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    Performances of hydrological models vary from basin to basin in different climate conditions. The 
problem of further identifying how performances vary with climate conditions remains a research 
challenge for the discipline of hydrology. With the objective of studying this problem, several 
hydrological models such as HYMOD, NAM and TOPMODEL were applied to 11 basins located in 
Asian countries with different climate conditions. The multi-objective optimization method 
Non-dominated Sorting Genetic Algorithm (NSGAII) was used for model calibration and obtaining 
optimal parameter sets for ensemble modeling. A tendency between the model performances and the 
aridity index (the ratio of annual potential evaporation to precipitation) was found, which might help us 
improve understanding of the model performances in different climates and select appropriate models for 
catchments in different climates.                                                                            

 

Key Words: hydrological modeling, intercomparison, climate, aridity index, NSGAII, uncertainty 

 

 
1. INTRODUCTION 
 
   Watershed-scale hydrologic models are essential 
for flood and drought prediction, water resources 
planning and allocation, erosion and sedimentation 
studies, nonpoint source pollution and remediation, 
climate and land use change assessments, 
hydropower operations, etc.1). As improved 
understanding of hydrological process in catchments 
has become the primary focus of recent hydrological 
studies, application of hydrological models has been 
conducted in different climates of the world. 
Examples of comparative studies of catchments in 
different climates include those of R.Lidén et al.2), 
Atkinson et al.3), van Werkhoven et al.4), and 
Samuel et al.5). R.Lidén et al. applied a well 
established model, the HBV model, in four 

climatologically different river basins in Europe, 
Africa, and South America. It was found that model 
performance increased and the demand of 
calibration period length decreased with increased 
catchment wetness and corresponding reduced 
climatic variability. Atkinson et al. studied four 
small catchments located in a relatively moderate 
climate in New Zealand and postulated a qualitative 
relationship between model complexity, timescale, 
and the climatic aridity index. In recent studies, van 
Werkhoven et al. applied the Sacramento Soil 
Moisture Accounting Model in 12 Model Parameter 
Estimation Experiment (MOPEX) catchments 
spanning a wide hydroclimatic gradient from arid to 
humid systems and found significant variation in 
parameter sensitivities that are correlated with the 
hydroclimatic characteristics of the catchments and 



 

time periods analyzed. Samuel et al. conducted a 
comparative study in three diverse regions of 
Australia found that the biggest contributor to the 
differences between catchments is the distribution of 
soil depth and the soil’s drainage characteristics and 
the second factor is climate. 
  These studies provided the basic ideas of 
difference in model performance and how the 
performance would differ under various 
hydroclimatic conditions. However, discussion of 
these researches was based on the application of a 
single model to several basins or application of 
several models to only one or limited number of 
basins. For more synthesized understanding, a 
multi-model application for multi-basins in different 
hydroclimatic conditions will be necessary. 
Furthermore, most of previous studies were mainly 
conducted in the regions of EU and US, focusing on 
qualitative analysis of model performance 
difference due to different parameter sensitivities 
and different levels of importance in model structure 
resulting from different hydroclimatic conditions. 
To improve our understanding of model 
performance difference in different climates, we 
need to address the following questions: 
(a) How do hydroclimatic conditions influence 
model performance? Is the influence significant? 
(b) Is there a significant relationship between model 
performance and hydroclimatic conditions such as 
aridity index6)?   
(c) Can we give a framework for selecting 
appropriate models for basins in different climates? 
   To address these questions, we applied several 
hydrological models such as HYMOD, NAM, and 
TOPMODEL respectively to 11 basins located in 
China, Nepal, Sri Lanka, and Philippines at a daily 
time step, analyzed the convergences of the 
optimization algorithm. We also analyzed ensemble 
modeling uncertainty and the tendency between the 
model performance and the ratio of annual potential 
evaporation to precipitation, referred to as the 
aridity index6).  
 
2. THE HYDROLOGICAL MODELS 
 
   Three hydrologic models are used in the present 
study: HYMOD7), NAM8), and TOPMODEL9),10). 
Brief descriptions of each model are presented in the 
following three sections. These models differ in 
their structure, simulated hydrologic processes, and 
number of calibration parameters, thereby allowing 
us to examine how different models affect the 
results in different climates. Models’ parameters 
that need to be calibrated are listed in Table 1. 
 
(1) The HYMOD model 

   This HYMOD model consists of a relatively 
simple two-parameter rainfall excess model 
connected with two series of linear reservoirs (three 
identical for the quick and a single for the slow 
response) in parallel as a routing component. The 
rainfall excess model is described in detail by 
Moore11). The model assumes that the soil moisture 
storage capacity, , varies across the catchment 
and, therefore, that the proportion of the catchment 
with saturated soils varies over time step  . The 
spatial variability of soil moisture capacity is 
described by the following distribution function: 

c

t

BEXP( ) 1 (1 ( )/CMAX)    0 ( ) CMAXF c c t c t= − − ≤ ≤  (1) 
 
(2) The NAM model 
   The NAM model (from the Danish: 
“Nedbor-Afstromnings-Model”, which means 
precipitation-runoff-model) is a lumped and 
conceptual rainfall-runoff model originally 
developed at the Technical University of 
Denmark12). The NAM model describes, in a 
simplified quantitative form, the behavior of the 
different land phase of the hydrological cycle, 
accounting for the water content in different 
mutually interrelated storages. These storages are 
the surface zone storage, the root-zone storage, the 
ground-water storage, and the snow storage. The 
river routing is done through linear reservoirs that 
represent the overland flow (two identical linear 
reservoirs in series), the interflow (a single 
reservoir), and the baseflow (a single reservoir).  
 
(3) The TOPMODEL model 
   TOPMODEL is a quasi-physically based 
semi-distributed rainfall-runoff model in which 
distributed predictions of catchment response are 
made based on a simple theory of hydrological 
similarity of points in a catchment. In the original 
version of the model used here, the hydrological 
similarity comes from the use of the topographic 
index as ln /tanα β , where α is the area draining 
through a point from upslope and tanβ is the local 
slope angle. Total runoff in TOPMODEL is 
calculated as the sum of two major flow 
components: saturation excess overland flow from 
variable contributing areas and subsurface flow 
from the saturated zone of the soil. The river routing 
is conducted through a distribution function that is 
similar to isochrone method.  
   Among the above mentioned three hydrological 
models, HYMOD and TOPMODEL consider spatial 
variability of soil moisture by using the distribution 
function and topographic index respectively. All of 
the models adopt saturation excess runoff formation 
and relatively simple routing method.  

 



 

Table 1 Parameters of the models used and their prior ranges 

Parameter Unit Range Description 

HYMOD 
CMAX [mm] 1-500 Max. storage capacity 

BEXP [-] 0.1-2 Degree of spatial variability  
of soil moisture capacity 

ALPHA [-] 0-0.99 Factor distributing the flow  
between slow/quick reservoirs 

RS [day] 0.0001-
0.1 

Residence time 
(slow response reservoir) 

RQ [day] 0.1-0.99 Residence time 
(quick response reservoir) 

NAM 
UMAX [mm] 1-50 Max. water content (size)  

of the surface storage 

LMAX [mm] 50-1000 Max. water content (size)  
of the root zone storage 

CQOF [0,1] 0-1 Fraction of excess rainfall 

CKIF [h] 0.01- 
2000 

Time constant for drainage  
of interflow 

CK12 [h] 3-100 Time constant for routing  
interflow and overland flow 

TOF [-] 0-0.99 Threshold value  
for overland flow 

TIF [-] 0-0.99 Threshold value for interflow  

TG [-] 0-0.99 Root zone threshold value  
for recharge 

CKBF [h] 0.01- 
5000 Time constant for baseflow 

TOPMODEL 
SZM [m] 0.0001-

1 
The parameter of the exponential 
Transmissivity function 

lnT0 m2/h 0.1-25 Effective lateral saturated  
transmissivity 

Td m/h 0-0.3 Unsaturated zone time delay  
per unit deficit 

SRMAX m 0.1-20 Max. root zone storage  
 
3. DATA SETS 
 
   For an analysis of models performances in 
different climates preferably a large number of 
undisturbed data-intensive catchments of the same 
size and shape but located in different climate zones 
should be studied. However, it is difficult to obtain 
such data, especially in Asian regions. In this study, 
the eleven basins located in China, Nepal, Sri Lanka 
and Philippines were selected as the study area. The 
hydrological data of these basins was obtained 
under the collaboration with University of 
Yamanashi COE Virtual Academy (VA). The VA is 
an E-learning program for integrated river basin 
management. The data was provided by participants 
of YHyM/BTOPMC course in VA. The main 
selection criteria were accessible hydrological data 
of good quality, catchment areas in the same order 
and the studied basins representing a variety of 
climate. Basic characteristics of the basins are listed 
in Table 2. All of the models were forced with daily 
estimates of basin-average precipitation and 
potential evapotranspiration.  
 

Table 2 List of basin location and data period used for the study 

ID River system Country Area 
(km2) 

Data  
period 

Average 
Slope 

Aridity 
Index

1 Angat Philippines 781 1989-1993 0.267 0.60 
2 Kalu Sri Lanka 2719 1991-1994 0.048 0.61 
3 Kankai Nepal 1150 1996-2000 0.191 0.65 
4 Bagmati Nepal 2920 1996-2000 0.132 0.76 
5 Hushan China(Yangtze) 6374 1992-1996 0.070 0.79 
6 Huangqiao China(Zishui) 2660 1982-1985 0.076 0.85 
7 WestRapti Nepal 3380 1987-1991 0.215 0.87 
8 Mumahe China(Yangtze) 1224 1981-1985 0.138 0.89 
9 Huangnizhuang China(Huai) 805 1982-1986 0.104 1.01 
10 Baohe China(Yangtze) 3415 1980-1983 0.176 1.1 
11 Fenghe China(Yellow) 566 1992-1996 0.215 1.32 
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Fig.1 Scatter plot of evaporation ratio against aridity index. All  
    basins have runoff ratios that are close to what is predicted  
    by the Turc-Pike relationship. 
 
Fig.1 plots evaporation ratio (calculated as the ratio 
of actual annual evapotranspiration (AET) to 
precipitation (P)) against the ratio of potential 
evaporation (PET) to precipitation commonly 
known as the aridity or dryness index (Both AET 
and PET data are obtained form UNEP GRID13)). 
Thereby the larger the aridity index is, the drier the 
basin is. When the annual available energy 
expressed as potential evapotranspiration, is greater 
than the annual precipitation, the annual evaporation 
is limited by the annual supply of water. 
Conversely, when the available energy is less than 
the available precipitation, the annual evaporation is 
limited by the annual supply of energy14),15).  
 
4. METHODOLOGY 

 
   Schematic diagram of methodology is shown in 
Fig.2. Many hydrologic models must be calibrated 
to be useful for the solution of practical problems. It 
has not proved possible to clearly demonstrate that a 
particular function is better suited for calibration of 
a model than some other. A single objective 
function unavoidably leads to the loss of 
information16). Thereby in this study the widely used 
Nash Sutcliffe Efficiency (NSE, see Eq. (2)) and the  
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Fig.2 Schematic diagram of methodology used in this study. 
 
Heteroscedastic Maximum Likelihood Estimator 
(HMLE) were used as multi-objective criteria. 

2
, , ,

1 1
1 ( ( ) ) /( ( ) )

n n

obs i sim i obs i obs
i i

NSE Q Q Q Q
= =

= − − −∑ ∑ 2  (2) 

where obsQ  is the average observed discharge and 
 is the number of time step during simulation.   

NSE for the transformed flow is referred to as 
HMLE17). To consider the heteroscedastic variance 
in flow, the flow is transformed explicitly before 
evaluating the objective function by 
using , where k is the 
transformation parameter and is selected to be 0.3. 

n  

, ,(( 1) 1) /k
trans i obs iQ Q= + − k

   A fast and elitist multi-objective genetic 
algorithm NSGAII was used for optimization, as it is 
capable of finding multiple Pareto solutions in a 
single optimization run and maintains a diverse set 
of elite population. Furthermore, it does not require 
any additional implicit or explicit parameters other 
than the standard genetic algorithm parameters such 
as population size and operator probabilities. 
Detailed description of the algorithm can be found 
in Dev et al.18). To run the optimization algorithm, 
parameter ranges for each model were 
predetermined according to previous studies (see 
Table 1). In the present study, one hundred sets of 
Pareto solutions were obtained for each model in 
each basin.  
   Generational Distance19)(GD) is used to measure 
the convergence of the optimization algorithm. To 
derive this metric, firstly, the Euclidian distance 
between the “ideal vector” (it is assumed to be 
obtained when both NSE and HMLE are equal to 1.) 
and the solution vector is calculated for all the 
solution points lying in the Pareto optimal front. The 
average value is referred to as GD (see Eq. (3)). 
This measure indicates the overall progress of the 

algorithm towards the true Pareto front. The smaller 
the value of generational distance is, the nearer the 
Pareto optimal front is to the ideal vector and vise 
versa. The smallest value is referred to as 
“compromised value” (see Fig.2). Hereafter, NSE 
and HMLE with a subscript c mean the 
corresponding compromised values. 

           2

1

( ( )) /
n

i
i

GD d n
=

= ∑              (3) 

where  is the Euclidean distance, n  is the number 
of solution points lying in the Pareto optimal front.  

id

  Prediction uncertainty arises from three sources: 
data uncertainty, model structural uncertainty and 
parameter uncertainty. Ensemble modeling can be 
used to quantify and reduce the prediction 
uncertainty. Thereby a hundred sets of optimal 
parameters were fed into each hydrological model in 
each basin and resulted in ensemble of simulated 
flow. To define the predictive uncertainty, the 
predicted outputs at each time step (days) are ranked 
to form a cumulative distribution of the output 
variable. Then 5% to 95% quantiles were chosen to 
define the prediction bounds. As three models were 
applied to 11 basins in different climates, to judge 
quantitatively the prediction uncertainty associated 
with each model, the Average Width of the Interval 
of Simulated Flow20) (AWISF) of the prediction 
bounds between 5% and 95% quantiles flow were 
derived using Eq. (4). 

    max, min,
1

( ( ) ( )) /
n

cal
t

AWISF Q t Q t Q
=

= −∑        (4) 

where  is the upper 95% quantile flow, 

 is the lower 5% quantile flow, 
max, ( )Q t

min,iQ calQ  is the 
average of estimated flow, and  is the number of 
time step during the simulation period. 

n

 
5. RESULTS AND DISSCUSSION 
 
   The parameters of the three hydrological models 
were calibrated respectively using 4 or 5 year daily 
hydrometeorological data of the 11 basins by 
utilizing the optimization algorithm NSGAII, the 
NSE and the HMLE being objective functions. 
Through this optimization, a hundred sets of optimal 
parameters were obtained for each model in each 
basin. Then hydrograph ensembles were obtained 
for each basin by forcing each model with the 
parameter sets. The shapes of Pareto front and 
distribution of solution points in Pareto front varied 
from model to model and basin to basin. Typically 
for a specified hydrological model they depend on 
the number of objective functions, interactions 
among objective functions, and optimization 
algorithm itself. Thereby generational distance was 
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Fig.3 Scatter plot of the model performance measured in terms 
    of generational distance against the aridity index. 
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Fig.6 Scatter plot of model performance difference measured  
   in terms of NSEc and HMLEc against basins’ aridity index. 
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Fig.7 The Average Width of the Interval of (AWISF) in (%)  
     calculated from the ensemble of simulated hydrograph 
     corresponding to the hundred sets of parameters lying 
     in the Pareto optimal front.  
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Fig.4 Scatter plot of model performance measured in terms of  
      NSEc against basins’ aridity index. 

used to judge the performance of NSGAII in 
calibrating HYMOD, TOPMODEL, and NAM 
models in the entire selected basins. Fig.3 shows the 
variation in the GD at all basins for all the three 
models. The figure reveals that the generational 
distance varies among basins. Moreover, the values 
are larger in the wettest and driest basins, indicating 
that the NSGAII converges well and the objective 
criteria are more “conflicting” with each other. 
Furthermore, the GD is also found to be correlated 
with models performances measured in terms of 
NSE and HMLE (Figs. 4 and 5), having a high 
value in basin where NSE and HMLE are low.  
   Figs. 4 and 5 show that all of the three models 
performances are acceptable in humid basins where 
aridity index is less than 1 except the Kalu basin 
(ID=2) located in Sri Lanka. This is probably 
attributable to the hydroclimatic and geographic 
characteristics (e.g. the Kalu basin has the mildest 
slope among that of studied basins, see Table 2) 
making models more sensitive. The other probable 
reason for these discrepancies could be the wide 
ranges of parameters we set during optimization so 
that the NSGAII could not find suitable parameters 

within the ranges. In terms of NSE, we can not find 
obvious relationship between models performances 
and aridity index, while in terms of HMLE, the 
tendency that models performances decreased with 
increased aridity index can be detected. The poor 
relationship between the aridity index and model 
performance can be attributed to the small sample of 
drier basins.  
   Fig.6 shows the performance difference of three 
models in each basin. Although we could not find a 
clear relationship between performance difference 
and aridity index, we could notice two dissimilar 
basins (ID=2&11) having relatively large 
differences indicating that the models are more 
sensitive in these areas and the model structure 
components are diversely important.   
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Fig.5 Scatter plot of model performance measured in terms of  
      HMLEc against basins’ aridity index. 
 

   To quantify prediction uncertainty, scatter plots 
of AWISF for each model are shown in Fig.7. This 
figure shows that prediction uncertainty from NAM 
model is the largest while from TOPMODEL model 
is the smallest. This is probably due to the number 
of parameters needed to be calibrated. Over 
parameterized models bring larger uncertainties than 
parameter parsimonious ones. However, it is 
probably not the case for drier basins like Fenghe 
(ID=11) due to higher climatic variability. 
 
6. CONCLUSIONS 
 
   With the objective of further identifying how 
model performances vary with climate conditions, 
three hydrological models were respectively applied 
to 11 basins located in Asian countries with 

 



 

different climate conditions. The NSGAII and two 
widely adopted criteria viz. NSE and HMLE were 
used for calibration. Summarized results from this 
study are as follows:  
(a) An automatic calibration procedure based on 
multi-objective optimization is implemented for 
HYMOD, NAM and TOPMODEL. The models 
performances are good in relatively humid basins 
except the basin with the mildest slope. 
(b) The tendency that models performances 
decreased with increased aridity index was observed 
in terms of HMLE and this tendency might help us 
improve understanding of the model performances 
in different climates and select appropriate models 
for catchments in different climates. Furthermore, 
the poor relationship can be attributed to the 
selection of fewer drier basins. Future work is 
needed in the direction of including more basins 
located in a wider range of climatic conditions.  
(c) The uncertainty in the model prediction was 
quantified from the ensemble of predicted model 
using an AWISF index.  Results show that 
prediction uncertainties are larger for over 
parameterized models compared to parameter 
parsimonious ones. 
   Future work is needed to explore the 
relationship between model performance and 
hydroclimatic conditions and also geographic 
conditions. Understanding of differences in model 
performance and uncertainty, as shown in this study, 
might help us to identify the key hydrological 
processes/components for improvement of 
hydrological modeling. In addition, this would also 
be used to improve the multi-model ensemble and 
regionalization of hydrological parameters20). 
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