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Abstract. Model Checking is an automated technique for the systematic explo-
ration ofu the state space of a state transition system. The first part of the tutorial
provides an introduction to the basic concepts of model checking, including BDD-
and SAT-based symbolic model checking, partial order reduction, abstraction, and
compositional verification. Model Checking has been applied sucessfully to hard-
ware in the past. However, software has become the most complex part of safety
ciritcal systems. The second part of the tutorial covers tools that use Model Check-
ing to formally verify computer software.

1 Introduction

Software has become the most complex part of today’s safety critical embedded systems.
Testing methods can only provide very limited coverage due to the enormous state space
that needs to be searched. Formal verification tools, on the other hand, promise full
coverage of the state space. Introduced in 1981, Model Checking [1, 2] is one of the most
commonly used formal verification techniques in a commercial setting. The first part
of the tutorial reviews classical explicit state and symbolic model checking algorithms
with a focus on software.

The capacity of Model Checking algorithms is constrained by the state-space explo-
sion problem. In case of BDD-based symbolic model checking algorithms, this problem
manifests itself in the form of unmanagbly large BDDs. Thus, techniques to reduce the
size of the state space, such as the partial order reduction, are discussed.

Abstraction and compositional verification techniques will also be covered briefly.
The second part of the tutorial discusses tools and algorithms for the model checking

computer software. We first cover explicit state methods and implementations such as
Spin, JPF [3], Bogor [4], and CMC [5]. We describe the area of application of each of
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these tools using a concrete example. However, the size of the software system is usually
severely constrained when using explicit state model checker.

Software model checking has, in recent years, been applied successfully to large,
real software programs, but within certain restricted domains. Many of the tools that
have been instrumental in this success have been based on the Counterexample Guided
Abstraction Refinement (CEGAR) paradigm [6, 7], first used to model check software
programs by Ball and Rajamani [8]. Their SLAM tool [9] has demonstrated the effec-
tiveness of software verification for device drivers. BLAST [10] and MAGIC [11] have
been applied to security protocols and real-time operating system kernels.

A common feature of the success of these tools is that the programs and properties
examined did not depend on complex data structures. The properties that have been
successfully checked or refuted have relied on control flow and relatively simple in-
teger variable relationships. SLAM, BLAST, and MAGIC rely on theorem provers to
perform the critical refinement step. The tutorial covers some of the details of these
implementations.
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