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Theobjective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and
symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods
are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric
polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an
automatic control for autonomous vehicles.

1. Introduction

Path planning is one of the most important parts of an
autonomous vehicle. It deals with, searching a feasible path,
taking into consideration the geometry of the vehicle and
its surroundings, the kinematic constraints and others that
may affect the feasible paths. Study of this paper can be
used to develop a real-time control system for autonomous
ground vehicles which can track exactly on any feasible paths
from the global positioning system (GPS) maps or/and from
unmanned aerial vehicle (UAV) images. This system can be
also applied to autonomous unmanned ground vehicles (on
road or off road) and autoparking and autodriving systems.

The main idea of this paper is a system which can
automatically generate an optimal feasible trajectory and then
control the vehicle to track exactly on this path fromany given
starting points to any given destination points from a map
subject to the vehicle physical constraints on obstacles, speed,
steering angle, and so forth.

From the existed pieces of literature on this research
topic, there are still few research papers dealing with optimal
trajectory generation subject to real automotive engineering
constraints. Basic studies on the flatness, nonholonomic, and
nonlinear systems can be read from the recent book of Lévine
in [1] where the fundamental motion planning of a vehicle
is presented. The flatness and controllability conditions for
this nonlinear system are also well investigated and defined.

However, in this research, parking simulation of a two-trailer
vehicle is also demonstrated but without the constraint of
steering angle and steering angular velocity.

The problem of trajectory generation for nonholonomic
system is also presented by Dong and Guo in [2] where
two trajectory generation methods are proposed.The control
inputs are the second-order polynomial equations. By inte-
grating those control inputs, coefficients for those second-
order polynomial equations are found. However this paper
is lacking constraint analysis on the vehicle velocity and the
steering angle.

The cell mapping techniques and reinforcement learning
methods to obtain the optimal motion planning by Gomez
et al. in [3] are tested for vehicles considering kinematics,
dynamics, and obstacle constraints. This paper shows a
simulation of a wheeled mobile robot moving on a path
generated by the bang-bang trajectory generation. And the
paper does not mention the algorithms used for generating
the vehicle trajectory. Several other research papers on
optimal trajectories and control of autonomous vehicles can
be read in [4–7]; however, most of those studies are based on
the real traffic flow roads and the control algorithms are to
perform the maneuver tasks such as lane changing, merging,
distance keeping, velocity keeping, stopping, and collision
avoidance.

This paper, therefore, focuses on the applicable algo-
rithms to generate feasible trajectories from a starting point
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to any destination point subject to vehicle constraints. This
paper refers to the vehicle sideslip model and estimation by
Minh in [8, chapter 8].The nonlinear computational schemes
for the nonlinear systems are referred to by Minh and
Afzulpurkur in [9]. Although the holonomic dynamical tra-
jectories generation is not new, recent research articles have
tried to develop those trajectories in different applications.
Trajectory for autonomous ground vehicles based on Bezier
curves operating under waypoints and corridor constraints
can be referred to by Choi et al. in [10] and a real-time
trajectory generation for car-like vehicles navigating dynamic
environments can be read by Delsart et al. in [11]. A new
paper of trajectory generation model-based IMM tracking
for safe driving in intersection scenario can be read by Zhou
et al. in [12] to reduce traffic accidents at intersections.
Another paper of dynamic trajectory generation for wheeled
robots is referred to by Missura and Behnke in [13] where
a dynamic motion of wheeled robots can be determined in
real-time onboard.The real vehiclemodels and conditions for
stabilizability of dynamic systems are referred to in [14, 15].

This paper introduces three (flatness, polynomial, and
symmetric) conventional holonomic trajectories generation
subject to steering angle constraint for autonomous vehicles.
Performances of these three algorithms are compared. Data
taken from simulation on the vehicle longitudinal velocity
and its steering angular velocity will be used to develop the
control algorithms for the vehicle tracking on those trajecto-
ries in the next part of this paper. The outline of this paper is
as follows. Section 2 describes the kinematicmodel; Section 3
presents the flatness method; Section 4 produces the trajec-
tory generation subject steering angle constrained violation;
Section 5 presents the polynomial method; Section 6 devel-
ops the symmetric polynomial method; Section 7 analyses
the performance of the three methods; finally conclusion is
drawn in Section 8. Simulations in this paper are conducted
in the MATLAB Simulink R2009a.

2. Kinematic Model of a Vehicle

The constraints for this vehicle model are based on the
assumption that the wheels are rolling without slipping and
the steering angle is simplified as a single wheel in the
midpoint of the two frond wheels. Then, a kinematic model
of a vehicle can be drawn in Figure 1.

The kinematic model of a forward rear-wheel driving
vehicle can be written as

[[[
[

�̇�
̇𝑦
̇𝜃

�̇�

]]]
]
=
[[[[
[

cos 𝜃
sin 𝜃
tan𝜑
𝑙0

]]]]
]

𝑟V
1
+ [[[
[

0
0
0
1

]]]
]
V
2
, (1)

where 𝑋 = [𝑥, 𝑦, 𝜃, 𝜑] is the system state variables, (𝑥, 𝑦)
are the Cartesian coordinates of the middle point of the rear
wheel axis, 𝜃 is the angle of the vehicle body to the 𝑥-axis,
𝜑 is the steering angle, 𝑙 is the vehicle wheel base, 𝑟 is the
wheel radius, V

1
is the angular velocity of the rear wheel,

and V
2
is the angular steering velocity. Given the initial state

𝑋(0) = [𝑥
0
, 𝑦
0
, 𝜃
0
, 𝜑
0
] at time 𝑡 = 0 and the final state
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Figure 1: A simplified vehicle model.

𝑋(𝑇) = [𝑥
𝑇
, 𝑦
𝑇
, 𝜃
𝑇
, 𝜑
𝑇
] at time 𝑡 = 𝑇, the paper generates

a feasible trajectory for this vehicle.
Similarly, the model for a forward front-wheel driving

vehicle is presented as

[[[
[

�̇�
̇𝑦
̇𝜃

�̇�

]]]
]
=
[[[[
[

cos 𝜃 cos𝜑
sin 𝜃 cos𝜑

tan𝜑
𝑙0

]]]]
]

𝑟V
1
+ [[[
[

0
0
0
1

]]]
]
V
2
. (2)

The model for a forward rear-wheel driving vehicle in (1)
will be used for all calculations and simulations in this paper.
From this kinematic model, flatness equations for the vehicle
trajectory generation are presented in the next section.

3. Vehicle Flatness Trajectory Generation

The flatness system is the system of nonlinear differential
equations in (1) whose movement curves are in smooth and
flat space. From Figure 1, the vehicle angular velocity can be
calculated as

V
1
=
√�̇�2 + ̇𝑦2

𝑟 . (3)

Transforming from (1), the vehicle body angle is

𝜃 = arctan( ̇𝑦
�̇�) . (4)

From the derivative of the above trigonometric, 𝜃, the body
angular velocity, ̇𝜃, is achieved as follows:

̇𝜃 = ̈𝑦�̇� − �̈� ̇𝑦
�̇�2

1
( ̇𝑦/�̇�)2 + 1

= ̈𝑦�̇� − �̈� ̇𝑦
�̇�2 + ̇𝑦2 =

tan𝜑
𝑙 𝑟V
1
. (5)

Therefore, 𝜃 and 𝜑 can be directly calculated from variables:
�̇�, �̈�, and ̇𝑦, ̈𝑦. And it means that the above system is flat [1].
Thus, all state and input variables can be presented by the flat
outputs 𝑥 and 𝑦.
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From (5), the boundary conditions for the outputs 𝑥 and
𝑦 are

𝜕2𝑦
𝜕𝑥2 =

tan𝜑
𝑙cos3𝜃 .

(6)

The initial state at time, 𝑡 = 0, to the final state at time, 𝑡 = 𝑇,
for 𝑥(𝑡), is

𝑥 (0) = 𝑥
0
, 𝑥 (𝑇) = 𝑥

𝑇
. (7)

The initial state for 𝑦(𝑡) = 𝑦(0) is

𝑦 (0) = 𝑦
0
= tan 𝜃

0
⇒ 𝜕2𝑦

𝜕𝑥2
𝑡=0

= tan𝜑
0

𝑙cos3𝜃
0

. (8)

The final state for 𝑦(𝑡) = 𝑦(𝑇) is

𝑦 (𝑇) = 𝑦
𝑇
= tan 𝜃

𝑇
⇒ 𝜕2𝑦

𝜕𝑥2
𝑡=𝑇

= tan𝜑
𝑇

𝑙cos3𝜃
𝑇

. (9)

From the initial state (𝑥
0
, 𝑦
0
, 𝜃
0
, 𝜑
0
) at the time 𝑡 = 0 to the

final state (𝑥
𝑇
, 𝑦
𝑇
, 𝜃
𝑇
, 𝜑
𝑇
), under a real condition that |�̇�(𝑡)| ≥

𝜀 > 0, if it is assumed that = |𝑥
𝑇
− 𝑥
0
|/2𝑇 > 0, the trajectory

of 𝑥(𝑡) can be written freely as

𝑥 (𝑡) = (𝑇 − 𝑡
𝑇 ) 𝑥

0
+ 𝑡
𝑇𝑥𝑇 +

𝑥𝑇 − 𝑥0
𝑡 (𝑡 − 𝑇)
2𝑇2 . (10)

And the trajectory of 𝑦(𝑡) can be selected as

𝑦 (𝑡) = 𝑦
0
+ 𝑡𝛼
1
tan 𝜃
0
+ 𝑡2 𝛼2 tan𝜑02𝑙cos3𝜃

0

+ 𝑡3𝑏
1
+ 𝑡4𝑏
2
+ 𝑡5𝑏
3
,
(11)

where 𝛼
1
= (2(𝑥

𝑇
−𝑥
0
)−|𝑥
𝑇
−𝑥
0
|)/2𝑇, 𝛼

2
= |𝑥
𝑇
−𝑥
0
|/𝑇2, and

𝛼
3
= (2(𝑥

𝑇
− 𝑥
0
) + |𝑥
𝑇
− 𝑥
0
|)/2𝑇; and 𝑏 = [𝑏

1
, 𝑏
2
, 𝑏
3
] = 𝐴−1𝑐

with

𝐴 = [
[

𝑇3 𝑇4 𝑇5
3𝑇2 4𝑇3 5𝑇4
6𝑇 12𝑇2 20𝑇3

]
]
,

𝑐 =

[[[[[[[[
[

𝑦
𝑇
− 𝑦
0
− 𝑇𝛼
1
tan 𝜃
0
− 𝑇2𝛼2 tan𝜑02𝑙cos3𝜃

0

𝛼
3
tan 𝜃
𝑇
− 𝛼
1
tan 𝜃
0
− 𝑇𝛼2 tan𝜑0𝑙cos3𝜃

0

𝛼
2
tan𝜑
𝑇

𝑙cos3𝜃
𝑇

− 𝛼
2
tan𝜑
0

𝑙cos3𝜃
0

]]]]]]]]
]

.

(12)

From (10),

𝜃 = arctan(2𝑇2 (𝛼
1
tan 𝜃
0
+ 𝛼
2
tan𝜑
0

𝑙cos3𝜃
0

𝑡

+3𝑏
1
𝑡2 + 4𝑏

2
𝑡3 + 5𝑏

3
𝑡4)

× (2𝑇 (𝑥
𝑇
− 𝑥
0
)

− 𝑇 𝑥𝑇 − 𝑥0 + 2 𝑥𝑇 − 𝑥0 𝑡)
−1)

(13)

And, from (5),

𝜑 = arctan((𝛼2 tan𝜑0𝑙cos3𝜃
0

+ 6𝑏
1
𝑡 + 12𝑏

2
𝑡2 + 20𝑏

3
𝑡3)

× (2𝑇2)2𝑙cos3𝜃

× ( (2𝑇 (𝑥
𝑇
− 𝑥
0
)

−𝑇 𝑥𝑇 − 𝑥0 + 2 𝑥𝑇 − 𝑥0 𝑡)
2)−1) .

(14)

The angular velocity of the vehicle in (1) can be calculated
from (13) and (14).

For derivative of 𝑦,

̇𝑦 (𝑡) = (𝛼
1
tan 𝜃
0
+ 𝛼
2
tan𝜑
0

𝑙cos3𝜃
0

𝑡 + 3𝑏
1
𝑡2 + 4𝑏

2
𝑡3 + 5𝑏

3
𝑡4)
(15)

and, then,

̈𝑦 (𝑡) = (𝛼2 tan𝜑0𝑙cos3𝜃
0

+ 6𝑏
1
𝑡 + 12𝑏

2
𝑡2 + 20𝑏

3
𝑡3) (16)

and derivative of 𝑥 is

�̇� (𝑡) = ((2𝑇 (𝑥𝑇 − 𝑥0) − 𝑇
𝑥𝑇 − 𝑥0 + 2 𝑥𝑇 − 𝑥0 𝑡)
2𝑇2 )

(17)

And, then,

�̈� (𝑡) = (
𝑥𝑇 − 𝑥0

𝑇2 ) . (18)

The absolute vehicle velocity can be calculated from (15) to
(18) with

V
1
(𝑡) =

√�̇�2 + ̇𝑦2
𝑟

(19)

or with another formula to calculate V
1
(𝑡) is V

1
(𝑡) =

(�̇�(𝑡) cos 𝜃/𝑟) + ( ̇𝑦(𝑡) sin 𝜃/𝑟)); then

V
1
(𝑡) = ((2𝑇 (𝑥𝑇 − 𝑥0) − 𝑇

𝑥𝑇 − 𝑥0 + 2 𝑥𝑇 − 𝑥0 𝑡)
2𝑟𝑇2 )

× cos 𝜃 + ((𝛼
1
tan 𝜃
0
+ 𝛼
2
tan𝜑
0

𝑙cos3𝜃
0

+ 3𝑏
1
𝑡2

+ 4𝑏
2
𝑡3 + 5𝑏

3
𝑡4) sin 𝜃× (𝑟)−1) .

(20)

To calculate ̇𝜃 from (5),

̇𝜃 = ̈𝑦�̇� − �̈� ̇𝑦
�̇�2 + ̇𝑦2 =

tan𝜑
𝑙 𝑟V
1
. (21)
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Figure 2: Trajectory and velocity.

To calculate V
2
(𝑡) = �̇�, from (14), if 𝜑 = arctan(𝑋), then,

�̇� = �̇� ( 1
1 + 𝑋2 ) with

𝑋 = ((𝛼2 tan𝜑0𝑙cos3𝜃
0

+ 6𝑏
1
𝑡 + 12𝑏

2
𝑡2 + 20𝑏

3
𝑡3) (2𝑇2)2𝑙cos3𝜃

× ( (2𝑇 (𝑥
𝑇
− 𝑥
0
)

− 𝑇 𝑥𝑇 − 𝑥0 + 2 𝑥𝑇 − 𝑥0 𝑡)
2)−1) .

(22)

Another formula to calculate V
2
(𝑡) = �̇�which is derived from

(5) is

�̇� = 𝜕(𝑙 ̈𝑦�̇� − �̈� ̇𝑦
𝑟(�̇�2 + ̇𝑦2)3/2

)

×( 1
1 + (𝑙 ( ̈𝑦�̇� − �̈� ̇𝑦/𝑟(�̇�2 + ̇𝑦2)3/2))2

).
(23)

Simulation for this flatness technique and all other simu-
lations for different path planning algorithms in this paper
are conducted with the vehicle’s parameters of 𝑙 = 2m and
𝑟 = 0.25m; the vehicle initial state at time 𝑡 = 0 is 𝑥(0) =
[𝑥
0
, 𝑦
0
, 𝜃
0
, 𝜑
0
] = [0, 0, 0, 0]; the vehicle final state at time

𝑡 = 𝑇 = 100 is 𝑥(𝑇) = [𝑥
𝑇
, 𝑦
𝑇
, 𝜃
𝑇
, 𝜑
𝑇
] = [10, 10, 0, 𝜋/6].

Figure 2 shows the trajectory (𝑥, 𝑦) for the vehicle from
the initial position to the final position and its velocity.
Figure 3 shows the vehicle body angle, 𝜃, and the steering
angle, 𝜑, corresponding to their angular velocities, ̇𝜃 and �̇�.

Themaximum steering angle for this movement is 𝜑max =
64∘; it exceeds the physical constraint of steering angle with
−45∘ ≤ 𝜑max ≤ 45∘. Therefore, the above trajectory is not
feasible. The problem is that the distance from the starting
point to the destination point is too short subject to the real
vehicle physical constraints. A solution for this problem is to
lengthen the travelling distance until it meets the constraint
on steering angle. This issue is discussed in the next section.

4. Trajectory Subject to
Steering Angle Constraint

The maximum steering angle of a vehicle depends on its real
structure space anddesign. In this paper, it is assumed that the
real structure constraint for the vehicle is (−𝜋/4) ≤ 𝜑 ≤ 𝜋/4
or the maximum steering angle for this vehicle is in a range
of −45∘ ≤ 𝜑 ≤ 45∘:

−𝜋4 ≤ 𝜑 ≤ 𝜋
4 . (24)

Simulation in the previous part shows the maximum steering
angle, 𝜑max = 64∘, exceeding the limitation in (24).Therefore,
a new technique for the vehicle trajectory generation subject
the constraint in (25) is proposed.

For time 𝑡 from initial state, 𝑡 = 0, to the final state, 𝑡 = 𝑇,
the feasible trajectories 𝑥(𝑡) and 𝑦(𝑡) subject to conditions in
(10) and (11) can be generated. During the progress of timing,
𝑡, recalculate the steering angle, 𝜑, in (14) and then check
for the steering constraint in (24). If the constraint in (24) is
violated, the distance from the initial position (𝑥

0
, 𝑦
0
) to the

final position (𝑥
𝑇
, 𝑦
𝑇
) is too short for satisfying the steering

angle limit.
In this case, it is proposed that to lengthen the distance

𝑑
0
= √(𝑥

𝑇
− 𝑥
0
)2 + (𝑦

𝑇
− 𝑦
0
)2 to a new distance,

𝑑
𝑁𝑖
= 𝜌𝑖𝑑
0

with 𝜌 > 1 (25)

for 𝑖 = 1, 2, 3, . . . 𝑛 until the constraint in (24) is satisfied and
with 𝜌 being an amplification coefficient, 𝜌 > 1.

Then the new coordinates are

𝑥
𝑇𝑁

= 𝜌𝑛 (𝑥
𝑇
− 𝑥
0
) , 𝑦

𝑇𝑁
= 𝜌𝑛 (𝑦

𝑇
− 𝑦
0
) . (26)

The next simulation is done with the same parameters in the
previous part and subject to the constraint in (24) with an
amplification coefficient 𝜌 = 1.1. The constraint in (24) will
be satisfied after 𝑛 = 4 iterations.Thenew coordinate is𝑥

𝑇𝑁
=

𝑦
𝑇𝑁

= 23.579.
Figure 4 shows the new trajectory and new velocity of the

vehicle with the new lengthened distance. The velocity of the
vehicle is increased since the final time 𝑇 is not changed.

Figure 5 shows the new vehicle body angle, 𝜃, velocity, ̇𝜃,
steering angle, 𝜑, and velocity, �̇�, for the new trajectory. The
new steering angle has now satisfied the constraint 𝜑 = 40∘.

Due to the size of this paper, the sideslip of the vehicle
model is ignored. In reality, the sideslip of a vehicle depends
on the tire stiffness and the cornering velocity. Then the
trajectory generation in this study does not depend on the
vehicle velocity. In the next part, a new vehicle trajectory
generation based on polynomial equations is investigated.

5. Polynomial Trajectory Generation

For faster generation of a feasible vehicle tracking, a second-
order polynomial for trajectory generation is presented.
Equation (1) is separated into the following forms:

𝑧
1
= 𝑥, 𝑧

2
= tan𝜑
𝑙cos3𝜃 , 𝑧

3
= tan 𝜃, 𝑧

4
= 𝑦. (27)
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Figure 3: Body and steering angle.
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Figure 4: Trajectory and velocity.
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Figure 5: Body and steering angle.

Then, �̇�
1
= �̇�, (28)

�̇�
2
= V
2
𝑙 cos2𝜃 + 3𝑟V

1
cos 𝜃 sin 𝜃sin2𝜑

𝑙2cos5𝜃cos2𝜑 ,

�̇�
3
= tan𝜑
𝑙cos2𝜃𝑟V1,

�̇�
4
= ̇𝑦 = sin 𝜃𝑟V

1
.

(29)

The vehicle will move from the initial state (𝑥
0
, 𝑦
0
, 𝜃
0
, 𝜑
0
) at

time 𝑡 = 0 to the final state (𝑥
𝑇
, 𝑦
𝑇
, 𝜃
𝑇
, 𝜑
𝑇
) at time 𝑡 = 𝑇

corresponding from the initial state at (𝑧
1.0
, 𝑧
2.0
, 𝑧
3.0
, 𝑧
4.0
) to

the final state at (𝑧
1.𝑇
, 𝑧
2.𝑇
, 𝑧
3.𝑇
, 𝑧
4.𝑇
).

For 0 ≤ 𝑡 ≤ 𝑇, the calculation of [𝑧
1
(𝑡), 𝑧
2
(𝑡), 𝑧
3
(𝑡), 𝑧
4
(𝑡)]

will be

𝑧
1
(𝑡) = 𝑧

1.0
+ 𝑔𝑡,

𝑧
2
(𝑡) = 𝑧

2.0
+ ℎ
1
𝑡 + 1

2ℎ2𝑡
2 + 1

3ℎ3𝑡
3,

𝑧
3
(𝑡) = 𝑧

3.0
+ 𝑔𝑧
2.0
𝑡 + 1

2𝑔ℎ1𝑡
2 + 1

6𝑔ℎ2𝑡
3 + 1

12𝑔ℎ3𝑡
4,

𝑧
4
(𝑡) = 𝑧

4.0
+ 𝑔𝑧
3.0
𝑡 + 1

2𝑔
2𝑧
2.0
𝑡2

+ 1
6𝑔
2ℎ
1
𝑡3 + 1

24𝑔
2ℎ
2
𝑡4 + 1

60𝑔
2ℎ
3
𝑡5

(30)

with

𝑔 = 𝑧
1.𝑇

− 𝑧
1.0

𝑇 ,
[ℎ
1
, ℎ
2
, ℎ
3
] = 𝐷−1𝑒,

𝐷 =
[[[[[[[
[

𝑇 1
2𝑇
2 1

3𝑇
3

1
2𝑔𝑇
2 1

6𝑔𝑇
3 1

12𝑔𝑇
4

1
6𝑔
2𝑇3 1

24𝑔
2𝑇4 1

60𝑔
2𝑇5

]]]]]]]
]

,

𝑒 =
[[[[
[

𝑧
2.𝑇

− 𝑧
2.0

𝑧
3.𝑇

− 𝑧
3.0
− 𝑔𝑧
2.0
𝑇

𝑧
4.𝑇

− 𝑧
4.0
− 𝑔𝑧
3.0
𝑇 − 1

2𝑔
2𝑧
2.0
𝑇2
]]]]
]

.

(31)
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Figure 6: Trajectory and velocity.

Simulation of this method is conducted with the same
parameters in Section 2 and is shown in Figures 6 and 7 using
the following equations:

𝜃 = arctan (𝑧
3
) ,

𝜑 = arctan (𝑧
2
𝑙cos3𝜃) ,

�̇� (𝑡) = �̇�
1
(𝑡) = 𝑔,

̇𝑦 (𝑡) = �̇�
4
(𝑡) = 𝑔𝑧

3.0
+ 𝑔2𝑧

2.0
𝑡

+ 1
2𝑔
2ℎ
1
𝑡2 + 1

8𝑔
2ℎ
2
𝑡3 + 1

12𝑔
2ℎ
3
𝑡4,

V
1
(𝑡) =

√�̇�2 (𝑡) + ̇𝑦2 (𝑡)
𝑟 ,

̇𝜃 = �̇�
3
cos2𝜃 = (𝑔𝑧

2.0
+ 𝑔ℎ
1
𝑡 + 1

2𝑔ℎ2𝑡
2 + 1

3𝑔ℎ3𝑡
3) cos2𝜃,

(32)

And, from (28),

�̇� = �̇�
2
(𝑡) 𝑙cos3𝜃 cos2𝜑 − 3 ̇𝜃 tan 𝜃 sin𝜑 cos𝜑. (33)

Figure 6 shows the trajectory (𝑥,𝑦) for the vehicle from initial
point to the final point and the velocity of the vehicle.

Figure 7 shows the vehicle body angle, 𝜃, and the steering
angle,𝜑, corresponding to the angular velocity, ̇𝜃 and �̇�, of the
vehicle.

As shown in Figure 7, the maximum steering angle for
this trajectory generation is 𝜑 = 41.5736∘ and satisfied
the constraint −45∘ ≤ 𝜑 ≤ 45∘. Therefore this trajectory
generation is better than the flatness method in the previous
part.

From Figure 6, it is really not realistic when the vehicle
speed is increasing exponentially. It is expected that, when a
vehicle is moving from one point to another point, the speed
will increase gradually at the starting point and decrease
gradually to the destination point. Therefore, in the next
part, new symmetric polynomial equations in third order are
investigated.

6. Symmetric Polynomial
Trajectory Generation

Since the system is flat and each flat output can be parame-
terized by a sufficiently smooth polynomial, symmetric third-
order polynomial equations are tried for this trajectory gen-
eration. Because the sideslip is ignored, the vehicle trajectory
does not depend on its speed, V

1
, and on the travelling time,

𝑇. A new time variable, therefore, for this system is applied
with a ratio of 𝑡/𝑇 for 𝑡 = 0 ÷ 𝑇:

𝑥 (𝑡) = −( 𝑡𝑇 − 1)
3

𝑥
0
+ ( 𝑡𝑇)

3

𝑥
𝑇

+ 𝑎
𝑥
( 𝑡𝑇)
2

( 𝑡𝑇 − 1) + 𝑏
𝑥

𝑡
𝑇(

𝑡
𝑇 − 1)

2
(34)

and the trajectory of 𝑦 is

𝑦 (𝑡) = −( 𝑡𝑇 − 1)
3

𝑦
0
+ ( 𝑡𝑇)

3

𝑥
𝑇

+ 𝑎
𝑦
( 𝑡𝑇)
2

( 𝑡𝑇 − 1) + 𝑏
𝑦

𝑡
𝑇(

𝑡
𝑇 − 1)

2

.
(35)

Derivation of 𝑥(𝑡) is

�̇� (𝑡) = −3( 𝑡𝑇 − 1)
2

𝑥
0
+ 3( 𝑡𝑇)

2

𝑥
𝑇
+ 𝑎
𝑥
2 𝑡𝑇 ( 𝑡𝑇 − 1)

+ 𝑎
𝑥
( 𝑡𝑇)
2

+ 𝑏
𝑥
( 𝑡𝑇 − 1)

2

+ 𝑏
𝑥
2 𝑡𝑇 ( 𝑡𝑇 − 1)

(36)

and derivation of 𝑦(𝑡) is

̇𝑦 (𝑡) = −3( 𝑡𝑇 − 1)
2

𝑦
0
+ 3( 𝑡𝑇)

2

𝑦
𝑇
+ 𝑎
𝑦
2 𝑡𝑇 ( 𝑡𝑇 − 1)

+ 𝑎
𝑦
( 𝑡𝑇)
2

+ 𝑏
𝑦
( 𝑡𝑇 − 1)

2

+ 𝑏
𝑦
2 𝑡𝑇 ( 𝑡𝑇 − 1) .

(37)

Then,

�̈� (𝑡) = −6 ( 𝑡𝑇 − 1) 𝑥
0
+ 6 𝑡𝑇𝑥𝑇 + 𝑎𝑥2 (2

𝑡
𝑇 − 1)

+ 𝑎
𝑥
2 𝑡𝑇 + 𝑏

𝑥
2 ( 𝑡𝑇 − 1) + 𝑏

𝑥
2 (2 𝑡𝑇 − 1) ,

(38)

̈𝑦 (𝑡) = −6 ( 𝑡𝑇 − 1)𝑦
0
+ 6 𝑡𝑇𝑦𝑇 + 𝑎𝑦2 (2

𝑡
𝑇 − 1)

+ 𝑎
𝑦
2 𝑡𝑇 + 𝑏

𝑦
2 ( 𝑡𝑇 − 1) + 𝑏

𝑦
2 (2 𝑡𝑇 − 1) .

(39)

The constraint on speed is

𝑟V
1
= �̇�
cos 𝜃 = ̇𝑦

sin 𝜃 . (40)

The constraint at starting point 𝑡 = 0 is

�̇� (0) = 𝑘
0
cos 𝜃
0
, ̇𝑦 (0) = 𝑘

0
sin 𝜃
0
. (41)

The constraint at destination point 𝑡 = 𝑇 is

�̇� (𝑇) = 𝑘
𝑇
cos 𝜃
𝑇
, ̇𝑦 (𝑇) = 𝑘

𝑇
sin 𝜃
𝑇
. (42)
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Figure 7: Body and steering angle.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

Po
sit

io
n 
y

 

Position x

Time t 

Ve
hi

cle
 v

elo
ci

ty
�
1

(k
m

)

Figure 8: Trajectory and velocity.
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Figure 9: Body and steering angle.
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Figure 10: Comparison of trajectory and velocity.
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Figure 11: Comparison of body and steering angle.
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Figure 12: Trajectory and velocity in reverse speed.
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Figure 13: Body and steering angle in reverse speed.

From (38), (39), (41), and (42), for the calculation simplicity,
it is assumed that the speed coefficients at the starting and
destination points, 𝑘

0
= 𝑘
𝑇
= 𝑘; then

𝑎
𝑥
= 𝑘 cos 𝜃

𝑇
− 3𝑥
𝑇
, 𝑏

𝑥
= 𝑘 cos 𝜃

0
− 3𝑥
0
. (43)

Similarly,

𝑎
𝑦
= 𝑘 sin 𝜃

𝑇
− 3𝑦
𝑇
, 𝑏

𝑦
= 𝑘 sin 𝜃

0
− 3𝑦
0
. (44)

Simulation is conducted with the same parameters in the
previous parts and is shown in Figures 8 and 9. The speed
coefficients are 𝑘

0
= 𝑘
𝑇
= 𝑘 = 1. Other parameters are

calculated in the following equations:

V
1
=
√�̇�2 + ̇𝑦2

𝑟 ,

𝜃 = arctan( ̇𝑦
�̇�) ,

𝜑 = arctan(𝑙cos
3𝜃 ̈𝑦

(�̇�)2 )

or 𝜑 = arctan(𝑙 ̈𝑦�̇� − �̈� ̇𝑦
𝑟(�̇�2 + ̇𝑦2)3/2

) ,

̇𝜃 = ̈𝑦�̇� − �̈� ̇𝑦
�̇�2

1
( ̇𝑦/�̇� )2 + 1

= ̈𝑦�̇� − �̈� ̇𝑦
�̇�2 + ̇𝑦2 =

tan𝜑
𝑙 𝑟V
1
,

�̇� =
𝜕 (arctan(𝑙 (( ̈𝑦�̇� − �̈� ̇𝑦) /𝑟(�̇�2 + ̇𝑦2)3/2)))

𝜕𝑡 .
(45)

It can be seen from Figure 8 that the trajectory of this
symmetric polynomial is more realistic because the velocity
increases from the starting point and decreases in the desti-
nation point as per the expectation.

The maximum steering angle for the symmetric polyno-
mial method is 𝜑 = 41.1622∘ and satisfied the constraint
−45∘ ≤ 𝜑 ≤ 45∘. This steering angle is smaller than the
steering angle in the second-order polynomial method. In
the next part, a comparison of the previous three methods
is presented.
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7. Performance Analysis

Performances of the three methods on the trajectory genera-
tion and the vehicle velocity are shown in Figures 10 and 11.

It can be seen that the symmetric polynomial generation
can produce a more realistic speed and a smoother trajectory
since it allows the vehicle gradually to increase the speed at
the starting point and reduce the speed at the destination
point.

Figure 11 shows the symmetric polynomial method pro-
viding the lowest body angle, 𝜃(𝑡), the body angle velocity,
̇𝜃(𝑡), the steering angle, 𝜑(𝑡), and the steering angle velocity,
�̇�(𝑡). Therefore, this method is recommended for the devel-
opment of an automatic control of tracking vehicles.

For the vehicle moving in reverse speeds, as mentioned
in (1), the vehicle velocity, V

1
, will change the sign. The

speed coefficients in (43) and (44) will be minus values.
Simulations for the reverse speeds are conducted with the
speed coefficients 𝑘

0
= 𝑘
𝑇
= 𝑘 = −1. Results of the simulation

are shown in Figures 12 and 13.
Since the vehicle is forced to reverse at the starting point

with 𝑘
0
= −1 and at the destination pointwith 𝑘

𝑇
−1, Figure 12

shows the vehicle reversing out at the starting point, going
forward to the destination, and then again reversing to the
parking space. The vehicle velocity is changing the direction
in three times.

Figure 13 shows the body angle, 𝜃, switching 180∘ in two
times corresponding to each reverse speed. The maximum
steering angle in this reverse speed is 𝜑max = 33.7097∘. This
number ismuch lower than the numbers of the forward speed
movements. However the travelling distance is also longer in
the reverse speed trajectory.

8. Conclusion

The paper has presented three methods of trajectory genera-
tion for autonomous vehicles subject to constraints. Regard-
ing the real vehicle speed development, the third-order
symmetric polynomial trajectory is recommended. Simula-
tions and analyses are also conducted for vehicle moving in
forward and in reverse speeds. Results from this study can
be used to develop a real-time control system for autodriving
and autoparking vehicles. The limitation of this study is the
ignorance of the vehicle sideslip due to the cornering velocity.
However this error can be eliminated with the feedback
control loop and some offset margins of the steering angle
constraint.
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