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Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized.
We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from
postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were
included.They were divided into study (500mg/kg L-alanyl-L-glutamine, 𝑛 = 20) and control (normal saline, 𝑛 = 20) groups. Each
of the rats received resuscitation.The outcomes were compared between the two groups. In addition, cardiomyocytes derived from
human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control).
Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in
the study group (𝑝 < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis
(caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50mM L-glutamine than those without L-
glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5).
More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells’ beating function at a low pH level.

1. Introduction

The survival rate for out-of-hospital cardiac arrest (OHCA)
is very low [1–4]. Most sustained return of spontaneous
circulation (ROSC) OHCA patients still die from post-
cardiac arrest injuries [5–8].These post-cardiac arrest injuries
are critical and systemic reactions, including inflammatory
overreactions, failed immune regulation, free-radical attack,
and acidosis [2, 9, 10]. Among these injuries, acidosis might

start before the event that triggers cardiac arrest (such as a
respiratory problem causing respiratory acidosis or infection
causing metabolic acidosis), and the severity of the acidosis
could becomemore severe once the circulation collapses (tis-
sue ischemia/reperfusion injury, hypoxia, and free radicals all
contribute to acidosis) [6, 9, 11, 12].

The cells of vital organs have been demonstrated to be
at risk of apoptosis at low pH levels [13–15]. Furthermore,
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certain previous studies have reported that early, effective
treatment for acidosis might decrease vital organ damage
and further increase the survival rate [16, 17]. Therefore,
sodium bicarbonate was initially recommended to treat post-
cardiac arrest acidosis to restore the acid-base balance, and
over the past 30 years, it was even suggested in standard
resuscitation guidelines [18, 19]. Unfortunately, recent studies
notedmajor side effects for sodiumbicarbonate used for post-
cardiac arrest acidosis (including inactivation of simultane-
ously administered catecholamines, reduction of systemic
vascular resistance, hyperosmolality, extracellular alkalosis
despite intracellular PCO

2
excess𝑤 and hypernatremia), and

it is no longer recommended in new resuscitation guidelines
[18, 20, 21]. Therefore, effective and safe medication for
treating post-cardiac arrest acidosis is still lacking.

Glutamine, traditionally considered to be a nonessential
amino acid, is now considered as conditionally essential
following critical illness and sepsis [22–24]. Recently, glu-
tamine was demonstrated to increase ammoniagenesis and
gluconeogenesis in the kidney. Excretion of the resulting
ammonium ions increased the excretion of acid, whereas
the combined pathways also contributed to the production
of HCO

3
(−) ions [25–29]. Therefore, we suspected that

glutamine might be a potential medication for treating post-
cardiac arrest acidosis. In the present study, we aimed to
analyze whether early administration of glutamine could
improve survival and protect cardiomyocytes from post-
cardiac arrest acidosis using animal and cells models.

2. Materials and Methods

2.1. Ethics Statement. A total of 43 10-week-old male Wistar
rats (301–325 g in weight) obtained from BioLASCO Taiwan
Co. Ltd. (Taipei, Taiwan) were used to analyze the in vivo
treatment effect of glutamine in this study. Before the start of
the study, all animals were fasted for 12 hours but given free
access to water.The protocol was approved by the Committee
on the Ethics of Animal Experiments of Changhua Christian
Hospital (PermitNumber: CCH-AE-104-005) and adhered to
the recommendations of the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.

2.2. Setup of Animal Cardiac Arrest Model: Airways, Intra-
venous Line, and Measurements of Vital Signs. All rats were
anesthetized with isoflurane via inhalation. After short-
term inhalation, endotracheal tube (16-gauge polyethylene
catheter mounted on a blunt-tipped needle) intubation was
performed using the BioLITE Intubation Illumination Sys-
tem�. The rats were ventilated with controlled intermittent
positive pressure ventilation (IPPV) (Hallowell EMC Model
AWS�) with a tidal volume of 7mL/kg, a respiratory rate
of 80/min, and a fractional inspired oxygen reading of
1.0. A 24-gauge polyethylene catheter (Becton-Dickinson)
was advanced into the tail vein for drug administration.
Moreover, the cardiac rhythms were measured via Leads
I and II using subcutaneous needles (Bio Amp cable and
leads, LabTutor� PowerLab, ADInstruments). Blood pressure
was measured in the tails of the rats (BP-2000 SERIES
II�, noninvasive blood pressure analysis system). The rectal

temperature was maintained at 37.0 ± 0.5∘C during the
experimental period.

2.3. Six Minutes of Global Ischemia to Induce Post-Cardiac
Arrest Acidosis (pH < 7.2). Cardiac arrest was induced in all
43 rats by stopping the IPPV and clamping the endotracheal
tube to induce asphyxia. Cardiac arrest was confirmed based
on an abrupt decrease in systolic arterial pressure to less
than 30mmHg or cardiac rhythms that revealed asystole,
ventricular tachycardia/ventricular fibrillation (VT/VF), or
pulseless electrical activity (PEA). Immediately after 6 min-
utes of global ischemia, resuscitation started (blood was also
withdrawn for analyzing the pH level). To prevent delay
of resuscitation by waiting for pH data, each rat imme-
diately underwent the resuscitation procedures, including
(1) mechanical ventilation (100% O

2
, respiratory rate of 60

breaths/min), (2) chest cardiac massage (200 times/min, as
performed by a mechanical device), and (3) intravenous
epinephrine (0.02mg/kg). However, if a rat did not reach
post-cardiac arrest acidosis (pH < 7.2), it was not included
in this study (𝑛 = 3). Once the rats had their spontaneous
circulation restored, the cardiac massage and epinephrine
administration were no longer provided. Ultimately, a total
of 40 rats that were confirmed to have post-cardiac arrest
acidosis and that received resuscitation were included in this
study.

2.4. Treatment of Rats with Post-Cardiac Arrest Acidosis.
All 40 rats were randomly divided into two groups (each
𝑛 = 20), receiving a single administration of 500mg/kg
L-alanyl-L-glutamine (Dipeptiven�, study group) or normal
saline (control group) intravenously before resuscitation was
started. All rats were treated with the same volume (1mL) via
intravenous injection.

2.5. Assessment of Secondary Outcomes: Sustained ROSC.
In this study, sustained ROSC was defined by spontaneous
cardiac rhythm in conjunction with a rise in mean arterial
pressure to greater than 50mmHg for at least 20minutes [30].
After 30 minutes of unsuccessful cardiopulmonary resuscita-
tion (CPR), resuscitation was stopped, and the animals were
declared dead. The rates of sustained ROSC in the study and
control groups were recorded.

2.6. Assessment of Primary Outcomes: Duration of Survival.
For each rat that achieved successful resuscitation, hemo-
dynamic measurements (blood pressure, cardiac rhythms)
and ventilation were performed for 72 hours maximum. The
duration of survival for each rat in the study and control
groups was recorded (the maximal observation time was also
72 hours).

2.7.Normal Human Cardiomyocyte Preparation (iPSC-Derived
Cardiomyocytes). In this study, induced pluripotent stem cells
(iPSCs) were obtained from the Bioresource Collection and
Research Center, Food Industry Research and Development
Institute (Taiwan), and cultured on Matrigel-coated plates
(mTESR medium). The detailed protocols for the iPSC
culture and harvesting of iPSC-derived cardiomyocytes
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adhered to the protocols in previously published studies
[31, 32].

2.8. Quantitative (Flow Cytometry) and Qualitative (Immun-
ostaining) Analyses. The iPSC-derived cardiomyocytes were
checked for transdifferentiation efficiency and cell pro-
tein/morphology by quantitative (flow cytometry) and qual-
itative (immunostaining) analyses, respectively [31]. The
cells were detached with Accutase solution (Nalgene) and
harvested for quantitative analysis by flow cytometry (BD
FACSCanto� II System). The fixation/permeabilization pro-
cedure was performed using the BD Cytofix/Cytoperm kit
(BD Pharmingen�). The percentage of cardiomyocytes was
calculated by staining with phycoerythrin- (PE-) conjugated
anti-human cTnT antibody (BD Pharmingen�). All the sam-
ples were stained with the corresponding isotype control (BD
Pharmingen�) to ensure specificity. Finally, the data were
analyzedwith flow cytometry software, and the transdifferen-
tiation efficiency was calculated. In addition, cardiomyocytes
were fixed in 4% paraformaldehyde and incubated with
antibodies for immunostaining [31, 33]. Antibodies against
heart-associated proteins, including anti-human cTnT and
NKX2.5 (HumanCardiomyocyte ImmunocytochemistryKit,
Life Technologies, Invitrogen), were also used for staining
to confirm the morphology of the cardiomyocytes. Finally,
the nuclei were stained with DAPI.The immunofluorescence
images were visualizedwith amicroscope system, and the cell
morphology was recorded at different magnifications.

2.9. Exposure to Different pH Levels and RT-PCR Analysis of
mRNA Expression of Cell Stress/Apoptosis Markers. The cul-
tured cardiomyocytes were dissociated and equally divided
into 5 groups to test the treatment effect of L-glutamine at
different pH levels: group A (normal culture medium), group
B (pH 6.5HBSS buffer), group C (pH 6.5HBSS buffer plus
50mM L-glutamine), groups D (pH 7.3HBSS buffer), and
group E (pH 7.3HBSS buffer plus 50mM L-glutamine). The
exposure time in each group was the same (2 hours). Finally,
the cardiomyocytes in each group were harvested to analyze
the mRNA expression of cell stress and apoptosis markers
(caspase-3, Bcl-xL, and p53) using RT-PCR (30 cycles).

2.10. Different pH Exposure and Beating Function of Car-
diomyocytes. The iPSC-derived cardiomyocytes that we used
in this study exhibited regular beating, and the beats per
minute (BPM) of the cells could be directly observed. To
analyze the treatment effect of L-glutamine on the beating
function, cardiomyocytes were equally divided into 5 groups
(groups A to E; the conditions of each group are mentioned
above). The exposure time in each group was also 2 hours.
During treatment, the BPM in each group were recorded
(0, 15, 30, 45, 60, and 120 minutes after treatment with L-
glutamine). All experiments were independently performed
three times.

2.11. Data Analysis. Achi-squared test, Fisher’s exact test, and
one-way ANOVA were used in this study. For the animal
study, the descriptive analyses of the independent variables
(clinical features) assessed in the study and control rats are

reported as percentages and the mean ± standard deviation
(SD). The relationships between L-alanyl-L-glutamine and
the duration of survival in rats with post-cardiac arrest
acidosis were analyzed using survival analyses (Kaplan-Meier
curves). Finally, the mean BPM of the cardiomyocytes in
each group (groups A to E) were compared using one-
way ANOVA at different time points after treatment with
L-glutamine. A 𝑝 value < 0.05 was considered statistically
significant. All of the analyses were performed using the
SPSS statistical package forWindows (Version 15.0, SPSS Inc.,
Chicago, IL, USA).

3. Results

3.1. Primary Outcomes of Rats with Post-Cardiac Arrest
Acidosis. Theprimary and secondary outcomes are shown in
Figure 1. The rates of sustained ROSC were 65% (𝑛 = 13) and
55% (𝑛 = 11) in the study and control groups, respectively. In
all, only 7 rats survived over 24 hours. The clinical features
of the rats with post-cardiac arrest acidosis are shown in
Table 1. Between the study and control groups (each 𝑛 =
20), the severities of post-cardiac arrest acidosis were nearly
equal. The duration of asphyxia (used for inducing cardiac
arrest) and the CPR duration were both not significantly
different between the two groups. Although the percentages
of achievement of sustained ROSC and survival over 24 hours
were both higher in the study group than in the control group,
the results were statistically significant.

3.2. Outcomes of Survival Analysis. The duration of survival
was significantly longer in the study group than in the control
group (𝑝 < 0.05) (Figure 2).

3.3. Efficiency of Cardiomyocyte Transdifferentiation from
iPSCs. The flow cytometry analysis showed that the effi-
ciency of cardiomyocyte transdifferentiation from iPSCs was
85.2% (Figure 3(a)). In this study, these cardiomyocytes pre-
sented with functional and regular beating. Immunostaining
of these cells revealed that they were positive for cTnT and
NKX2.5, which confirmed that the cells that we derived from
iPSCs and used in this study were cardiomyocytes (Figures
3(b), 3(c), and 3(d)).

3.4. L-Glutamine Might Protect Cardiomyocytes from Apopto-
sis Caused by Acidosis. In pH 6.5 or pH 7.3HBSS buffer, the
cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers
exhibited obviously lower expression in cells treated with
50mM L-glutamine than in those without treatment with
L-glutamine (based on 30 cycles of RT-PCR) (Figure 3(e)).
These findings suggest that L-glutamine might protect car-
diomyocytes from apoptosis caused by acidosis.

3.5. L-Glutamine Increases the Beating Function of Cardiomy-
ocytes, Especially under Lower pH Conditions. The cardiomy-
ocytes (derived from iPSCs and with beating function) were
treated with normal culture medium or pH 7.3 or 6.5HBSS
buffer (with or without 50mM L-glutamine) for 120 minutes.
During this period, the mean BPM values were 23.1 ± 0.8
(culture medium), 15.7 ± 0.9 (pH 7.3HBSS buffer), 34.4 ±
1.0 (pH 7.3HBSS buffer with 50mM glutamine), 12.8 ± 0.6
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Table 1: Clinical features of rats with post-cardiac arrest acidosis.

Total of 40 rats with post-cardiac arrest acidosis
Study group (𝑛 = 20) Control group (𝑛 = 20)

Number (%) Number (%) 𝑝 value
Initial blood pH level (mean ± SD) 7.056 ± 0.091 7.058 ± 0.088 0.958
Duration of asphyxia∗ (mean ± SD) (min) 13.1 ± 3.8 12.4 ± 3.9 0.537
Duration of CPR (mean ± SD) (min) 11.7 ± 4.6 11.5 ± 4.5 0.938
Sustained ROSC 13(65) 11(55) 0.374
Survival over 24 hours 4(20) 3(15) 0.500
∗Asphyxia performed to induce cardiac arrest. CPR: cardiopulmonary resuscitation. ROSC: return of spontaneous circulation.

Total of 43 male Wistar rats 
underwent asphyxia-induced
cardiac arrest

All received 
resuscitation Excluded 3 rats that 

did not exhibit 
post-cardiac arrest
acidosis (pH < 7.2)

treated with glutamine
Study group (n = 20), Control group (n = 20),

treated with normal saline

Sustained ROSC 
(n = 13)

Sustained ROSC 
(n = 11)

Died (n = 7) Died (n = 9)

Survived < 24 hours (n = 9)

Survived > 24 hours (n = 4)

Survived < 24 hours (n = 8)

Survived > 24 hours (n = 3)

Figure 1: Primary outcomes of rats with post-cardiac arrest acidosis.
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Figure 2: The duration of survival was significantly longer in the
study group than in the control group (𝑝 < 0.05).

(pH 6.3HBSS buffer), and 55.4 ± 0.9 (pH 6.3HBSS buffer
with 50mM glutamine) (Figure 4). Generally, the mean BPM
was significantly higher among cells treated with 50mM L-
glutamine in pH 7.3 or pH 6.5HBSS buffer than among those
that were not treated with L-glutamine. The cardiomyocytes
were nearly not beating from the 45th minute after pH 6.5
exposure, but additional exposure to 50mM L-glutamine
could maintain and even increase the mean BPM of the cells.

4. Discussion
The primary outcomes of this animal study of cardiac arrest
demonstrated that rats treated with early glutamine survived
longer than those without glutamine (a positive finding of the
survival analysis). Fourmajor explanationsmight account for
this finding.

Firstly, glutaminemight effectively control systemic post-
cardiac arrest injuries. Severe inflammatory reactions (com-
plement activation and IL-1, IL-6, IL-8, and IL-10 eleva-
tion), blood coagulation, platelet activation with forma-
tion of thromboxane A2, alteration of soluble E-selectin
(sE-selectin) and P-selectin (sP-selectin), and whole-body
ischemia/reperfusion injury, which occur in sepsis, also occur
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Figure 3: Assessments of both the efficiency of cardiomyocyte transdifferentiation from iPSCs and the outcomes of low pH exposure. (a) Flow
cytometry analysis showing that the differentiation efficiency of cTnT+ cells was 85.2%. (b–d) Cardiomyocytes with positive immunostaining
for cTnT, NKX2.5, and DAPI at different magnifications. Scale bars: 100 um. (e) RT-PCR results showing that cardiomyocytes treated with
50mM L-glutamine exhibited decreased expression of caspase-3, Bcl-xL, and p53 in both pH 6.5 and pH 7.3HBSS buffers. These findings
suggest that L-glutamine might protect cardiomyocytes from apoptosis caused by acidosis. Cell groups: A (normal culture medium), B
(pH 6.5HBSS buffer), C (pH 6.5HBSS buffer plus 50mM L-glutamine), D (pH 7.3HBSS buffer), and E (pH 7.3HBSS buffer plus 50mM
L-glutamine).
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Figure 4: L-glutamine increased the beating function of cardiomyocytes, especially under lower pH conditions. (a) The mean BPM of
cardiomyocytes was significantly higher among cells treated with 50mM L-glutamine in pH 7.3HBSS buffer than among those that were not
treated with L-glutamine. (b) Cardiomyocytes were nearly not beating from the 45th minute after pH 6.5 exposure, but additional exposure
to 50mM L-glutamine could maintain and increase the mean BPM of the cells. One-way ANOVA was used at different time points after
treatment with L-glutamine. BPM: beats per minute.

in post-cardiac arrest injuries [6, 9, 34, 35]. Since glutamine
is well known as a treatment for sepsis (i.e., due to tissue
protection, anti-inflammatory/immune reactions, preserva-
tion of tissue metabolic functions, and antioxidant activ-
ity/attenuation of inducible nitric oxide synthase expression)
[36–39], we believed that early glutamine administration
would also be beneficial to patients in the postresuscitation
period.

Secondly, we suspect that glutamine can indirectly
improve acidosis by increasing ammoniagenesis in the kid-
ney. Several previous studies focused on the acid-base balance
reported that the renal proximal tubule could obviously
increase the uptake and catabolism of glutamine during
acidosis [26–29]. Moreover, the increased catabolism of glu-
tamine triggers ammoniagenesis. Excretion of the resulting
ammonium ions facilitates the excretion of acid, whereas
the combined pathways accomplish the production of HCO

3

(−) ions, which enter the plasma to restore the acid-base
balance [29, 40]. One study further noted that expression of
the glutamine transporter Slc38a3 increased in the kidney
during metabolic acidosis [25]. Therefore, we suspect that
the acid-base balance could be best restored by glutamine
supplementation in the early postresuscitation period.

Thirdly, glutamine might directly decrease the apoptosis
of cardiomyocytes at a low pH level. In our in vitro study,
the expression of caspase-3 and Bcl-xL in cardiomyocytes
was obviously decreased following early treatment with
glutamine. Clinically, cardiovascular events (i.e., arrhythmia,
contraction force dysfunction) might be induced by acidosis
[41–43]. Furthermore, acidosis can cause cardiomyocytes to
undergo apoptosis via caspase-12/caspase-3 activation (by
endoplasmic reticulum (ER) stress, Ca2+ leakage) or the
mediating effect of BNIP3 (Bcl-2 family) [44–46]. Since
glutamine has been demonstrated to have a treatment effect
on ER stress [47, 48], we suspect that the post-cardiac

arrest acidosis-induced cardiomyocyte apoptosis could be
improved by early glutamine administration.

Finally, although several studies reported that glutamine
might recover the contractile function of the heart following
ischemia/reperfusion injury [49, 50], the treatment effect
on cardiomyocytes at a low pH level was still not clear. In
the present study, we found that the beating function of
cardiomyocytes was obviously increased following treatment
with glutamine, especially at a low pH level. We suspected
that the reasons for this finding might be cell stress (acid
stress, with more acid leading to more stress) and a potential
recovery effect on cardiomyocytes at a low pH level.

5. Limitations

There were certain limitations to this study. Firstly, the
causes of post-cardiac arrest acidosis are complex, and the
detailed mechanisms involved were not analyzed in this
study. Secondly, the only recorded outcomes for the rats that
achieved sustained ROSC were the rate of sustained ROSC
and the duration of survival; neurologic evaluations were not
performed. Thirdly, although glutamine was demonstrated
to reduce ER stress and injury to cardiomyocytes presenting
cell apoptosis, the detailed mechanisms involved were not
clarified. Finally, hypoxiawas not considered in the cellmodel
analysis.

6. Conclusion

In conclusion, early administration of glutamine increased
the duration of survival in the animal model of post-cardiac
arrest acidosis. More importantly, glutamine decreased car-
diomyocyte apoptosis and increased these cells’ beating
function at a low pH level.
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