
Reasoning About Lock Placements

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv

Stanford University, AT&T Labs Research, MIT, Tel Aviv University

Abstract. A lock placement describes, for each heap location, which lock guards
the location, and under what circumstances. We formalize methods for reasoning
about lock placements, making precise the interacting obligations between the
program, the organization of the heap, and the placement of locks. Our methods
capture realistic and subtle situations, such as the placement and correct use of
speculative locks and lock assignments that change dynamically with updates
to the heap. We present results for flat heaps with no structure, tree-structured
heaps and a language of DAG-shaped heaps with bounded in-degree.

1 Introduction

Most concurrent software is written using locks. A lock can be acquired by a thread
and subsequently released; between the two operations the lock is said to be held by
the thread. The characteristic property of locks is that a lock may be held by only one
thread at a time, thereby providing a primitive for mutual exclusion between threads.

These definitions are standard and describe what locks do, but they fail to convey
the higher-level purposes for which programmers use locks. Universally, locks are used
to protect data, guaranteeing that only one thread operates on particular parts of the
store at a time. The association between locks and the data they protect is, however,
implicit, and in the presence of mutable data structures it is not even clear how to
describe the relationship between a possibly changing set of locks and the changing
heap the locks protect. Indeed, in many programs the association between locks and
the data they protect changes over time.

A widely-used approach to concurrency originating from the database community is
to use two-phase locking [9] to guarantee conflict serializability. This paper shows how
to apply two-phase locking to programs with potentially shared dynamically-allocated
data structures. We show that we can achieve conflict serializability by performing
two-phase locking on logical locks and we develop techniques for mapping logical locks
into concrete implementations in a way that captures the range of ways in which locks
are used in practice. Logical locks allow us to reason about speculative locks, and the
common situation in which updates to the heap change the association between locks
and the data they protect. Our approach also allows us to reason about concurrent
transactions on heaps with apparently-complex patterns of sharing in a simple way.

To explain our results, we begin with a slightly informal, simple, obviously correct,
but impractical locking protocol. We assume the heap consists of a set of objects, each
of which has a set of fields that can hold pointers to other objects. Equivalently, we can
view the heap as a graph of nodes (the objects) and edges (the fields). We also assume
that concurrent operations are expressed as transactions that execute atomically (e.g.,
database transactions, atomic blocks, or a similar atomicity primitive). Every heap
edge has a logical lock. For each transaction t, we use a standard two-phase locking
protocol:
1. Acquire all logical locks of every edge read or written by t.
2. Perform the reads and writes of t.
3. Release all of t’s logical locks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357237228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Because the transaction holds locks on every data item it touches before any writes
are performed, it is easy to prove that any interleaving of concurrent transactions
is serializable (equivalent to some sequential schedule of the transactions) [9]. The
disadvantage of this approach is that it is slow: acquiring locks is expensive, and in
practice acquiring a lock on every field of every object touched by a transaction is
exorbitantly expensive. Thus, practical locking protocols use fewer locks. For example,
a tree data structure might have a single lock at the root node, or a hash table may have
one lock per hash bucket, with no locks on the contents of the buckets. The key insight
is that in such designs the programmer has made an optimization: many logical locks
are represented by a single physical lock. That is, we can still think of a transaction as
acquiring all of the logical locks required, but now instead of acquiring the lock on the
actual edge e it must instead acquire the physical lock π(e) assigned to the edge by
the lock placement π. So, for example, in the tree case π(e) = ρ, where ρ is the tree’s
root, for every edge in the tree. For the hash table, π(e) = li, where the i-th bucket
has an associated physical lock li for every field e in the i-th bucket. When multiple
logical locks are represented by a single physical lock, transactions need only acquire
one physical lock to obtain access to multiple heap locations.

Thus, the starting point for our formal development is to distinguish between logical
and physical locks, and to make the mapping π from logical locks to their corresponding
physical locks explicit. In simple cases the lock placement π can be just a function from
logical locks to physical locks, but most interesting applications require more involved
mappings. The main complication is that the lock for an edge e can depend on the
state of the heap; that is, which physical lock guards e may change depending on heap
updates. For example, in the hash table example above, if an object o is moved from
bucket bi to bucket bj the lock guarding the fields of o also changes from li to lj .
Therefore, the mapping π(e) must encode a set of possible physical locks for e, each
of which applies in a different heap state. In general the heap and the lock mapping
are interdependent: which locks to acquire depends on the state of the heap, and any
transaction t must take care to lock those parts of the heap that, if changed by another
transaction, could alter the association between fields and the physical locks t holds.
We introduce the idea of stability to make this notion precise. A set of locks and object
fields is mutually stable if, given the current contents of the fields, the locks are sufficient
to guard those fields under π.

Lock placements provide a unifying explanation for common programming idioms
with locks:
– Locking at different granularities corresponds to altering the granularity of the lock

placement. For example, each element of a tree may have its own lock, or every
element of the tree may be associated with a single lock at the root. The lock
placement makes explicit which locations are guarded by the same lock, and where
that lock is placed.

– It is sometimes beneficial to place the lock guarding an object o in a field of o
itself, which means that o cannot be locked without first accessing o in an unlocked
state. The only safe way to acquire such speculative locks is to first read o, acquire
the lock, and then reread o to validate that the link to the lock was not altered
by a competing transaction before the lock was acquired. Our approach naturally
handles speculative locks. Lock placements are general (the lock can be placed
anywhere, including in the target of the field it is meant to protect) and the stability
condition requires the revalidation of any unstable reads.

– Which locks guard which fields often changes over time. As a simple example,
consider a heap in which all nil fields are guarded by a global lock, and all non-
nil fields are guarded by a speculative lock in the object the field points to. When
a nil field is assigned an object the global lock is split and no longer guards the
field, and when a pointer field is assigned nil that field is merged into the global

lock. Lock placements can depend on the state of the heap and so naturally capture
lock splitting and merging.

We develop our results incrementally, beginning with flat “heaps” that are just a
set of global variables with no pointers (Section 2). In this simple setting we formalize
the key notions of lock placements and stability, and we give a proof system for show-
ing that transactions are well-locked. We also prove our main result, that well-locked
transactions are serializable. We then consider heaps that are mutable trees (Section 3),
where the main complication is that logical locks are now named by paths in the tree,
which may be updated concurrently.

Finally, we consider mutable heaps with sharing (Section 4), where we extend our
methods to heaps that are DAGs—i.e., where there may be multiple access paths to
objects. To acquire a logical lock in the presence of sharing we must be sure that the
appropriate physical lock is held on all potential access paths to the field in question,
which means we must have some description of and be able to enumerate all such
paths. We use a recent proposal for describing a large class of heaps with sharing
called decompositions [13], though other approaches (e.g., a standard points-to or shape
analysis) could be used just as well. The main restriction of our approach is that our
proof technique applies only to DAGs where objects have bounded in-degree.

Because our focus is on formalizing and explaining lock placements and the safety
conditions under which they are used correctly, we do not consider protocols that
vary the strategy or implementation techniques for acquiring and releasing locks. In
particular, we do not concern ourselves with the order in which locks are acquired or
released. Thus, we do not discuss liveness properties such as deadlock or optimizations
such as early release of locks, as these issues are orthogonal to the ones we explore.
The standard techniques for ensuring deadlock-freedom can be applied in our context,
including both static techniques (imposing a total ordering on locks), and dynamic
techniques (using a contention manager to resolve deadlocks at runtime).

To summarize, our contributions are:
– We describe a novel two-level locking protocol in which we attach a logical lock to

every field in a heap and use a lock placement to map the possibly unbounded set
of logical locks to a smaller set of physical locks.

– We introduce the notion of heap stability, which describes what set of heap fields
are protected by a set of locks under a given lock placement.

– We describe well-locked transactions, which characterize serializable transactions
on the heap.

– To apply lock placements to dynamically-changing heaps, we propose path locking,
in which we use a placement scheme based on graph paths to describe a space of
locking strategies for tree- and DAG-structured heaps.

– We show that lock placements provide a simple explanation for standard program-
ming techniques, including locking at different granularities, speculative locks, and
lock splitting and merging.

2 Flat Maps

We first consider a simple class of heaps defined over a fixed set of memory locations
M. A flat map heap is a set of mappings {m 7→ b}m∈M from each location m ∈ M
to a boolean value b. Let L be a fixed set of physical locks; in this section we assume
that memory locations and locks are disjoint. For ease of exposition we consider only
exclusive locks — that is, if a transaction holds a lock then no other transaction may
acquire concurrent access to the same lock.

A common correctness criterion for concurrent transactions is serializability. Infor-
mally a concurrent execution of a set of transactions is serializable if the reads and
writes transactions make to the heap are equivalent to the reads and writes in some

m ∈M memory locations l ∈ L, L ⊆ L locks, lock sets
b ::= F | T booleans ω ::= m 7→ b heap assertions

π ⊆M→ 2L×Φ lock placements Φ 3 φ ::= b | ω | φ ∨ φ | φ ∧ φ guards

t ::= write(m, b) | observe(m) = b | read(m) = b | lock l | unlock l transaction ops.

Fig. 1. Locations, Lock Placements, Transaction Operations

serial schedule of the same set of transactions. By showing that concurrent executions
are serializable we can reason about our code as if only one transaction executes at a
time.

A transaction T is a sequence t1t2 . . . of the atomic transaction operations given
in Figure 1: a possibly unstable read of location m yielding b (read(m) = b), a stable
read of location m yielding b (observe(m) = b), a write of b to location m (write(m, b)),
a lock of a physical lock l (lock l), or an unlock of physical lock l (unlock l). With
the exception of the read and observe operations the concrete semantics of transaction
operations are standard; the details are in Appendix A. We assume the execution of
transaction operations is sequentially consistent.

The transaction language distinguishes between between high-level observe opera-
tions, which are observations of the state of memory that affect the outcome of a
transaction and for which the locking protocol must ensure serializability, and low-
level read operations, which do not directly affect the outcome of a transaction and
need not be serializable. A transaction may freely perform a read operation on any
memory location at any time, regardless of the locks that it holds, however there is no
guarantee that the value read will remain stable—other concurrent transactions may
update it. If a transaction holds locks that ensure that the value returned by a read op-
eration is stable and cannot be altered by concurrent transactions, then a transaction
may observe the result of the read operation and use that value to perform compu-
tation. The distinction between stable and unstable reads is key to reasoning about
speculative locking, which we discuss in Section 2.1.

2.1 Lock Placements

We associate a logical lock with every heap location m ∈ M. Whenever a transaction
observes or changes the value of a memory location it must hold the associated logical
lock. Unfortunately it is inefficient to attach a distinct lock to every memory location.
Instead we use a smaller set of physical locks (or simply locks) L to implement logical
locks; a lock placement describes the mapping from logical locks to physical locks.
Different choices of placement function describe different granularities of locking.

Formally, a lock placement π for a boolean heap is a mapping from each location
m ∈ M to a guarded set of locks that protect it. Each entry in π(m) is a pair of a
lock l ∈ L and a guard φ, which is a condition under which l protects m. A guard is a
boolean combination of heap assertions m 7→ b; for a given memory location each lock
may only appear at most once on the left hand side of a guarded lock pair, and the set
of guards must be mutually exclusive, and total, that is, exactly one guard is true for
any given heap state.

For example, suppose M = {m0, . . . ,mk−1}. Different placements allow us to de-
scribe a range of different locking granularities:
– A coarse-grain locking strategy protects every memory location with the same lock,

that is, set L = {l} and set π(mi) = {(l,T)} for all i. To observe or write to any
memory location a transaction must hold lock l.

– An medium-grain locking strategy stripes different memory locations across a small
set of locks. Set L = {l0, . . . , lp−1}, and then set π(mi) = {(l(i mod p),T)} for all i.
To observe or write to memory location mi, we must hold lock l(i mod p).

– A fine-grain strategy associates a distinct lock with every memory location. Set
L = {l0, . . . , lk−1} and set π(mi) = {(li,T)} for all i. To observe or write to
memory location mi we must hold lock li.

Coarse Intermediate Fine
lock l lock l1 lock l1
read(m1) = T read(m1) = T read(m1) = T
observe(m1) = T observe(m1) = T observe(m1) = T
read(m3) = F read(m3) = F lock l3
observe(m3) = F observe(m3) = F read(m3) = F
read(m4) = F lock l0 observe(m3) = F
observe(m4) = F read(m4) = F lock l4
unlock l observe(m4) = F read(m4) = T

unlock l1 observe(m4) = T
unlock l0 unlock l4

unlock l3
unlock l1

Fig. 2. Three transaction traces that observe the values
of memory locations m1, m3, and m4 under three differ-
ent lock placements.

Figure 2 shows three vari-
ants of a transaction that reads
memory location m1, m3 and
m4, observing values T, F, and
F respectively. The figure shows
a variant of the transaction for
each locking granularity, using
p = 2 physical locks in the
medium-grain case.

A speculative lock placement
is a placement in which the
identity of a lock that protects
a memory location depends on
the memory location itself. For
example a simple speculative
placement is as follows. Let L =
{lf , lt} and M = {m}. Set

π(m) = lf if m 7→ F, or lt if m 7→ T (1)

Under this placement, lock lf protects memory location m if m contains the value F,
whereas lock lt protects memory location m if m contains the value T.

A more realistic example of speculative lock placement is motivated by transactional
predication [4] which uses a speculative placement of STM metadata. We use a col-
lection M = {m1, . . . ,mk} of memory locations to model a concurrent set. Location
mi has value T if value i is present in the set. We use L = {l⊥, l1, . . . , lk} and the
placement

π(mi) = l⊥ if mi 7→ F, or liif mi 7→ T

The speculative placement allows us to attach a distinct lock to every entry present in
the set, without also requiring that we keep around a distinct lock for every entry that
is absent from the set. Two transactions that operate on keys present in the set only

(a) (b) (c)
1: read(m) = T read(m) = T lock lf
2: lock lt lock lt lock lt
3: read(m) = T read(m) = F read(m) = T
4: observe(m) = T unlock lt write(m,F)
5: unlock lt lock lf unlock lt
6: read(m) = F unlock lf
7: observe(m) = F
8: unlock lf
Fig. 3. Traces that read and write a memory lo-
cation m under the speculative lock placement
π(m) = {(lt,m 7→ T), (lf ,m 7→ F)}. In (a) the
trace observes the value of m; in (b) the trace in-
correctly speculates the lock protecting m due to
a concurrent update, and transaction (c) writes to
m by taking both locks.

contend on the same lock if they are
accessing the same key. Transactions
that operate on keys that are absent
will however contend on l⊥; this strat-
egy is effective if we expect sets to have
at most a small fraction of all possible
elements at any one time. If contention
on absent entries becomes a problem
we can reduce contention to arbitrarily
low levels by striping the logical locks
protecting absent entries across a set of
physical locks l1⊥, l

2
⊥, . . . as discussed

earlier.
It may not be immediately obvious

how to acquire a lock on a memory
location when we do not know which

(FLock)

l /∈ L
Ω,L π̀ lock l;Ω,L ∪ {l}

(FUnlock)

l ∈ L L′ = L \ {l} Ω′ = dΩ | L′;πe
Ω,L π̀ unlock l;Ω′, L′

(FReadUnstable)

Ω′ = Ω ∪ {m 7→ b} ¬lockedπ(m,Ω′, L)

Ω,L π̀ read(m) = b;Ω,L

(FReadStable)

Ω′ = Ω ∪ {m 7→ b} lockedπ(m,Ω′, L)

Ω,L π̀ read(m) = b;Ω′, L

(FObserve)

(m 7→ b) ∈ Ω
Ω,L π̀ observe(m) = b;Ω,L

(FWrite)

m ∈ domΩ Ω′ = Ω[m 7→ b](
∀m′, l, φ. (l, φ) ∈ π(m′) ∧m appears in φ =⇒ l ∈ L

)
Ω,L π̀ write(m, b);Ω′, L

Fig. 4. Well-locked transaction operations: Ω,L π̀ t;Ω
′, L′

lock to take without knowing the value of the memory location. The key to this ap-
parent circularity is that a transaction can use unstable reads to guess the identity of
the correct lock; once the transaction has acquired the lock it can redo the read to
verify that its guess was correct. If the transaction guesses correctly, then the second
read is stable. If the transaction guesses incorrectly it can release the lock and repeat
the process. Figure 3(a) shows a transaction that observes the state of m under the
speculative lock placement of Equation (1). If another transaction had raced, we might
have had to retry the read, as shown in Figure 3(b). Finally, to perform an update,
we must hold both locks, as shown in Figure 3(c); otherwise by changing m we might
implicitly release a lock that another transaction holds on a particular state of m.

2.2 Well-Locked Transactions

We represent the state of a transaction as two sets: the observation set Ω and a lock
set L. The observation set Ω is a set of heap assertions m 7→ b that represent a
transaction’s local picture of the heap. The lock set L is a set of physical locks held by
the transaction. Every heap assertion in the observation set must be stable; informally,
the facts in the observation set are logically locked and cannot be invalidated by a
concurrent interfering transaction. We write Ω[m 7→ b] to denote the result of adding
or updating the heap observationm 7→ b toΩ, replacing any existing observations about
m. The predicate lockedπ(m,Ω,L) holds for heap location m if a transaction with heap
observations Ω and locks L has logically locked location m under lock placement π:

lockedπ(m,Ω,L) = ∃(l, φ) ∈ π(m). l ∈ L ∧Ω ` φ

The judgement Ω,L π̀ t;Ω
′, L′ defined in Figure 4 characterizes well-locked opera-

tions. The judgment holds if when transaction operation t is executed by a transaction
with observations Ω and holding locks L, then on completion of the operation the
transaction has new observations Ω′ and locks L′. Given the set of physical reads,
writes and locks that a transaction performs, the well-lockedness judgement computes
the set of stable observations of the transaction, and ensures that a transaction’s logical
observations and writes only occur on locations on which a transaction holds logical
locks.

The (FLock) rule allows a transaction to acquire a lock l if the transaction does not
already have l in its set of locks L; acquiring a lock has no affect on the observation

set Ω. The (FUnlock) rule allows a transaction to release any lock l in its lock set
L; any facts in Ω that were protected by l are no longer stable, so the rule uses the
stabilization operator to compute a new stable set of observations Ω′. The stabilization
of a set of observations Ω0 under locks L and placement π, written dΩ0 | L;πe, is the
limit of the monotonic sequence:

Ωi+1 = {m 7→ b ∈ Ωi | lockedπ(m,Ωi, L)}

Note that the limit always exists, because Ω0 is finite (since it is constructed by a finite
transaction execution) and the empty set is always a fixed point of the equation if no
larger set is. A set of observations Ω is stable under locks L and placement π if Ω is
its own stabilization, that is, Ω = dΩ | L;πe.

Rule (FObserve) states that a transaction may logically observe any stable fact
from its stable observation set Ω. The (FReadUnstable) rule allows a transaction
to perform a speculative read on a memory location on which the transaction does not
hold a lock; however since the result may not be stable the rule does not update the set
Ω. To enable reasoning about speculation, the determination whether the read is stable
or not occurs in a context that includes the read of m; since we assume that reads are
atomic, there is an instant in time at which both the old stable facts in Ω and the
newly read value of m hold, and it is in that context that we determine stability. The
(FReadStable) rule allows a transaction to read memory locations on which it holds a
lock; since such a read is stable the rule updates the set of observationsΩ with the newly
read information about the heap. Finally the (FWrite) rule requires that a transaction
can only update a location m if it holds the lock on m; furthermore the lock for any
location m′ for which m appears in a guard must also be held by the transaction—
hence no transaction can destabilize the observations of another transaction. The last
condition together with the lockedπ(m,Ω,L) also implies that lockedπ(m,Ω′, L) holds,
which is why the latter is not listed as a precondition of the rule.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets Li

and observation sets Ωi such that

L0 = Lk = ∅, Ω0 = Ωk = ∅, and Ωi−1, Li−1 π̀ t
i;Ωi, Li for 1 ≤ i ≤ k.

As an example of applying the rules, consider again the speculative read transaction
shown in Figure 3(b). Let Ωi and Li denote the lock sets of the transaction after line
i. Initially we have Ω0 = ∅ and L0 = ∅. The read on line 1 is unstable, so Ω1 = ∅
and L1 = ∅. The lock on line 2 adds an entry to the lock set lt, so Ω2 = ∅ and
L2 = {lt}. The read on line 3 yields m 7→ F, however the read would only be stable if
lockedπ(m, {m 7→ F}, {lt}) holds, which it does not; once again we have Ω3 = ∅ and
L3 = {lt}. Lines 4 and 5 update the lock set; we have Ω4 = Ω5 = ∅, L4 = ∅, and
L5 = {lf}. The read on line 6 once again yields m 7→ F, but this time the predicate
lockedπ(m, {m 7→ F}, {lf}) holds and the read is stable, yielding Ω6 = {m 7→ F} and
L6 = {lf}. The logical observation of m 7→ F on line 7 is permitted by the judgement
since we know m 7→ F is part of the stable heap; the observation and lock sets are
unchanged (Ω7 = Ω6, L7 = L6). Finally, line 8 releases lock lf , so we have L8 = ∅.
The assertion about m in Ω7 is no longer stable, so the stabilization operator removes
it from the observation set, finally yielding Ω8 = ∅.

2.3 Serializability of Well-Locked Transactions

A schedule s for a set of transactions T1, . . . ,Tk is a permutation of the concatenation
of all transactions in the set, such that each transaction Ti is a subsequence of s.
Formally, a schedule is valid if it corresponds to an execution of the concrete semantics

(see Appendix A for details). Informally, validity requires the execution respect the
mutual exclusion property of locks, and memory accesses must accurately reflect the
state of the global heap. A schedule is serial if operations of different transactions are
not interleaved.

Lemma 1. Let s be a valid schedule of a set of well-locked transactions {T1, . . . ,Tk}.
Let Ωji and Lji be the set of observations and locks of each transaction after schedule
step j. Let hj be the heap after schedule step j. Then for all time steps j:
– the lock sets {Lji}ki=1 are disjoint, and

– the observation sets {Ωji }ki=1 are stable, have disjoint domains, and heap hj is an

extension of each {Ωji }ki=1.

Proof. By induction on the length of the schedule (see appendix for full proof).

The disjointness of observation sets in Lemma 1 is a consequence of the fact that our
physical locks are exclusive. If we allowed shared/exclusive locks, then we would also
need to allow observation sets to overlap on values protected by shared locks.

A well-locked transaction T = (ti)ki=1 is logically two-phase if the domains of the
observation sets of the transaction have a growing phase and a shrinking phase, that
is, there exists some j such that for all i where 1 ≤ i ≤ j, we have domΩi−1 ⊆ domΩi

and for all i where j < i ≤ k we have domΩi−1 ⊇ domΩi.
A logical schedule ŝ is the subsequence of a schedule s consisting of all the observe

and write operations. Two operations conflict if they access the same memory location
m. Two schedules s1 and s2 are conflict-equivalent if the logical schedule ŝ1 can be
turned into the logical schedule ŝ2 by a sequence of swaps of adjacent non-conflicting
operations.

Lemma 2. Any valid schedule of a set of well-locked, logically two-phase transactions
{T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

Proof. Identical to the usual proof of serializability of two-phase locking [9]. A fact is
“locked” when it is added to the observation set of a transaction, and “unlocked” when
it is removed from the observation set of the transaction. Disjointness of observation
sets is guaranteed by Lemma 1. The “read” and “write” operations of the two-phase
locking proof correspond to observe and write operations on the observation set.

2.4 Shared/Exclusive Logical Locks

A limitation of the protocol just presented is that locks are exclusive — holding a lock
gives a transaction sole access to an edge, even if the transaction only wants to read
the edge. Lock placement is a separate issue from whether non-exclusive locks exist
for reading. Exclusive locks are sufficient to illustrate all of the important features of
our techniques and have the advantage of not introducing the extra and extraneous
complications of supporting non-exclusive access. However, non-exclusive locks are im-
portant, and so we briefly illustrate how to extend our approach to locks providing
shared read access.

To allow shared access to fields we relax the requirement that guards must be mutu-
ally exclusive, thereby allowing each logical lock to map to many physical locks at the
same time. Under the relaxed definition of placement, a transaction has shared access
to a memory location m if it holds at least one of the locks that protect m, whereas
a transaction has exclusive access to m if it holds all of the locks that protect m.
Formally, a transaction has shared access to a memory location m if lockedπ(m,Ω,L)
holds. We also define a new predicate exclusiveπ(m,Ω,L) which holds for heap location

f, f ,F fields x, y, ρ object names
e ::= nil | x expressions ω ::= x.f 7→ e heap assertions
π ⊆ 2f → 2f placements

t ::= write(x.f, e) | observe(x.f) = e | read(x.f) = e

| x = new() | lock x | unlock x transaction ops.

Fig. 5. Tree transactions

m if a transaction with heap observations Ω and locks L has an exclusive logical lock
on location m under lock placement π:

exclusiveπ(m,Ω,L) = ∀(l, φ) ∈ π(m). l ∈ L ∨Ω ` ¬φ

To show serializability, we need to add an additional precondition to the (FWrite)
rule requiring that a transaction have exclusive access to any memory location it writes.
The statement of the proof of Lemma 1 must be altered since different observation sets
may share fields on which they hold a shared lock—only the exclusively held fields must
be disjoint between transactions. Finally we must update the definition of a two-phase
transaction to ensure that transactions only release exclusive access to a field in the
shrinking phase of a transaction.

3 Mutable Tree-Structured Heaps

In Section 2 we described a locking protocol for a class of flat heaps with a fixed set
of memory locations and locks. In this section we extend our results to dynamically
allocated, mutable tree-shaped heaps with a placement function based on paths.

A tree heap h consists of a set of objects, each with a unique name, usually denoted
x or y. Every object has a fixed set of fields F . Each object field x.f contains a pointer
either to some object y or nil. The heap contains a distinguished root object, named ρ.
In a quiescent state, that is, in the absence of running transactions, we require that
the heap be a forest.

As in the case of flat heaps, we associate a logical lock with every field of every
object in the heap. Unlike the flat heaps of Section 2 we do not assume that we have a
separate set of locks distinct from the set of memory locations; instead, following the
practice of languages such as Java, we require that every heap object can function as
a physical lock, and we use a lock placement function to describe a policy for mapping
the logical locks attached to fields onto the physical locks (the objects). To define the
lock placement, we use access paths from the root ρ to name both the fields we want
to protect and the objects whose physical locks protect them.

We extend the set of transaction operations of Section 2 to read from and write
to fields of objects, to handle dynamic allocation of new objects, and to apply lock
and unlock operations to objects rather than a separate set of locks. The transaction
operations, shown in Figure 5, are: write an expression e (either an object y or nil)
to field f of object x (write(x.f, e))), a possibly unstable read of field f of object x
yielding result e (read(x.f) = e), a stable observation of field f of object x yielding e
(observe(x.f) = e), allocation of a fresh object (x = new()), locking an object (lock x),
and unlocking an object (unlock x).

3.1 Lock Placements

We name edges in the heap as a non-empty field path (a sequence of field names)
f = f1f2 . . . from the root, ending in the edge in question. Since the path names a field

in the heap, the path must be non-empty. We also name objects using fields, except
that the path ends at the object the field points to; note that in the case of objects the
empty path names the root of the heap. A lock placement π is a function from non-
empty paths to paths, which maps every edge in a heap to an object whose attached
physical lock protects it.

(a) ρ

x y

nil vz u

a b

a b a b

(b) ρ

nil y

nil v

a b

a b

Fig. 6. Two examples of tree-structured heaps.
Nodes (e.g., x, y) represent objects, whereas edges
(labeled a, b) represent fields. Node ρ is the root
object of the heap.

Consider heaps with field labels
drawn from the set F = {a, b}. We can
protect every edge of the heap with a
single coarse-grain lock at the root by
setting π1(f) = ε for all f . If we want
different locks for the a and b subtrees,
we can use the lock placement

π2(f) =


a if a ≺ f

b if b ≺ f

ε if f = a or f = b

(2)

where g ≺ f denotes that g is a prefix of f . For example, in Figure 6(a), under placement
π2 the lock at ρ protects the edges from ρ to x and from ρ to y, the lock at x protects
the edges from x to z and from x to u, and the lock at y protects the edge from y to v.

If for an edge f the placement path π(f) leads to nil in the heap, we use the lock on
the object immediately preceding the edge to nil in the placement path. For example,
consider the heap of Figure 6(b) under the placement π2. The lock that protects the
edge named by the path ab according to the placement is π2(ab) = a, however the edge
a from the root node ρ points to nil. In this case, we use the lock on the longest non-nil
prefix of π2(ab) to protect the edge ab, namely ρ itself.

Modifications to the heap may implicitly alter the mapping from logical locks to
physical locks. If a transaction updates an edge, then the transaction must hold all
logical locks whose mapping to physical locks may change both before and after the
update. For example consider again the lock placement π2 in the context of the tree
heap shown in Figure 6(b). According to the placement the lock on ρ protects the edge
a from the root; however since edge a points to nil, edges on any path that begins with
a are also protected by the lock at a. If a transaction were to set ρ.a to point to a fresh
vertex w, the lock at w would now protect the edges on paths that begin with a; the
transaction has split the logical roles of the lock at ρ before the write between the lock
at ρ and the lock on new node w. Whenever a transaction splits or merges locks (e.g.,
by setting the field ρ.a to nil again), it must hold every lock involved.

Figure 7(a) shows a trace of a transaction that adds a new edge labeled a from object
y to a fresh object w to the heap of Figure 6(b) under placement π2. The transaction
acquires two locks, namely lock at ρ that protects the edge from ρ to z, and the lock
at y that protects the entire subtree rooted at y. We need not hold a lock on w when
adding w into the tree since no path in the range of the placement function is a suffix
of the path to the updated edge ba.

If we desired a finer-grain locking, we can use a lock attached to every object to
protect the fields of that object by using the placement function

π3(gf) = g for any g, f. (3)

The lock placement π3 places the lock that protects each edge f on the object at the
head of the edge. Figure 7(b) shows a trace of a transaction that again adds the edge
labeled a from node z to a fresh node x to the heap of Figure 6(b), this time under lock
placement π3. Unlike the transaction of Figure 7(a), we need to ensure that by adding
the new edge the write does not implicitly change the mapping from edges to locks.

The well-lockedness conditions, which we introduce shortly, require that a transaction
hold all physical locks which may map to different logical locks before and after a write.
The operation read(y.a) = nil verifies that there is no existing subtree of y reachable
via edge a. Before the update the lock at y protects every possible edge reachable from
y.a, however after the write the lock y only protects the edge y.a itself, whereas the
lock at w protects everything reachable from node w. Hence we must hold lock w when
performing the write, since adding the edge splits the lock at y. (In general one must
hold locks when connecting objects into the heap, however in this specific case, since
the write which links w to the heap is the last write in the transaction it would be
possible to optimize away the lock and unlock.)

(a) (b) (c)
lock ρ lock ρ read(ρ.b) = y
read(ρ.b) = y read(ρ.b) = z lock y
observe(ρ.b) = y observe(ρ.b) = z read(ρ.b) = y
lock y lock y observe(ρ.b) = y
w = new () read(y.a) = nil read(y.a) = nil
write(y.a, w) w = new () w = new ()
unlock y lock w lock w
unlock ρ write(y.a, w) write(y.a, w)

unlock w unlock w
unlock y unlock y
unlock ρ

Fig. 7. Three transaction traces that add a new outgoing
edge labelled a from node z to the tree of Figure 6(b)
under: (a) the lock placement π2 defined in Equation (2),
(b) the lock placement π3 defined in Equation (3), and
(c) the lock placement π4 defined in Equation (4).

Finally, we can use a specu-
lative placement, as in the last
section. If we set

π4(f) = f (4)

the lock that protects each edge
is located at the target of the
edge. Figure 7(c) once again
shows a transaction that adds a
fresh edge labeled a to node z,
this time using lock placement
π4. The transaction begins by
performing a speculative read to
guess that the identity of the ob-
ject whose lock protects ρ.b is y.
After locking y, the transaction
performs the read again; since

the read still returns y, we know that the read is stable since the transaction already
holds lock y. The transaction then performs a read of y.a which returns nil. The value
of the placement function for edge y.a is π(ba) = ba, however since edge ba points to
nil, the lock on the longest non-nil prefix of ba protects ba, in this case path b (node y).
Since we hold the lock on y already, we know that the read of y.a is also stable. Finally,
the transaction must hold the lock on w when adding it to the heap to maintain the in-
variant that a transaction must hold all physical locks whose logical/physical mapping
changes as a consequence of a write.

3.2 Well-Locked Transactions

We represent a transaction’s state by three sets. As before, L is the set of locks that
transaction holds, and Ω is a set of stable heap observations of the form x.f 7→ e. We do
not require Ω be a forest; a transaction may create any heap shapes it desires within
its local heap. However, the forest invariant must be restored when the transaction
releases objects in its local heap back into the global heap. Enforcing this condition is
the purpose of the set Γ . An object x is a member of Γ if the transaction has shown
that there is no globally visible path from the root to x (i.e., the transaction has locked
the edge to x). The well-lockedness rules for tree heaps ensure that there is at most
one globally-visible edge to any node and hence the globally-visible part of the heap is
a forest. At the start of every transaction Γ is the empty set. Transactions add entries
to Γ by discovering global edges to nodes and transferring them into their local heap
Ω; entries are removed from Γ when pointers to objects are released from the stable
heap Ω back into the global heap.

The path alias judgement Ω ` f ∼ x holds if f is a path in Ω from the root to
location x; that is, if |f | = k, then there is a sequence of vertices v = v0v1 · · · such that

(TLock)

x /∈ L
Ω,Γ, L π̀ lock x;Ω,Γ, L ∪ {x}

(TUnlock)

x ∈ L L′ = L \ {x}
(Ω′, Γ ′) = dΩ;Γ | L′;πe forest(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L π̀ unlock x;Ω′, Γ ′, L′

(TNew)

Ω′ = Ω ∪ {x.f 7→ nil | f ∈ F}
x /∈ domΩ x /∈ Γ Γ ′ = Γ ∪ {x}

Ω,Γ, L π̀ x = new();Ω′, Γ ′, L

(TObserve)

(x.f 7→ e) ∈ Ω
Ω,Γ, L π̀ observe(x.f) = e;Ω,Γ, L

(TReadUnstable)

x.f /∈ domΩ Ω′ = Ω ∪ {x.f 7→ e}
¬lockedπ(x.f,Ω′, Γ, L)

Ω,Γ, L π̀ read(x.f) = e;Ω,Γ, L

(TReadStable)

x.f /∈ domΩ Ω′ = Ω ∪ {x.f 7→ e}

lockedπ(x.f,Ω′, Γ, L) Γ ′ =

{
Γ if e = nil

Γ ∪ {y} if e = y

Ω, Γ, L π̀ read(x.f) = e;Ω′, Γ ′, L

(TWrite)

x.f ∈ domΩ Ω′ = Ω[x.f 7→ e](
∀g,h. (Ω ` g ∼ x) ∧ gf � π(h) =⇒ pathlockedπ(h, Ω, L) ∧ pathlockedπ(h, Ω′, L)

)
Ω,Γ, L π̀ write(x.f, e);Ω′, Γ, L

Fig. 8. Well-locked tree operations: Ω,Γ, L π̀ t;Ω
′, Γ ′, L′

(ρ.f0 7→ v0) ∈ Ω, (vi−1.fi−1 7→ vi) ∈ Ω for all 1 < i < k − 1, and vk−1.fk−1 7→ x. We
write f ∈ Ω if the path f from the root vertex exists in Ω, that is, Ω ` f ∼ x holds for
some object x.

The restriction of a path f to a local heap Ω, written f |Ω is defined as:

f |Ω =


f if f ∈ Ω
g where ∃g, h. gh � f ∧Ω ` nil ∼ gh

undefined otherwise

The restriction of path f is either f itself if present in the heap, or the longest prefix
of the path present in the heap where no edge points to nil. The restriction of a path
is undefined if the path f leaves the stable local heap Ω.

We hold the lock on an edge reached via a path if we hold the corresponding lock
placement, restricted to the heap:

pathlockedπ(f , Ω, L) ::= ∃x ∈ L. Ω ` π(f)|Ω ∼ x

We hold the lock on a field f of an object x under observations Ω, objects Γ and
locks L, written lockedπ(x.f,Ω, Γ, L), if we hold a lock on field f on every path in the
local heap, and furthermore there are no paths to x outside the local heap. Formally,

lockedπ(x.f,Ω, Γ, L) ::= x ∈ Γ ∧ ∀g. (Ω ` x ∼ g =⇒ pathlockedπ(gf,Ω, L))

If the local heap Ω contains cycles, observe that there may be infinitely many paths
g and the predicate is well-defined in this case. To verify the absence of paths to x from
outside the local heap, it is sufficient to check that x ∈ Γ , because any object y 6∈ Γ is
outside the local heap and thus has no stable fields and cannot form part of a path to
x. Further, the definition of the locked predicate implies that if there is no path from
the root ρ to a node x, then the fields of x are locked for any transaction with x ∈ Γ ;

thus newly allocated objects can be immediately added to Γ without taking an explicit
lock since they are created disconnected from the global heap.

The judgement Ω,Γ, L π̀ t;Ω
′, Γ ′, L′ defined in Figure 8 captures the class of well-

locked tree operations. If the judgement holds, then a transaction that executes oper-
ation t under stable observation set Ω, objects Γ , and lock set L yields a new stable
observation set Ω′, objects Γ ′ and lock set L′. The (TNew) rule states that all of the
fields of a newly allocated object x point to nil, and since there can be no path to x in
the heap all of x’s fields are stable and x ∈ Γ . As before, the (TLock) rule allows a
transaction to acquire a lock it does not yet hold and has no affect on either Ω or Γ .

In the (TUnlock) rule, the stabilization operator is slightly more involved that
in the case of flat heaps, because we must compute not just the stable set of heap
facts, but also the set of objects for which the transaction has locked the incoming
path: if an edge x.f 7→ y drops out of the stable observation set because a lock is
released, the transaction can no longer assume it holds locks on all of the paths to
object y. The stabilization (Ω′, Γ ′) of a local heap Ω0 and global heap Γ0 under locks
L and placement π, written (Ω′, Γ ′) = dΩ0;Γ0 | L;πe, is the limit of the monotonically
decreasing sequence:

Ωi+1 = {x.f 7→ e ∈ Ωi | lockedπ(x.f,Ωi, Γi, L)} Γi+1 = Γi \ {y | x.f 7→ y ∈ Ωi \Ωi+1}

In addition, rule (TUnlock) requires that transactions maintain the forest condition

forest(Ω,Ω′, Γ, Γ ′) ::= ∀y. |{x.f | (x.f 7→ y) ∈ Ω \Ω′}| =

{
1 if y ∈ Γ \ Γ ′
0 otherwise.

The forest condition ensures that a transaction may only release a pointer to a node y
into the global heap if there are no other references to y in the global heap (y ∈ Γ).
Furthermore, the condition also ensures that a transaction cannot release two or more
pointers to the same location y into the global heap.

The rules (TObserve), (TReadUnstable), and (TReadStable) are similar to
the rules in Section 2, updated to reflect that the heap now involves objects and fields.
Note that (TReadStable) adds the object that is the target of the read to Γ in the
case that the field is not nil.

The most interesting rule is (TWrite). Writing a field x.f 7→ y not only changes
the paths to y, it changes the paths a to every object reachable from y. Thus, as a
result of a single field update, the lock placements may change for y and every edge
reachable from y. Furthermore, fields no longer reachable from x.f after the update
also may have altered lock placements. For this reason a transaction must hold locks on
every edge reachable from x.f both before and after the update. These conditions are
necessary for safety, but need not be burdensome if the lock placement has a suitable
granularity. For example, if the subtrees rooted at x and y are locked by the locks at
x and y respectively, the update requires two locks.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets Li,
observation sets Ωi, and object sets Γ i such that

L0 = Lk = ∅, Ω0 = ∅, Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 π̀ t
i;Ωi, Γ i, Li for 1 ≤ i ≤ k.

A well-locked must begin with all three sets Ω, Γ , L empty. Furthermore at the end of
the transaction the set of locks L must be empty again, and hence a transaction must
release all of its locks. We do not require that Ω or Γ be empty at the conclusion of a
transaction; however since the transaction may not hold any locks on termination, any
part of the heap that is stable and in Ω with an empty lock set cannot be reachable
from the global and can be garbage-collected.

Lemma 3. Let s be a valid schedule of a set of well-locked transactions {T1, . . . ,Tk}.
Let Ωji , Γ ji , and Lji be the set of observations, objects, and locks of each transaction
after schedule step j. Let hj be the heap after schedule step j, and suppose h0 is a
forest. Then for all time steps j:
– the lock sets {Lji}ki=1 are disjoint.

– the observation sets {Ωji }ki=1 are stable, have disjoint domains, and heap hj is an

extension of each {Ωji }ki=1.

– the sets {Γ ji }ki=1 are disjoint, and

– the global heap hj less edges present in the local heaps {Ωji }ki=1 is a forest. Further-

more if x ∈ Γ ji then every pointer to node x in the heap is an element of some local

heap Ωji′ .

The proof of Lemma 3 is in the appendix. Finally, we have a logical serializability
lemma analogous to Lemma 2:

Lemma 4. Any valid schedule of a set of well-locked, logically two-phase tree transac-
tions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

As in the flat heap case, these results can be extended to shared/exclusive locks using
the approach in Section 2.4.

4 Transactions on DAGs of Bounded Degree

At the core of the locking protocol of Section 3 is the invariant that the global heap is a
forest. Since lock placements are defined using access paths, for soundness the locking
protocol must verify that a transaction holds the locks that protect an edge on every
possible access path. In a forest there can be at most one path between nodes.

In this section we show how to relax the forest restriction and apply lock placements
to a class of directed acyclic graph heaps with a bounded number of paths to each
node. The technical machinery developed so far remains almost unchanged, with the
exception that the forest condition is replaced by a condition that allows for more paths
to an object. One hurdle, however, is that we need to define some language of heaps with
sharing—we need some way to describe the aliasing patterns in the heap, for otherwise
it is not possible to define what it means to be sound for any locking protocol. We use
a recent proposal for describing a large class of heaps with sharing [13], which describe
decomposition heaps whose shape matches a static description given by a decomposition
heap shape. We stress that our results are not limited to class of heaps described in
[13]; our techniques could be applied analogously to any number of other methods for
describing the possible shapes of the heap. The point is that we need some description
of the sharing patterns in the heap, and one good choice is to use decomposition heaps.

A decomposition heap shape ĥ is a rooted, connected, directed acyclic graph (V̂ , Ê)

consisting of a set of vertices V̂ = {û, v̂, . . . } and a set of edges Ê ⊆ V̂ × F̂ × V̂ labeled

with field names drawn from a set F̂ . We require that every edge in a decomposition
shape have a unique field label. Figure 9(a) gives a decomposition heap shape describing
the data structures of a simple process scheduler. Every process has associated fields
pid (process id), ns (name space), and the process’ assigned cpu. To find the cpu of
a particular process, we can first look up the the process id by following edge âpid
and then the process’ name space by following edge ĉns, or we can first look up the

name space by following edge b̂ns and then the process id by following edge d̂pid. For
a given pair of process id and name space, the shared node ŵ in the decomposition
shape assures us we will get the same result regardless of which path we take.

û, v̂ decomposition vertices ui, vj ,V object names

f̂ , f̂ abstract fields fi, fj , f concrete fields
e ::= nil | vi expressions ω ::= ui.f 7→ e heap assertions

π ⊆ 2f̂ → 2f̂ placements

t ::= write(ui.f , e) | observe(ui.f) = e | read(ui.f) = e

| vi = new v̂ | lock vi | unlock vi transaction ops.

Fig. 10. Decomposition transactions

(a) (b)
ρ

ŷ ẑ

ŵ

v̂

âpid b̂ns

ĉns d̂pid

êcpu

ρ

y1 y2 z1 z2

w1 w2 w3

v1 v2 v3

a1 a2 b1 b2

c1 c2 c1 d1 d2 d3

e1 e2 e3

Fig. 9. (a): A decomposition heap shape, and
(b): a decomposition heap that is an instance of
decomposition heap shape (a).

A decomposition shape is a static
description of a class of heaps. Let
in(v̂) be the set of field names incom-
ing to v̂ in a decomposition shape and
let out(v̂) be the set of outgoing field
names. A heap (V,E) is an instance of

a decomposition shape d̂ if
– every vertex in V is an instance vi

of some vertex v̂ ∈ V̂ ,
– every edge (ui, fj , vk) ∈ E is an

instance of some (û, f̂ , v̂) ∈ Ê, and
– every vertex vi has exactly one in-

stance fi of every incoming edge

f̂ ∈ in(v̂).
The last condition provides a bound on the in-degree of a vertex, which is the key
to applying path-based lock placements to decomposition heaps. Figure 9(b) shows a
heap that is an instance of the process scheduler decomposition shape of Figure 9(a).

The nodes are objects in memory. Every edge f̂ from a vertex û to a vertex v̂ of the
decomposition shape has a corresponding set of edges {f1, f2, · · · } outgoing from any
instance ui of û in a decomposition heap. Intuitively, each vertex (object) u has a
container data structure called f that contains references to a set of instances of v̂. For
example in Figure 9(b), the root object ρ has a set of process id’s (the ai) and a set of
name spaces (the bi). Note how the decomposition shape in Figure 9(a) is replicated
across a number of different instances in Figure 9(b) with the stated sharing properties.

The well-lockedness rules defined below quantify over all paths that are a suffix of
a particular path f . To keep our transaction-language small, we impose an additional

requirement that each the set of possible instances fi of each abstract edge f̂ be drawn
from a bounded set; that is i ∈ {1, . . . , k} for some k. The bounded set restriction can
be lifted by extending the transaction language with an iteration operation that allows
a transaction to iterate over all instances of an edge from a vertex; the addition of
iteration gives another way for the rules to conclude the a fact holds for all instances

of an abstract edge f̂ .
The transaction operations on DAGs are almost identical to the set of operations on

trees (Section 3). The transaction operations, shown in Figure 10, are: write an expres-
sion e (either nil or some vk to field fj of object ui (write(ui.fj , e))), a possibly unstable
read of field fj of object ui yielding result e (read(ui.fj) = e), a stable observation of
field fj of object ui yielding e (observe(ui.fj) = e), allocation of a fresh object of type
v̂ (vi = new v̂), locking an object (lock vi), and unlocking an object (unlock vi).

4.1 Lock Placements

Lock placements are defined exactly as in the tree case: π is a function from non-empty
heap paths to paths, which maps every edge in a heap to an object whose lock protects
it. Because edges may now have multiple paths that reach them, a transaction must
hold locks on all paths to an edge to perform a stable read or to write the edge.

Line (a) (b)
1: lock ρ read(ρ.a2) = y2
2: read(ρ.a2) = y2 lock y2
3: read(ρ.b2) = z2 read(ρ.a2) = y2
4: observe(ρ.a2) = y2 observe(ρ.a2) = y2
5: observe(ρ.b2) = z2 read(ρ.b2) = z2
6: read(y2.c7) = nil lock z2
7: read(z2.d5) = nil read(ρ.b2) = z2
8: w4 = new ŵ observe(ρ.b2) = z2
9: write(y2.c7, w4) read(y2.c7) = nil
10: write(z2.d5, w4) read(z2.c5) = nil
11: unlock ρ w4 = new ŵ
12: write(y2.c7, w4)
13: write(z2.d5, w4)
14: unlock z2
15: unlock y2
Fig. 11. Example transactions that add a new
node w4 with access paths a2c7 and b2d5 to the de-
composition heap instance shown in Figure 9(b),
under (a) lock placement π1 defined in Equa-
tion (5), and (b) lock placement π3 defined in
Equation (6).

We now illustrate some of the possi-
bilities for lock placements on decom-
position heaps. For our standard first
example, by setting

π1(f) = ε for all f (5)

we can use a single lock at the root
of the heap to protect every edge in a
decomposition instance. Figure 11(a)
shows a well-locked transaction that
adds a fresh instance of ŵ, namely w4,
to the heap of Figure 9(b) under lock
placement π1. Acquiring the lock on
ρ protects the entire heap graph; the
transaction then adds w4 under both
the access path a2c7 and b2d5.

Another possibility is to use the
placement

π2(f) =


ε if f ∈ {ai, bi, aicj , aidj}
aicj if f = aicjek
bidj if f = bidjek

which uses a lock at the root to protect instances of edges â, b̂, ĉ, and d̂, and locks at
instances of node ŵ to protect instances of edge ê. Since instances of edge ê can be
reached by two different paths, and thus to observe ê a transaction must acquire locks
on both paths.

Finally, we can use a speculative lock placement. For example, we could protect

instances of edges â and b̂ using speculative locks placed at their targets, and use locks

at y and z to protect edges ĉ, d̂, and ê, via the lock placement

π3(f) = ai if ai � f , and bj if bj � f (6)

Figure 11(b) again shows a transaction that adds a fresh instance w4 of node ŵ, this
time under the speculative locking placement π3.

4.2 Well-Locked Transactions

As in the case of tree heaps we represent the state of a transaction using three sets: Ω
(the local stable heap), L (the held set of locks), and Γ . Sets Ω and L are defined as
for trees, but we extend the definition of Γ to DAGs with bounded sharing.

The purpose of Γ is to track objects for which the transaction holds locks on incoming
edges. In particular, if a transaction does not hold locks on some incoming edges to an
object o, then there may be a path from the global heap to o and the transaction cannot
rely on the stability of o’s fields. Thus Γ is the transaction’s view of the global heap and
what other transactions might be able to do to objects of interest to the transaction.

(DNew)

Ω′ = Ω ∪ {vi.fj 7→ nil | f̂ ∈ out(v̂)}
vi /∈ domΩ Γ ′ = Γ [vi 7→ in(v̂)] vi /∈ domΓ

Ω, Γ, L π̀ vi = new v̂;Ω′, Γ ′, L

(DLock)

vi /∈ L
Ω,Γ, L π̀ lock vi;Ω,Γ, L ∪ {vi}

(DUnlock)

vi ∈ L L′ = L \ {vi}
(Ω′, Γ ′) = dΩ;Γ | L′;πe balias(Ω,Ω′, Γ, Γ ′)

Ω,Γ, L π̀ unlock vi;Ω
′, Γ ′, L′

(DObserve)

(ui.fj 7→ e) ∈ Ω
Ω,Γ, L π̀ observe(ui.fj) = e;Ω,Γ, L

(DReadUnstable)

ui.fj /∈ domΩ
Ω′ = Ω ∪ {ui.fj 7→ e}
¬lockedπ(ui.fj , Ω

′, Γ, L)

Ω,Γ, L π̀ read(ui.fj) = e;Ω,Γ, L

(DReadStable)

ui.fj /∈ domΩ Ω′ = Ω ∪ {ui.fj 7→ e}

lockedπ(ui.fj , Ω
′, Γ, L) Γ ′ =

{
Γ if e = nil

Γ [vi 7→ Γ (vi) ∪ {f̂}] if e = vi

Ω,Γ, L π̀ read(ui.fj) = e;Ω′, Γ ′, L

(DWrite)

ui.fj ∈ domΩ Ω′ = Ω[ui.fj 7→ e](
∀g,h. (Ω ` g ∼ ui) ∧ gf � π(h) =⇒ pathlockedπ(h, Ω, L) ∧ pathlockedπ(h, Ω′, L)

)
Ω,Γ, L π̀ write(ui.fj , e);Ω

′, Γ, L

Fig. 12. Well-locked decomposition operations: judgement Ω,Γ, L π̀ t;Ω
′, Γ ′, L′.

The global heap view Γ is a mapping from each vertex vi in the heap to the subset of
the incoming edge labels of the decomposition in(v̂) known to be absent from the global
heap (i.e., either non-existent or locked by the transaction). We maintain the invariant
that in the global heap there is at most one edge to any instance of a decomposition

vertex v̂ labeled with an instance of each f̂ ∈ in(v̂). If Γ (vi) = ∅, then vi may have an

instance of each incoming edge in in(f̂) in the global heap. If Γ (vi) = {f̂} then v has

no incoming edge in the global heap labeled with an instance of f̂ . If Γ (v) = in(v̂) then
v has no incoming edges from the global heap.

As before, we hold the lock on an edge reached via a path if we hold the path’s
corresponding lock placement, restricted to the heap:

pathlockedπ(f , Ω, L) ::= ∃vi ∈ L. Ω ` g ∼ vi ∧ π(f)|Ω = g,

where fΩ is the restriction of path f to heap Ω, defined in Section 3.
The judgement Ω,Γ ` exposed(x) holds if there may be a path to vertex x in the

heap that does not lie entirely in the stable observation set Ω; the judgement is defined
by the inference rules:

Γ (vk) 6= in(v̂)

Ω,Γ ` exposed(vk)

Ω,Γ ` exposed(ui) ∧ (ui.fj 7→ vk) ∈ Ω
Ω,Γ ` exposed(vk)

We hold the lock on a field x.f if we hold a lock on that field on every path in the
local heap, and there are no paths to x outside the local heap.

lockedπ(vi.fj , Ω, Γ, L) ::= ¬exposed(vi) ∧ ∀g. (Ω ` g ∼ vi =⇒ pathlockedπ(gfj , Ω, L))

The judgement Ω,Γ, L π̀ t;Ω
′, Γ ′, L′ defined by the rules in Figure 12 describes the

class of well-locked decomposition operations, analogous to the class of well-locked tree
operations of Section 3. The judgement holds if a transaction executing operation t
under local heap Ω, global heap approximation Γ , and locks L yields an updated local
heap Ω′, global heap approximation Γ ′, and lock set L′. The (DNew) rule states that
the fields of a newly allocated object vi point to nil; furthermore there can be no heap
paths to a freshly allocated object so assertions about the fields of vi are stable and
Γ (vi) = in(v̂). The (DLock) rule allows a transaction to acquire a lock that it does
not hold at any time.

The (DUnlock) rule allows a transaction to release any lock that it holds; the
rule applies the stabilization operation to remove any newly unstable facts from Ω.
Similar to the tree case, the stabilization (Ω′, Γ ′) of a local heap Ω0 and global heap
Γ0 under locks L and placement π, written (Ω′, Γ ′) = dΩ0;Γ0 | L;πe, is the limit of
the monotonically decreasing sequence:

Ωi+1 = {uj .fk 7→ e ∈ Ωi | lockedπ(uj .fk, Ωi, Γi, L)}
Γi+1 = Γi \ {vk 7→ f̂ | ui.fj 7→ vk ∈ Ωi \Ωi+1}

To ensure that there is at most instance of any edge label f̂ ∈ in(v̂) in the global heap,
the rule requires the bounded alias condition

balias(Ω,Ω′, Γ, Γ ′) ::= ∀vk. |{ui.fj | (ui.fj 7→ vk) ∈ Ω \Ω′}| =
{

1 if f̂ ∈ Γ (vk) \ Γ ′(vk)

0 otherwise.

The bounded alias condition ensures that a transaction may only release an edge with

abstract label f̂ to a node vk into the global heap if there are no other edges to vk
labeled f̂ in the global heap (f̂ ∈ Γ (vk)). Further the condition forbids releasing two

pointers with the same label f̂ to the same node vk into the global heap.
Rule (DObserve) states that a transaction may logically observe stable facts about

the heap. The (DReadUnstable) rule allows a transaction to read a value specula-
tively at any time, however unstable reads do not update Ω or Γ . A transaction may
perform a stable read of a pointer if it holds the appropriate lock, transferring the
pointer from the global heap into Ω and updating Γ accordingly. Finally, a transaction
may write to a field if it holds the associated lock, and further holds locks on any edges
whose logical/physical mapping may implicitly change as a result of the update.

A transaction T = t1 . . . tk is well-locked if there exists a sequence of lock sets Li,
observation sets Ωi, and global heap sets Γ i such that

L0 = Lk = ∅, Ω0 = ∅, Γ 0 = ∅, and Ωi−1, Γ i−1, Li−1 π̀ t
i;Ωi, Γ i, Li for 1 ≤ i ≤ k.

Lemma 5. Let s be a valid schedule of a set of well-locked transactions {T1, . . . ,Tk}.
Let Ωji , Γ ji , and Lji be the set of observations, global heaps, and locks of each transaction
after schedule step j. Let hj be the heap after schedule step j, and suppose the part of
h0 reachable from the root is a tree. Then for all time steps j:
– the lock sets {Lji}ki=1 are disjoint,

– the observation sets {Ωji }ki=1 are stable, disjoint, and heap hj is an extension of

each {Ωji }ki=1, and
– the global non-alias sets {Γi}ki=1 are disjoint.

– Let heap h be the heap hj less edges present in the local heaps {Ωji }ki=1. Then for

every vertex v ∈ h and edge label f̂ ∈ in(v̂) either there is exactly one edge labeled

with an instance of f̂ pointing to v in h, or f̂ ∈ Γ ji for some i and there are no

edges labeled with an instance of f̂ pointing to v in h.

Finally, we have a logical serializability similar to Lemma 2 and Lemma 4.

Lemma 6. Any valid schedule of a set of well-locked, logically two-phase decomposition
transactions {T1, . . . ,Tk} is conflict-equivalent to a serial logical schedule.

And, again, as in the flat heap case, these results can be extended to shared/exclusive
locks using the approach in Section 2.4.

5 Related Work

Two-phase locking was originally introduced in the context of transactions operating
over abstract entities, each with its own associated lock [9]. The core technical idea of
this paper is that we can use two-phase locking to show serializability of a wide class
of locking strategies by adding a layer of indirection between logical locks, which are
the entities that are the subject of the original two-phase locking protocol, and the
physical locks that implement them.

Various authors have investigated techniques for inferring locks to implement atomic
sections [16,14,8,12,5,6,20]. A related problem is automatically optimizing programs
with explicit locking by combining multiple locks into one [7]. A key part of this class
of work is constructing a mapping from program objects to the locks that protect them,
similar to our lock placement language. The lock placements we propose are much more
flexible; in particular existing formalisms cannot handle the class of path placements
we propose in this paper, such as speculative locks, or lock placements that vary with
heap updates. A possible future application of our methods is extending lock inference
techniques to take advantage of the additional expressive power of our techniques.

A novel feature of our proposal is that we can reason about speculative lock place-
ments. Speculative locking is used in practice in highly concurrent libraries and has
appeared in the literature in the context of software transactional memory [4,2,3]. Al-
though we present our ideas in the context of speculative placements of pessimistic
locks, the idea of a lock placement can also be used to reason about speculative place-
ments of optimistic STM metadata.

A variety of locking protocols have been proposed in the literature that extend two-
phase locking to handle dynamically changing heaps and to allow early release. Notable
examples include the dynamic tree locking and dynamic DAG locking protocols [1], and
domination locking [10]. Existing protocols use the lock on each object to protect that
object’s fields, whereas a primary goal of our work is to investigate a more flexible space
of mappings. We do not address early release in this paper; early release is orthogonal
to the issues of lock placement.

Concurrent extensions of separation logic, such as Concurrent Separation Logic [17],
RGSep [18] and work on storable locks [11] allow local reasoning about programs with
shared mutable state that is accessed concurrently. The concept of a stable set and
stabilization is related to rely-guarantee logic [15] and its subsequent developments [19].
Our work complements work on direct reasoning about concurrent code; we propose
a locking protocol, parameterized by a declarative lock placement, by which we can
show conflict-serializability, thereby removing the need for direct concurrent reasoning
for programs that obey the locking protocol.

6 Conclusion

We have presented a formalization of lock placements, showing that such diverse con-
cepts as lock granularity, speculative locks, lock splitting and merging, and dynamically

changing lock assignments can all be understood as examples of a lock placement that
maps each heap field to a lock that guards it. We have also identified the key concept
of a stable set of mutually supporting locks and heap facts, where the set of locks
protect the heap facts and the set of heap facts preserve the lock placement. We have
used these two concepts to develop a series of proof system for showing that transac-
tions are well-locked and therefore serializable, applying these technique to flat heaps,
tree-structured heaps, and a family of DAG-structured heaps with bounded degree.

References

1. Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of serializability. In:
POPL. pp. 31–42. ACM, New York, NY, USA (2010)

2. Bronson, N.G.: Composable Operations on High-Performance Concurrent Collections.
Ph.D. thesis, Stanford University (2011)

3. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary search
tree. In: PPoPP (2010)

4. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: Transactional predication: high-
performance concurrent sets and maps for STM. In: PODC. pp. 6–15. ACM, New York,
NY, USA (2010)

5. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In: PLDI. pp.
304–315. ACM, New York, NY, USA (2008)

6. Cunningham, D., Gudka, K., Eisenbach, S.: Keep off the grass: Locking the right path for
atomicity. In: Hendren, L. (ed.) Compiler Construction, LNCS, vol. 4959, pp. 276–290.
Springer Berlin / Heidelberg (2008)

7. Diniz, P.C., Rinard, M.C.: Lock coarsening: Eliminating lock overhead in automatically
parallelized object-based programs. Journal of Parallel and Distributed Computing 49(2),
218–244 (1998)

8. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL. pp. 291–
296. ACM, New York, NY, USA (2007)

9. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency and
predicate locks in a database system. Commun. ACM 19, 624–633 (Nov 1976)

10. Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.: Auto-
matic fine-grained locking using shape properties. In: OOPSLA (2011)

11. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for storable
locks and threads. In: APLAS. pp. 19–37 (2007)

12. Halpert, R.L., Pickett, C.J.F., Verbrugge, C.: Component-based lock allocation. In: PACT.
pp. 353–364. IEEE Computer Society, Washington, DC, USA (2007)

13. Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Data representation synthesis.
In: PLDI. pp. 38–49. ACM, New York, NY, USA (2011)

14. Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In: Workshop
on Languages, Compilers and Hardware Support for Transactional Computing (2006)

15. Jones, C.: Development methods for computer programs including a notion of interference.
Ph.D. thesis, Oxford University (1981)

16. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization inference for
atomic sections. In: POPL. pp. 346–358. ACM, New York, NY, USA (2006)

17. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer Sci-
ence 375(1–3), 271–307 (2007)

18. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In:
CONCUR (2007)

19. Wickerson, J., Dodds, M., Parkinson, M.: Explicit stabilisation for modular rely-guarantee
reasoning. LNCS, vol. 6012, pp. 610–629 (2010)

20. Zhang, Y., Sreedhar, V., Zhu, W., Sarkar, V., Gao, G.: Minimum lock assignment: A
method for exploiting concurrency among critical sections. In: Languages and Compilers
for Parallel Computing, LNCS, vol. 5335, pp. 141–155 (2008)

A Proofs

Proof (Lemma 1). The result is immediate for a schedule of length 0 since the obser-
vation sets of each transaction must necessarily be empty by the definition of well-
lockedness. For the inductive case, assume the result holds for all schedules of length
n and consider a schedule with length n + 1. Suppose without loss of generality that
operation n + 1 is an operation t1 performed by transaction 1. Since transaction 1
is well-locked, we know that Ωn1 , L

n
1 π̀ t1;Ωn+1

1 , Ln+1
1 holds and we perform a case

analysis of the possible derivations:
– Rule (FLock): The disjointness of lock sets is an immediate consequence of the

validity of schedule s. Acquiring a lock does not change the stability of a trans-
action’s observation set, and cannot destabilize the stable observation set of any
transaction, so the stability, disjointness, and extension properties follow from the
induction hypothesis.

– Rule (FUnlock): Releasing a lock yields disjoint lock sets by the induction hypoth-
esis. It is always sound to discard anything from a transaction’s stable observation
set Ω, and stability of the resulting observations Ω′ holds by definition of the stabi-
lization operator. Disjointness and extension hold by the induction hypothesis and
since Ω′ ⊆ Ω.

– Rule (FObserve): Immediate.
– Rule (FReadUnstable): Immediate.
– Rule (FReadStable): The observation sets of each transaction must be the same

before and after the read, with the exception of Ω1, which contains the additional
result of the reading m. We must have lockedπ(m,Ω1, L1) so by definition we have
(l, φ) ∈ π(m) such that l ∈ L1 and Ω1 ` φ. Disjointness follows by the disjointness
of the guards φ and the disjointness of local heaps due to the induction hypothesis.
Extension follows by the validity of the schedule and the induction hypothesis.

– Rule (FWrite): We have lockedπ(m,Ω1, L1) because the rule requires that m ∈
domΩ and hence m must be stable; hence we know that no other transaction may
have m in its stable observation set by the disjointness of guards and heaps. Further,
the rule requires that the transaction must hold any locks whose association with
memory locations may change as a consequence of the write, and hence the stability
of each Ωi holds. Finally, extension follows from the inductive hypothesis.

Proof (Lemma 3). By induction on the length of the schedule. The result is immediate
for a schedule of length 0. Suppose the result is true for any schedule of length n, and
consider any schedule of length n + 1. Without loss of generality, assume transaction
number 1 performs the additional operation tn+1. Since transaction 1 is well-locked, we
know Ωn1 , Γ

n
1 , L

n
1 π̀ t;Ω

n+1
1 , Γn+1

1 , Ln+1
1 holds. There are several possible derivations;

we include only the cases that differ significantly from the proof of Lemma 1:
– Rule (TNew): The result about lock sets is immediate. The concrete semantics of

the new operator guarantee that the result x of allocation is fresh, and hence there
are no pointers to x in the heap. It follows that all of the fields of x are stable
and known only to the current transaction. The result about the observation sets
then follows from the induction hypothesis. The result about local heaps and global
heaps is a consequence of the freshness of x and the induction hypothesis.

– Rule (TUnlock): Disjointness of lock sets is immediate. Stability of the current
transaction holds by definition, and for other transactions by the induction hypoth-
esis; unlocking a lock cannot affect other transactions. Disjointness and subsetting
hold by the induction hypothesis and the definition of stabilization. The forest
condition ensures that a transaction can evict a pointer to a node x from its local
heap only if x ∈ Γ , and hence the global forest condition is preserved given the
induction hypothesis.

– Rule (TReadStable): The lock set result is immediate. Stability of each transac-
tion’s observation set holds since the rule requires that the transaction hold locks
that ensure the newly read heap assertion is stable (lockedπ(x.f,Ω, Γ, L)) and the
induction hypothesis guarantees all other heap assertions are stable. The locked-
ness of x.f ensures that the current transaction must hold the lock for x.f on
every path. No other transaction can have x.f as part of its stable observation set
because of the disjointness of observation sets from the induction hypothesis. The
result about Γ and Ω follows from the forest condition on the heap; if we acquired
a stable reference to a node y then it must have been the unique reference in the
global heap, and hence no other transaction may have y ∈ Γ by the induction
hypothesis.

– Rule (TWrite): The lock set result is immediate. The newly written memory
location must be stable since the transaction requires that x.f be present in Ω and
from the condition that ensures the transaction holds any locks reachable from x.f
that may change identity; the latter condition also ensures that the write cannot
affect the stable observation sets of any other transaction. The disjointness and
extension conditions hold by the induction hypothesis. The result about local and
global heaps is immediate from the induction hypothesis; a transaction may freely
update its local heap since the tree-structure condition need only be maintained at
at unlock time.

B Concrete Semantics of Heap Operations

(CLock)

l /∈ L
h,L, lock l→ h, L ∪ {l}

(CUnlock)

l ∈ L
h,L, unlock l→ h, L \ {l}
(CRead)

(m 7→ b) ∈ h
h, L, read(m) = b→ h, L

(CWrite)

h′ = h[m 7→ b]

h, L,write(m, b)→ h′, L

(CObserve)

h, L, observe(m) = b→ h, L

Fig. 13. Concrete semantics of flat heap transactions. h, L, t→ h′, L′ holds if executing oper-
ation t on heap h with locks held by any transaction L yields an updated heap h′ with new
locks held L′.

Figure 13 describes the concrete semantics of transaction operations over concrete
heaps. The judgment h, L, t→ h′, L holds if executing operation t in global heap h and

with global locks taken L yields an updated heap h′ and update global lock set L′.
Rule (CLock) states that a transaction may acquire any global lock l not already held
by any transaction, and the lock l is marked as locked. Rule (CUnlock) allows any
transaction to release any lock that is held. There is no requirement that a transaction
release only the locks it acquired; such a requirement is enforced by the static well-
lockedness rules, not by the concrete semantics.

Rule (CRead) allows any transaction to atomically read the state of any heap cell,
whereas rule (CWrite) allows any transaction to atomically update any heap cell.
Finally the (CObserve) rule states that every observe operation is physically a no-op;
observe is a logical operation that identifies facts relevant to the serializability proof of
a transaction; physically it does nothing.

The concrete semantics of tree and DAG operations are similar and we omit them.

	Reasoning About Lock Placements

