
ing drop may fragment at its edge into a few hundred drops,
a substantial fraction of it recedes to the axis of symmetry
to form one large daughter drop as one can also see in

FIG. 4 (color online). Maximal area �m covered by the
flattened drop versus We for increasing bath viscosities �B.
The black line has slope one. Inset: Threshold Weber number
for axial fragmentation (hollow symbols) and for azimuthal
fragmentation (filled symbols) regimes. Wec > 1250 for
�B ¼ 200 mm2 s�1.
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Fig. 1. Based on these observations, we propose a simple
model for the daughter drop sizes as schematized in Fig. 5.
We assume that h remains uniform over the drop during the
recession and that only a small fraction of the drop actually
fragments, i.e., h ’ d30=�. Writing that each daughter drop

has a volume �d3, mass conservation relates the variation
dN in the number of daughter drops during the recession
with that in the flattened drop area d� according to d3dN �
hd�. Using now d� h one obtains by variable substitution

dNðdÞ � d30
d4

dd; (3)

which simply means that many small droplets are formed
at the early stage of the recession when the drop is thin and
widely spread, while only a few ones are formed at the late
stage when the drop is thick and compact, a daughter drop
hierarchy consistent with our observations but also with
those of [24] for a similar fragmentation configuration.
Equation (3) is expected to be valid between the minimal
drop size

dmin � d30=�m � d0=We (4)

observed for the maximal spreading of the drop, and the
maximal size of order d0, when the flattened drop has
receded to the axis. Taking into account this range of
diameters, the distribution of drop sizes dN=dd [from
equation (3)] can be written in normalized form as

pðx ¼ d=hdiÞ ¼ 8

9

ðd�3
min � d�3

0 Þ2
ðd�2

min � d�2
0 Þ3 x

�4 ’ 8

9
x�4 (5)

where hdi is the mean diameter of the daughter drops. The
simplification comes from dmin=d0 � 1. With this step the
distribution becomes independent of the upper bound d0.
When normalized by hdi � dmin the probability density
function therefore adopts a universal shape that, remark-
ably, is independent of dmin, i.e., independent of We.

Figure 6 shows a comparison of Eq. (5) with measure-
ments of the daughter drop size distribution for four differ-
ent We in regime 3, ranging from 550 to 1170. The size
distributions are measured by taking high resolution pic-
tures through the clean transparent bottom of the container
after all the daughter drops (denser than the liquid bath)

deposited onto it (see Supplemental Material D [13]). Each
of them, being based on more than one thousand drops, is
statistically converged. They reveal several features. First,
the mean size hdi is proportional to We�1 (see inset) in
agreement with (2). Second, the peaks for small dimen-
sionless diameters d=hdi overlap for different Weber num-
bers showing that dmin � hdi in agreement with (2) and (4).
Third, although the size distribution (5) is not able to
capture the discrete influence of the largest drops for
moderate We, since it is by essence continuous, it is a
good model for high We when the discrete features can
be forgotten due to the large number of daughter drops.
Finally, let us remark that, although similarities in the

fragmentation patterns are observed, the dynamics pre-
sented here differs from that of the impact onto a solid.
Due to the liquid bath deformation and its wetting of water,
the drop essentially recedes into the silicone oil and not
into air, which might significantly influence the destabili-
zation mechanism at the drop’s edge as observed in
[22–24]. The impact onto a solid can certainly be consid-
ered as the limiting case of an infinite bath viscosity.
One therefore expects that the threshold Weber number
for azimuthal fragmentation will reach a constant value for
large viscosities that corresponds to the threshold for the
impact onto a solid. As we could check, this latter thresh-
old, however, depends strongly on the contact angle � of
the drop on the solid (varying between approximately 100,
for a water drop in the Leidenfrost state with � ¼ 180�,
and more than 1250, for a water drop impacting onto a
glass plate with � ’ 30�). The transition to the solid limit,
and the influence of the contact angle on the fragmentation
are therefore important unsolved questions that would both
deserve an independent study.

FIG. 5. Mechanism explaining the broad distribution of
daughter drop sizes. Time increases from top to bottom.

FIG. 6 (color online). Normalized distribution functions of
the daughter drop diameters d for We ¼ 550 (blue circles),
800 (green triangles), 970 (orange squares), and 1170
(red inverted triangles) with �B ¼ 10 mm2 s�1. The black line
is pðxÞ ¼ ð8=9Þx�4 from equation (5). Inset: Mean drop diameter
hdi. The black line is hdi / We�1 according to (2).
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