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Abstract. XPath satisfiability is one of the most basic problems of XML query 
optimization. A satisfiability decision framework, named SAT-DTD, is 
proposed to determine, given a set of XPath queries P and a DTD τ, which 
subset of P are satisfiable by an XML tree conforming to DTD τ. In the 
framework, an indexed NFA is constructed from the set of XPath queries P, and 
then the NFA is driven by simple API for DTD (SAD, something like SAX) 
events, derived from DTD τ, to evaluate the predicates in P and to decide the 
satisfiability of P. Especially, DTD choice (i.e. '|' operator) is taken into 
consideration, and an algorithm, named SAT-DTD_C, which bases on SAT-
DTD, is put forward to determine the unsatisfiability caused by DTD choice. At 
last, the complexity of the algorithms is analyzed, and the correctness of the 
algorithms is tested by experiments. 
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1   Introduction 

XPath [1] is a query language used to navigate the node or node set in XML files. As 
a sub-language of XSLT, XQuery et al., XPath has been widely used in XML query, 
transformation and update.  

To improve the efficiency on XML access control and query transformation, the 
query containment problem received a great attention recently [2-6]. The general 
formulation of this problem is as follows: given two XPath queries p and q, check 
whether for any tree t, the results from evaluating p always contain those of q, and if 
so we call that p contains q, denoted as q ⊆ p. In the literature, much attention has 
been paid to analyzing the complexity [2,3], to simplifying the NP-complete 
containment problem or to converting it into the homomorphism problem among 
XPath trees in order to exploit EXPTime or PTime approximate algorithms [2,4-6]. 

XPath satisfiability refers to the state that given an XPath query p, if there exists an 
XML document d, so that the results from evaluating p are nonempty, then p is 
satisfiable, denoted as SAT(p). Furthermore, XPath satisfiability can be considered 
together with an XML specification definition (i.e. DTD or XML Schema) τ, that is, 
if there exists an XML document d such that d conforms to τ and the answer of p is 
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nonempty, then we say (p, τ ) is satisfiable, denoted as SAT(p, τ ). As a new hot spot 
of research, XPath satisfiability is subsumed by the complement of the containment 
problem for XPath, and is considered to be far from tight than the latter [8].  

Hidders first discussed XPath satisfiability in [10]. He introduced TDG (Tree 
Description Graph) to describe XPath expression and analyzed the complexity of 
deciding TDG's satisfiability, however, he did not consider any XML specification 
languages. Later Lakshmanan et al. began to study the XPath satisfiability in the 
presence of XML Schema [11], the Node Identity Constraint (NIC), which is common 
in XPath 2.0, was discussed and a method for deciding the satisfiability of TPQ (Tree 
Pattern Query) was presented, but they did not consider the choice element in XML 
Schema Definition (XSD). Benedikt and Fan et al. [8] analyzed a variety of factors 
contributing to the complexity of XPath satisfiability in the round, such as with or 
without DTD, with or without data values, with or without predicates etc. Other 
related researches include: Marx studied conditional axes in XPath 2.0 [12]; Geerts 
and Fan discussed sibling axes in the presence of XML Schema [13]. 

All the papers above mainly studied the complexity of XPath satisfiability under 
various factors, most of which did not provide with verifying algorithms on the 
satisfiability. Particularly, deciding the satisfiability of TPQ will make the complexity 
ascending from PTime to NP-complete, if DTD contains choice ( i.e. '|' operator). It is 
of great significance to propose and optimize suitable algorithms for identifying and 
checking the unsatisfiability for a main class of XPaths under this common situation. 

In this paper, we intend to design algorithms on deciding the satisfiability for a set 
of XPath queries P in the presence of DTD τ, in which a subset of XPath 1.0, denoted 
as XP{//,*,[ ]} (those include descendent axes, wildcards and predicates), and DTD with 
or without choice are considered. Our major contributions are as follows:  

− A framework based on automaton techniques, named SAT-DTD, is proposed to 
decide which subset of P are satisfiable in the presence of τ without choice. In the 
framework, an indexed NFA constructed from P is driven by a sequence of SAD 
(simple API for DTD) events derived from τ, to decide the satisfiability for P.  

− Based on the framework SAT-DTD, an algorithm, named SAT-DTD_C, is proposed 
to identify direct and indirect conflict of XML elements caused by DTD choice and 
to decide the unsatisfiability of XPath queries caused by the conflict.  

− The complexities of the above algorithms are analyzed, and the experimental 
results demonstrate the correctness and the efficiency of our techniques.  

The rest of this paper is organized as follows: Section 2 presents some basic 
concepts. Section 3 and 4 describe SAT-DTD and SAT-DTD_C respectively. Section 5 
analyzes the complexities of our techniques, shows the experimental results and 
indicates potential optimization points. Section 6 concludes this paper. 

2   Basic Concepts 

2.1   DTD 

A subset of DTD which only contains element declarations is considered here. 
Algorithms based on the subset could be easily extended on DTD that further contains 
attribute-list declarations. 
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Fig. 1. (a) A DTD document; (b) the corresponding content model trees of (a) in Xerces; (c) the 
corresponding DTD graph of (a) 

DTD document (e.g. Fig.1(a)) declares the content model for each XML element. 
The existence of operator '?', '*', '+', especially '|' in an element declaration makes the 
content model complex. There are many representations of content model in practice. 
Xerces [14] represents each element's content model as a binary tree, called content 
model tree (e.g. Fig.1(b)) in order to assist in validating XML document. [4] proposed 
a kind of DTD graph (e.g. Fig.1(c)) to simplify the DTD. We can see that DTD graph 
gives a monolithic view of DTD, while content model tree similar to Xerces gives a 
partial but detailed view. So we combine these two models to represent DTD. 

Definition 1. Given a DTD document τ, the corresponding DTD Graph is a directed 
graph G=(N, C), where each node n N∈ corresponds to one element in τ, each edge 

1 2,n n C< >∈  represents that the element corresponding to n2 is the sub-element of the 

element corresponding to n1 in τ. 

Definition 2. Given a DTD document τ, for any element e declared in τ, the 
corresponding Content Model Tree (CM Tree) of its declaration decle is a binary tree 

( )CM
eT =(N,C), where b fN N N= ∪  is the node set, and C is the edge set. Each branch 

node b bn N∈  corresponds to an operator in decle (such as '|'), each leaf node f fn N∈  

corresponds to a sub-element of e. For each edge 1 2,n n C< >∈ , where 1 bn N∈ , 

2n N∈ , if 2 bn N∈ , then n2 is the next level operator of n1 in decle; if 2 fn N∈ , then 

n2 is the operand of n1 in decle. 

2.2   XPath 

Fig.2 gives the grammar of XP{//,*,[ ]}. Generally this kind of XPath can be represented 
in tree pattern [2] or in automaton [7,9,15]. We choose the latter to describe a set of 
to-be-decided XPath queries P, and DTD τ will be converted into a sequence of 
events to drive the automaton. Now we briefly introduce some related concepts. 
 

 

Fig. 3. Corresponding automaton of /a//*[c]//eFig. 2. XPath fragment supported 
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Definition 3. Given an XPath query p, the main path expression of p is the 
remaining expression of p in which all predicates are removed. The nested path 
expression is the XPath expression appearing in one of the top level predicates of p.  

For example, if p is /a//*[c]//e, then /a//*//e is the main path expression of p, and c 
is the nested path expression of p.  

Definition 4. Given a set of XPath queries P, the corresponding Nondeterministic 
Finite Automaton (NFA) AP is incrementally constructed from the main and nested 
path expressions in P by path sharing technique in [9]. States in AP can be further 
labeled with the following kinds: a result state is the state matching at least one main 
path expression in P, and the path from the initial state to one of the result states is 
called the main path in AP; a leaf state is the state matching at least one nested path 
expression in P; a branch state is the state in a main path of AP which branches to 
one or more leaf states; an APS (After-Predicate State) is the state in a main path of 
AP whose parental state is a branch state; an FPS (First-location-step-of-Predicate 
State) is the state matching the first location step of some nested path expression in P. 

Fig.3 shows the corresponding automaton of XPath /a//*[c]//e. Circles in the figure 
represent states, where s4 is a result state and also an APS state, s3 is a leaf state and 
also an FPS state, s2 is a branch state. The child axes and descendant axes are 
represented by line with arrow and crewel with arrow, respectively. 

Suppose that set Preds contains all top level predicates appearing in a set of XPath 
queries P, and set P' ⊇ P contains all nested path expressions in Preds. We can 
construct the corresponding NFA and label the state kinds according to definition 4, 
the set of NFA states is denoted as States. In order to accelerate the running of NFA, 
the following indices are further added to some kinds of the NFA states. 

− Add index table LR(s) to result state s, where LR(s) ⊆ P. p P∀ ∈ , if state s 

matches the main path expression of p, then p ∈ LR(s); 

− Add index table LP(s) to leaf state s, where LP(s) ⊆ P' × Preds. p P∀ ∈ , for each 

predicate pred in p, if state s matches nested path expression q in pred, then <q, 
pred>∈LP(s); 

− Add index table LB(s) to branch state s, where LB(s) ⊆ Preds. p P∀ ∈ , for each 

location step ls of p and each predicate pred in ls, if s is the state matching ls, then 
pred∈LB(s). 

Particularly, in order to decide the XPath unsatisfiability caused by DTD choice 
(details are to be discussed in section 4), more indices are added to the NFA: 
− Add index table LS(s) to result state or leaf state s, where LS(s) ⊆ States. 

∀ p∈LR(s) or <q, pred>∈LP(s), if state t is the APS state of p or the FPS state of 
pred, then t∈LS(s);  

− Add parental state index parent and table LAPS(s) to APS state s, where 
parent∈States and LAPS(s) ⊆ P. p P∀ ∈ , if there exists at least one predicate of p 

on the location step corresponding to parent, then p∈LAPS(s);  
− Add parental state index parent and table LFPS(s) to FPS state s, where 

parent∈States and LFPS(s) ⊆ P' × Preds. p P∀ ∈ , if pred is the top level predicate 

of p, and s is the state matching the first location step of a nested path expression q 
in pred, then <q, pred>∈LFPS(s).  
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3   Deciding XPath Satisfiability in the Presence of DTD 

Similar to the approach of converting XML into SAX events [16], DTD is firstly 
converted into SAD (simple API for DTD) events, and then be input to an NFA 
constructed from the to-be-decided XPath set to decide the XPath satisfiability. 

3.1   SAD Events 

Currently four kinds of SAD events have been defined: startDTDDocument( ), 
startElementDecl(a), endElementDecl(a), endDTDDocument( ), where a is the 
element name. First the DTD document is read and parsed into a DTD graph, and then 
the graph is converted into a tree for the convenience of issuing SAD events. 

Definition 5. Given a DTD document τ and the corresponding DTD graph G, we can 
create the corresponding DTD tree T from G: 

1) if G is a tree, then T = G;  
2) if G is a DAG, then T is the expanded tree of G constructed as below: 

i) construct the root r' of T from the root r of G, and add r' to a queue Q. 
ii) if Q is empty, then the construction completes. Else, take a node v' out of the 

Q and get its corresponding node v in G, then construct the corresponding 
edges and child nodes of node v' in T according to 
the outgoing edges of node v, add all the constructed 
child nodes of node v' to Q. 

iii) repeat ii). 
3) if G contains a circle, then we can deduce from the set of 

actual XML documents that for each ring ringi (0 ≤ i ≤ k, 
k is the number of rings in G), its possible maximum 
expanded depth depth(ringi) satisfies that the actual 
maximum expanded depth of ringi in G is not larger than 
depth(ringi).  

After converting a DTD graph to a DTD tree, we  
can depth-first traverse the DTD tree to issue SAD events. 
For instance, Fig.4 shows the corresponding DTD tree 
expanded from the DTD graph in Fig.1(c) and its SAD 
events propagated. In Fig.1(c) the self loop of element d is expanded by 2 levels. SD, 
SE, EE, ED in Fig.4 is short for startDTDDocument, startElementDecl, 
endElementDecl, endDTDDocument respectively, the parameter a followed by SE 
and EE is the element name. This figure omits the content model information. 

3.2   SAD Events Handling: Deciding Satisfiability 

The execution process of NFA is defined by the handling rules on SAD events. This 
process completes the decision of XPath satisfiability. We first discuss the decision 
procedure without considering DTD choice. 

3.2.1   State Transition 
Function trans(stack, a) does transition from the top state set of stack on the input a 
by the following rule: all states reached from any state in the top state set along edge 

Fig. 4. Generating SAD events 
according to DTD tree 
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Algorithm.2 evaluatePred 
evaluatePred(pred, e) 
(1) switch (e.type) {// see Fig.2 
(2)  case E:  e.valid = true; 
(3)  case E Op Const:  e.valid = E.valid; 
(4)  case func(Q1, ..., Qn): //include not(Q) 
            e.valid=func(Q1.valid,..., Qn.valid); 
(5)  case Q1 or/and Q2: 
            e.valid = Q1.valid or/and Q2.valid; 

   } 
(6) if (e.parent != null) 
(7)   return evaluatePred(pred, e.parent); 
(8) else  setPredRes(p, e.valid); 
(9) return e.valid; 

labeled '/a', '/*', '//a' or '//*' are matched states. Meanwhile, to handle multiple match, 
trans records the match layer matchlayer for each runtime state s, see section 3.2.4. 
 

Algorithm.1 SAT-DTD 
s0: the initial state; stack: the NFA runtime stack, whose frame is a set of NFA states. 

startDTDDocument() //briefly, SD 
(1) push({s0}, stack); 

endElementDecl(a) //briefly, EE 
(1) sset = pop(stack);  
(2) for each s in sset{ 
(3)   for each pred in LB(s) 
(4)     resetPredRes(pred);  

} 

endDTDDocument() //briefly, ED 
(1)  stop or wait another DTD document; 

startElementDecl(a) //briefly, SE 
(1) sset = trans(stack, a); 
(2) push(sset, stack);  
(3) for each s in sset{ 
(4)   for each <q, pred> in LP(s)  
(5)     evaluatePred(pred, q);  
(6)   for each p in LR(s)  
(7)     setRes(p); 

} 

3.2.2   Deciding the Satisfiability of Main Path Expression 
Given an XPath p, consider its main path expression pm first. If after trans(stack, a), a 
result state s is reached, and p is in LR(s), then pm is satisfiable according to the 
former definitions. So we use setRes(p) to record that pm is matchable. (see line 
(6)~(7) in SE event handler of algorithm 1) 

Predicates may contain XPath expressions, i.e. nested path expressions. Suppose p's    
predicate pred contains an XPath q, namely, pred looks like […q…]. Denote q's main 
path expression as qm. If after a transition, result state s is reached and <qm, pred> is in 
LP(s), then qm is satisfiable. Next, we need to decide the satisfiability of predicates. 
(see line (4)~(5) in SE event handler of algorithm 1) 

3.2.3  Predicates Evaluation 
The satisfiability decision on predicates is mainly done through evaluatePred(pred,q). 

Definition 6. Given a DTD τ and an XPath p, 
pred is a predicate of p, e is the general 
expression in pred. Suppose that D is the set of 
XML documents conforming to τ. e is 
satisfiable if there exists d ∈ D so that the 
evaluation of e in d is true. 

evaluatePred(pred, q) uses a bottom-up  
approach to evaluate the validity of pred. In 
line (4) of algorithm 2, e’s satisfiability is 
decided by evaluating func(…), e.g. not(Q), its 
satisfiability is opposite to the parameter Q. 

In EE event handler, if current NFA 
backtracking state s is a branch state, then get 
each predicate pred from LB(s), and reset the 
evaluating status of pred (see line (2)~(4) in EE handler of algorithm 1) to prepare for 
next predicate evaluation. 
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3.2.4   Multiple Match 
Multiple match is difficult for XSIEQ [15], an XPath query engine on XML stream. It 
also occurs in deciding XPath satisfiability. 

Definition 7. Given a DTD τ and an XPath p, when deciding p’s satisfiability using τ, 
one location step ls of p may match more than one DTD elements in different depths. 
This occurrence is called multiple match, ls is called multiple match occurrence 
point. 

The necessary condition of multiple match occurrences is that the location steps 
contain descendent axes. A serious problem caused by multiple match is that either 
the evaluation among predicates on multiple match occurrence point or the evaluation 
between the predicate and the main path expression are out of sync. Let’s take the 
latter case for example. Suppose that multiple match occurrence point ls matches two 
DTD elements e1 and e2, and there is a predicate pred on ls, the XPath expression on 
the right side of ls is denoted as pr. If the evaluation result is that pred is satisfied on 
input e1, but pr is satisfied on input e2, then the evaluation between pred and pr are out 
of sync, and may falsely evaluate the satisfiability of the whole XPath expression p. 

Theorem 1. Given a DTD τ and an XPath p, assume that location step lsi of p 
contains n predicates and can match m elements, i.e. e1,…,em, in the same path in τ. p 
can be represented as: …//lsi[predi1][…][predin]/lsi+1/…. Then the XPath fragment 
//lsi[predi1][…][predin]/lsi+1 can be satisfied if the following condition is met: when lsi 
matches ej (1≤ j ≤ m), predi1, …, predin and XPath fragment /lsi+1 can also be satisfied. 

Proof (briefly). It can be inferred from the definition of XPath satisfiability. 
To handle multiple match occurrences, according to theorem 1, for any multiple 

match occurrence point ls of p, there should be at least one matched element to make 
all predicates on ls and the right side XPath fragment of ls satisfied simultaneously. 
For example, if we use DTD in Fig.1(a) to decide the satisfiability for XPath 
set:{/a//*[c]//e,/a//*[c]/e}, then the satisfied XPath is /a//*[c]//e, and the reason why 
/a//*[c]/e is not satisfied is that on multiple match occurrence point //*, predicate [c] 
and main path expression fragment /e cannot be satisfied simultaneously. 

4   XPath Unsatisfiability Caused by DTD Choice 

DTD element declaration may contain operator '|', which states that its operands 
cannot occur in the same XML document simultaneously. To simplify the statement, 
in this section we use the term node (in DTD tree) instead of element (in DTD). 

4.1   Conflict and XPath Unsatisfiability 

Definition 8. If DTD formulates that certain two nodes cannot occur in the same 
XML document simultaneously, then there is a conflict between the two nodes, we 
call it node conflict. The conflict between sibling nodes is direct conflict; conflict 
between other nodes is indirect conflict. 

Apparently, DTD can only declare conflicts between sibling nodes using operator 
'|', so all indirect conflicts are caused by direct conflicts. The way to find direct 
conflicts from indirect conflicts is as follows: given two nodes n1 and n2, if n1 and n2 

 



 A Decision Procedure for XPath Satisfiability in the Presence of DTD 209 

conflict indirectly (they cannot be sibling nodes), the layers of n1 and n2 are layer1 and 
layer2 respectively, assume layer1 ≤ layer2, their least recent common ancestor na 

(layera < layer1), and na’s two child nodes nac1, nac2 are AOS (Ancestor-Or-Self) 
nodes of n1, n2 respectively, then the indirect conflict between n1 and n2 is caused by 
the direct conflict between nac1 and nac2. The following theorem gives the necessary 
and sufficient condition of direct conflict between nodes. 

Theorem 2. Assume E=(e1,…, en) is the sub-element tuple of DTD element e, ( )CM
eT is 

e’s content model tree. The necessary and sufficient conditions of ei and ej conflict 
directly are: 1) their least recent common ancestor in ( )CM

eT is operator '|', denoted as 

na1; and 2) the least recent ancestor of na1 (except operator '|'), denoted as na2, is not '+' 
or '*'; and 3) if na2 is '?', then there are no '+' or '*' in the path from na2 to its least 
recent binary operator ancestor, such as ','. 

Proof. If ei and ej conflict directly, then condition 1) must be true, consider na1’s least 
recent ancestor (except '|') (i.e condition 2)): if na2 is ',', then there is definitely direct 
conflict between ei and ej; na2 cannot be '+' or '*', this means that ei and ej can occur 
more than once without resulting conflicts; na2 may be '?', if so, it needs more 
consideration (i.e. condition 3)). When na2 is '?', assume its least recent ancestor na3, 
no matter ',' or '|', ei and ej conflict or not is unrelated to na3, we do not need to 
consider further about na3’s ancestors. The existence of '+' or '*' in the path between 
na2 and na3 also indicates that ei and ej can occur more than once, without resulting 
conflicts. 

According to theorem 2, we can conclude a further condition on node conflict 
influencing XPath satisfiability. 

Definition 9. Given two node sets A and B, if for each node na in A, na conflicts with 
each node nb in B, then there is conflict between A and B, we call it node set conflict. 

Theorem 3. Assume XPath p is represented as …//lsi[predi1][…][predin]/lsi+1/…, and 
node set Ni contains nodes in the input DTD tree which match the location step lsi, 
any conflict among the following node sets (i.e. node set conflict) will result in the 
unsatisfiability of p: 1) the node set Nik whose elements are from the topmost layer 
and further selected from Ni by predik (1≤ k ≤ n), where nodes in topmost layer are 
those closest to root node in the DTD tree; 2) the node set Ni＋1 whose elements are 
from the topmost layer and further selected from Ni by the next location step /lsi+1. 

Proof. Just take the node sets Nik selected by predik (1≤ k ≤ n) and Ni＋1 selected by the 
next location step /lsi+1 for example: if the two node sets conflict each other, then 
according to definition 9, predik and /lsi+1 cannot be satisfied simultaneously; if there 
is no conflict between the two node sets, then predik and /lsi+1 can always select 
certain nodes to avoid conflicts, thus they are both satisfied. So, if there are node set 
conflicts in any two of the above node sets 1) and 2), p is unsatisfiable. 

4.2   Deciding XPath Unsatisfiability Caused by Conflict 

According to theorem 2, direct conflict can be statically decided. Assume  
E=(e1,…, en) is the sub-element tuple of DTD element e, then for each n-bit bitset 
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BSi=(bi1,…, bin) of every node ei: bij= 0 indicates that there is no conflict between ej 
and ei; else vice versa. Node conflicts can be detected by traversing content model 
trees. 

Algorithm 3 gives the decision procedure for XPath satisfiability in the presence of 
DTD containing choice, which bases on the framework SAT-DTD. In the algorithm, 
the node conflicts caused by DTD choice are identified to decide the unsatisfiabilty of 
XPath expressions according to theorem 3. 

 

Algorithm.3 SAT-DTD_C (see Algorithm 1 for other event handlers) 
s0: the initial state; stack: the NFA runtime stack, whose frame is a set of NFA states. 

startElementDecl(a) //briefly, SE 
// see algorithm 1 
(3) for each s in sset{ 
… 
//(8~11) add matched element(ME for short) 
(8)  for each <q,pred> in LFPS(s) 
(9)   s.addME(q, a); 

(10)  for each p in LAPS(s) 
(11)   s.addME(p,a); 
// promote the matched elements. 

(12)  for each st in LS(s){ 
(13)   for each <q,pred> in LFPS(st) 
(14)    st.parent.addMEs(q, st.getME(q)); 
(15)   for each p in LAPS(st) 
(16)    st.parent.addMEs(p, st.getME(p)); 

  } 
 } 

endElementDecl(a) //briefly, EE 
// see algorithm 1 
(2) for each s in sset{ 
… 
// clear matched element in APS or FPS. 
(5) if (s.isFirstMatch() and (s.isAPS() or s.isFPS())) 
(6)  s.clearAllMEs(); 
//check conflicts while reaching branch state 
(7) if (s.isBranchState()) 
(8)  for each p which has predicates  

     pred1, ..., predn corresponding to s{ 
(9)   for any p1, p2 in {pred1,..., predn, p} 

(10)     checkConflict(s.getMEs(p1), s.getMEs(p2)); 
(11)   if (p.isLeftMostBranchState(s) and  

     p.noConflicts( )) 
(12)     p.satisfied = true; 

} 
// clear matched elements in branch state 

(13)   s.clearAllMEs(); 
} 

The operations in algorithm 3 are as follows: 
In SE event handler, 
1) add operation: when reaching FPS or APS states, record currently matched 

nodes for each corresponding XPath expression beforehand. (line(8)~(11)); 
2) promote operation: when reaching result states or leaf states, the corresponding 

XPath expression is matched. Find all the corresponding APS and FPS states 
according to LS(s) index (line (12)), then promote the matched nodes recorded 
previously on those states to the parental branch state, in order to decide satisfiability 
(line (13)~(16)). A same XPath can be matched more than once, so it can be promoted 
multiple times. 

In EE event handler, 
1) clear operation: when backtracking to APS, FPS or branch states, clean matched 

nodes (line(5)~(6), (13)) to prepare for the next decision. 
2) check operation: when backtracking to branch state s (line(7)), for each XPath p 

that contains predicate(s) on location step corresponding to s, decide the conflicts and 
record them (line(8)~(10)). Finally, if there is no conflict occurrence, p is satisfiable 
(line(11)~(12)). 
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5   Complexity Analysis, Optimization and Experimental 

In this section we first analyze the complexity of SAT-DTD and SAT-DTD_C, then 
propose optimization approaches on SAT-DTD_C, and finally check the correctness 
through experiments. 

5.1   Analysis on the Complexity of SAT-DTD Algorithms 

According to the conclusion in [8], for the XPath with descendent axes and 
predicates, the complexity of its satisfiability decision is PTIME only if DTD does not 
contain choice; and the complexity is NP-complete for arbitrary DTD. 

5.1.1   Complexity of SAT-DTD Algorithm without Considering DTD Choice 
The time complexity of building an automaton from XPath queries is polynomial-time 
depending on the size of XPath queries. Therefore we focus on the runtime 
complexity of SAT-DTD (see algorithm 1). 

Theorem 4. Assume the length of DTD event sequence is 2m, there are x XPath 
queries, n states in automaton, q predicates, average xq nested path expressions and op 
operators in each predicate respectively, average ql predicates in each location step 
with predicates, average u multiple match occurrences in each multiple match 
occurrence point. Then the time complexity is O(m⋅(n+x+xq⋅op⋅q+(xq⋅op⋅ql+x)⋅u⋅q/ql)).  

Proof. Assume every time all states participate in state transition, then the maximum 
times of state transition is O(m⋅n) ( for tree NFA, on average each state will transform 
once to another state). If every time the element start events reach all the result states, 
the complexity upper bound of main path expression’s satisfiability decision is 
O(m⋅x), so the complexity upper bound of the satisfiability decision of nested path 
expressions is O(m⋅xq⋅q). And, each predicate expression needs op computations, the 
upper bound of predicate computation complexity is O(m⋅xq⋅op⋅q). 

On each multiple match occurrence point, every predicate and the main path 
expression need additional satisfiability decision at the same time, the time 
complexity is O((m⋅xq⋅op⋅ql+m⋅x)⋅u). 

Finally the result is O(m⋅n+m⋅x+m⋅xq⋅op⋅q+ (m⋅xq⋅op⋅ql+m⋅x)⋅u⋅q/ql). 
From theorem 4 we can see that multiple match has a great impact on the efficiency 

of SAT-DTD algorithm. But the probability of multiple match occurrence is low 
except that an XPath expression contains ''//*''. 

5.1.2   Complexity of SAT-DTD_C Algorithm 
Suppose a DTD contains w elements, the average length of an element's content 
model is l, then the complexity of deciding node conflict is O(w⋅l2). 

Theorem 5 gives the extra complexity of runtime SAT-DTD_C compared with SAT-
DTD without considering DTD choice. 

Theorem 5. Suppose the number of all predicates is q, each contains xq XPaths on 
average; each location step that contains predicate(s) has ql predicates on average; each 
FPS state or APS state has v matches on average. The SAT-DTD_C algorithm has an 

extra complexity of ( / )l qq x l

lO v q q⋅ + ⋅  than SAT-DTD without considering DTD choice. 
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Proof. The time complexity of detecting node set conflict in each location step with 

predicate(s) is ( )l qq x lO v ⋅ + , and there are q/ql such location steps. 

5.2   Optimization on SAT-DTD_C Algorithm 

Theorem 5 points out that SAT-DTD_C is exponential as it has parameter ql and xq in 
the exponent. It can be optimized in the following aspects. 

− Add functions to determine whether the content models contain operator '|'. For 
those exclude '|', the complexity of SAT-DTD_C will not exceed SAT-DTD without 
considering DTD choice. 

− From the observation we see that the complexity of SAT-DTD_C is mainly caused 
by detecting node set conflicts, thus buffer with a lookup table can be used to 
reduce the complexity of SAT-DTD_C. 

− Filter out those XPath expressions with high ql and xq, ignore them. 

5.3   Correctness Checking Experiments 

Table 1. The decision results of XPath satisfiability using SAT-DTD, where SAT represents the 
actual satisfiability, T represents satisfiable, and F represents unsatisfiable 

XPath query SAT SAT-DTD Remark 
//category[description]/name T T  
//text[bold]/keyword T T see condition 2) in theorem 2, there is no 

conflict between bold and keyword 
//*[text="sth"]/parlist F F there is conflict between text and parlist  
//category[.//listitem]/text F F there is conflict between the parent of listitem, 

parlist, and text  
//category[.//listitem]//text T T there is no conflict between the parent of 

listitem, parlist, and some text 

Ordinary DTD documents contain only a 
small portion of operator '|', making the 
experiments focused on it more difficult to 
carry out. The experiments discussed in this 
sub-section focus on the correctness, that is, 
whether SAT-DTD can present a correct 
decision of XPath satisfiability. Table.1 
shows some evaluation results in common 
circumstances. The DTD document used in 
this experiment is a fragment in XMark [17] 
described in Fig.5. The experiment result shows that SAT-DTD can correctly decide 
the XPath satisfiability in typical circumstances with wildcards and descendent axes. 

6   Conclusion 

The proposed SAT-DTD algorithm can decide XPath satisfiability correctly. SAT-
DTD without considering DTD choice has been applied to our XML access control 

<!ELEMENT site       (categories)> 
<!ELEMENT categories (category+)> 
<!ELEMENT category  (name, description)> 
<!ELEMENT name     (#PCDATA)> 
<!ELEMENT description (text | parlist)> 
<!ELEMENT text      (#PCDATA | bold)*> 
<!ELEMENT bold      (#PCDATA | bold)*> 
<!ELEMENT parlist    (listitem)*> 
<!ELEMENT listitem   (text | parlist)*> 

Fig. 5. Fragment of xmark.dtd. 
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system to optimize access control rules and queries. Experiments have proved the 
correctness of the algorithm. Our next task is to apply optimized SAT-DTD_C to 
practical systems, in the meantime we will consider more factors that influence XPath 
satisfiability, such as: predicates of various properties, operators '?','*', '+' in DTD, etc. 
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