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Abstract: Providing learners with multiple representations of the learning content has been 
shown to enhance learning outcomes. When designing problem sequences with multiple 
representations, designers of intelligent tutoring systems must decide how to schedule the 
representations. Prior research on contextual interference has demonstrated that interleaving 
different types of learning tasks can foster a deep understanding of the underlying concepts. 
Do the same advantages apply to interleaving representations? In a classroom experiment, we 
compared four conditions that varied the practice schedules of multiple graphical 
representations between interleaving and blocking. The multiple-representation conditions 
were compared to three single-representation control conditions. During their regular 
classroom instruction, 290 4th and 5th-grade students worked for five hours with versions of an 
intelligent tutoring system for fractions. On several dependent measures, interleaving multiple 
graphical representations led to better learning results than blocking multiple graphical 
representations. Findings from a think-aloud study give insight into the underlying cognitive 
processes. 

Introduction 
Graphical representations of learning contents are often used for instruction (Ainsworth, 2006). When used in 
learning technology, graphical representations can be especially useful since they allow for interactions that are 
physically impossible or very difficult to realize, for instance by dragging and dropping symbolic statements 
into a chart that automatically updates to display the information (Moyer, Bolyard, & Spikell, 2002). However, 
learning with multiple graphical representations is challenging. An important prerequisite for benefiting from 
multiple representations is the acquisition of representational fluency: students need to conceptually understand 
each of the representations, and they need to be able to use them to solve problems (Ainsworth, 2006). 
Furthermore, students need to develop representational flexibility: they need to understand the differences and 
similarities between the representations, they need to learn to relate the different representations to one another, 
and to use the different representations interchangeably to solve problems (Ainsworth, 2006; de Jong et al., 
1998).  

Fractions are one of many areas in mathematics where multiple graphical representations are used 
extensively (National Mathematics Advisory Panel, 2008). There are different conceptual interpretations of 
fractions, such as the measurement concept and the part-whole interpretation (Charalambous & Pitta-Pantazi, 
2007). Each conceptual interpretation can be illustrated using a different graphical representation, such as 
number lines for measurement, or area models (e.g., circles or rectangles) to support part-whole interpretations. 
Multiple graphical representations may help students understand different conceptual aspects of fractions and 
thus gain a robust understanding of fractions. In a prior study, we found experimental evidence that students 
working with multiple graphical representation of fractions (e.g., circles, rectangles, and number lines) 
outperform students who work with a single graphical representation (a number line), although only when 
prompted to explain how the graphical representations (e.g., half a circle) relate to the symbolic representation 
(e.g., 1/2) (Rau, Aleven, & Rummel, 2009). These results demonstrate that understanding individual graphical 
representations (i.e., by relating graphically displayed information to the concepts of numerator and 
denominator) is essential in order for learners to benefit from multiple graphical representations.  

When designing instruction that uses multiple graphical representations, curriculum designers must 
decide how to temporally sequence the different graphical representations. How frequently should the 
curriculum alternate between graphical representations? Practice schedules are likely to impact how students 
understand each graphical representation and, consequently, how well they learn the underlying mathematical 
concepts. In particular, it may matter whether the different representations are practiced in a “blocked” manner 
(e.g., A – A – B – B) or are interleaved with practice of other representations (e.g., A – B – A – B). Research on 
contextual interference has investigated scheduling effects of different task types. Results show that interleaving 
task types leads to better learning results than blocked practice (Battig, 1972; de Croock, van Merrienboer, & 



Paas, 1998). A common interpretation of this finding is that interleaved practice encourages deep processing (de 
Croock et al., 1998). Since students cannot hold all relevant knowledge in working memory, they must 
reactivate task-specific knowledge as it comes up again in the task sequence. Another interpretation is that when 
frequently switching between task types, students will be more likely to abstract a common principle from the 
tasks than when switching infrequently between them (de Croock et al., 1998). They can do so, for instance, by 
comparing different task types to one another.  

Against the background of research on blocking versus interleaving different task types, one could 
hypothesize that interleaving practice with different graphical representations (i.e. switching frequently 
between them) may lead to deeper processing of conceptual fractions knowledge and may encourage students to 
abstract a robust conceptual understanding from the multiplicity of graphical representations. These processes 
may help students acquire representational flexibility. On the other hand, our own previous work (Rau et al., 
2009) leads to the hypothesis that developing representational fluency (i.e., coming to understand each single 
representation) may be a prerequisite for developing representational flexibility. Blocked practice with the 
representations may be successful in promoting representational fluency because it provides students with the 
opportunity to become fluent with one graphical representation before starting to work with a second graphical 
representation. This could be achieved by switching infrequently or with moderate frequency between the 
representations. If representation flexibility builds on representational fluency, as just argued, then students may 
benefit most from a condition that gradually moves from blocking to an increasingly interleaved schedule of 
multiple graphical representations.  

To test the hypotheses mentioned above, we compared four conditions that varied the practice 
schedules of multiple graphical representations in a classroom experiment. Students in all conditions worked on 
the same problems, but multiple graphical representations were presented either in a blocked, moderately 
interleaved, fully interleaved, or increasingly interleaved manner. We also employed three single graphical 
representation control conditions in which students worked either with only a circle, a rectangle, or a number 
line. These control conditions allow us to replicate the results from our first study (which, as mentioned showed 
advantages for learning with multiple graphical representations over learning with a number line; see Rau, et al., 
2009) and to extend this finding to working with only area models. In order to gain insights into the cognitive 
processes underlying the most successful practice schedule, we additionally conducted a small think-aloud 
study. We report the results of the think-aloud study after discussing the results from the classroom experiment. 

We investigated the effects of interleaving multiple graphical representations in the context of a proven 
intelligent tutoring system technology, namely Cognitive Tutors (Koedinger & Corbett, 2006). Cognitive Tutors 
have a proven track record in improving students’ mathematics achievement (Koedinger & Corbett, 2006). We 
developed several versions of an example-tracing tutor for fractions learning, using Cognitive Tutor Authoring 
Tools (Aleven et al., 2009). This type of tutor behaves like a Cognitive Tutor but relies on examples of correct 
and incorrect solution paths rather than on a cognitive model. The design of the fractions tutor was informed by 
results from our previous studies (Rau, Aleven, & Rummel, 2009; 2010), and by small-scale user studies.  

Experimental Study 
We investigated the effects of blocking versus interleaving multiple graphical representations in a classroom 
experiment. We expected that interleaving multiple graphical representations of fractions would enhance the 
acquisition of representational flexibility whereas blocking and moderately interleaving representations would 
enhance the acquisition of representational fluency. We expected that increasingly interleaving representations 
would be most successful if representational flexibility builds on representational fluency. 

Methods 
The tutors used in the study included three interactive graphical representations of fractions: circles, rectangles, 
and number lines (Figure 1). Our fractions tutor curriculum covered six task types: identifying fractions from 
multiple graphical representations, making multiple graphical representations of symbolic fractions, 
reconstructing the unit from unit fractions, reconstructing the unit from proper fractions, identifying improper 
fractions from multiple graphical representations, and making multiple graphical representations of improper 
fractions. The tutoring system takes a conceptually-focused approach in introducing fractions. A common theme 
throughout the fractions tutor was the unit of the fraction (i.e., what the fraction is taken of). The concept of the 
unit is being introduced in the first task types, and revisited during the later task types as students learn about 
improper fractions. Figure 2 shows an example of a problem in which students make circle representations for 
two given symbolic fractions and are then prompted to reflect on the relative size of the two fractions.  

Students solved each problem by interacting both with symbols and with interactive graphical 
representations. Students manipulated the graphical representations in various ways: by clicking on fraction 
pieces to highlight them, by dragging and dropping fraction pieces, and through buttons to change the 
partitioning of the graphical representations. The tutor interfaces updated interactively after each step to show 



the next step to work on, and to emphasize parts of the graphical representations that were conceptually relevant 
for the subtask at hand through color-highlighting. 

Students received error feedback and hints on all steps. Error feedback messages were designed to 
make students reconsider their answer using the multiple graphical representations, or by reminding them of a 
previously introduced principle. Hint messages provided conceptually oriented help in relation to the graphical 
representation. Each problem included conceptually oriented prompts to help students relate the multiple 
graphical representations to the symbolic notation of fractions. We found these prompts to be effective in an 
earlier experimental study (Rau et al., 2009).  

 

 
Figure 1. Interactive representations used in fractions tutor: circle, rectangle, and number line. 

 

 
 

Figure 2. Making a circle given a symbolic fraction, combined with prompts to compare the two fractions. 
Reflection prompts are implemented with drop-down menus shown in the bottom half of each problem.  

 
A total of 587 4th- and 5th-grade students from six different schools (31 classes) participated in the 

study during their regular mathematics instruction. We excluded students who missed at least one test day, and 
who completed less than 67% of all tutor problems (to ensure that students in the multiple graphical 
representations conditions encountered all three graphical representations). This results in a total of N = 290 (n = 
63 in blocked, n = 53 in moderate, n = 52 in fully interleaved, n = 62 in increased, n = 21 in single-circle, n = 20 
in single-rectangle, n = 19 in single-number-line).  

Prior to working on the fractions tutor, students completed a pretest. The pretest took about 30 minutes. 
On the following day, all students started working with the fractions tutor. Students accessed the tutoring system 
from the computer lab at their schools and worked on the tutor for fractions for about five hours as part of their 
regular math instruction for five to six consecutive school days (depending on the length of the respective 
school’s class periods). All students worked on the fractions tutor at their own pace, but the time students spent 
with the system was held constant across classrooms and across experimental conditions. On the day following 
the tutoring sessions, students took the immediate posttest which took about 30 minutes to complete. Seven days 
after the posttest, students completed an equivalent delayed posttest. 

Figure 3 illustrates the practice schedules of task types and graphical representations for the four 
multiple graphical representations conditions. In all conditions, students worked through the same sequence of 
task types and fraction problems, and switched task types after every 9 of a total of 108 problems. Each task 
type was revisited three times. This procedure corresponds to the most successful level of interleaving task types 
in our prior experiment (Rau et al., 2010). We randomly assigned students to one of seven conditions. In the 
blocked condition, students switched graphical representations after 36 problems. In the moderate condition, 



students switched representations after every six problems. In the fully interleaved condition, students switched 
representations after each problem. In the increased condition, the length of the blocks was gradually reduced 
from twelve problems at the beginning to a single problem at the end. To account for possible effects of the 
order of graphical representations, we randomized the order in which students encountered the graphical 
representations. Finally, students in the three single graphical representation conditions worked on all tutor 
problems with only the circle, the rectangle, or the number line, respectively.  

 

 
Figure 3: Practice schedule for multiple graphical representations conditions for all six task types. Each 

task type was revisited three times. Task types are indicated by numbers 1-6, representations are indicated by 
the different shapes.  

 
We assessed students’ knowledge of fractions at three test times. Three equivalent test forms were 

created, and we randomized the order in which they were administered. The tests included four knowledge 
types: fluency with area models (i.e., circles and rectangles), fluency with the number line, conceptual transfer 
and procedural transfer. The fluency items included identifying fractions given a graphical representation, 
making a graphical representation given a symbolic fraction, and recreating the unit given a graphical 
representation of both unit fractions and proper fractions. Conceptual transfer items included proportional 
reasoning questions with and without graphical representations. Procedural transfer items included comparison 
questions with and without graphical representations. The theoretical structure of the test (i.e., the four 
knowledge types just mentioned) resulted from a factor analysis performed on the pretest data. Test items 
including the number line seemed to be more challenging for students than area models.  

Analysis 
As mentioned, we analyzed the data of N = 290 students. There was no significant difference between 
conditions with respect to the number of students excluded (χ² < 1). There were no significant differences 
between conditions at pretest for any dependent measure, ps > .10. There was no significant effect for order of 
multiple graphical representations for any dependent measure, F(5, 285) = 1.56, ps > .10.  

We used a hierarchical linear model (HLM, see Raudenbush & Bryk, 2002) with four nested levels to 
analyze the data. We modeled performance on the tests for each student (level 1), differences between students 



nested within classes (level 2), differences between classes nested within schools (level 3), and differences 
between schools (level 4). More specifically, the following HLM model was fitted to the data: 

scoreij = testj + conditioni + testj*conditioni + preScorei + preScorei*conditioni + numProblemsi + 
student(class)i+ class(school)i + schooli, 

1) 

with the dependent variable scoreij being studenti’s score on the dependent measures at testj (i.e., 
immediate or delayed posttest). In order to analyze whether students with different levels of prior knowledge 
benefit differently from our conditions, we included students’ pretest scores as a covariate (preScorei), and 
modeled the interaction of pretest score with condition (preScorei*conditioni).  

Since the HLM described in (1) uses students’ pretest scores as a covariate, it does not allow us to 
analyze whether students in the various conditions improved from pretest to immediate and delayed posttest. To 
analyze learning gains, we included pretest score in the dependent variable, yielding: 

scoreij = testj + conditioni + testj*conditioni + numProblemsi + student(class)i+ class(school)i + 
schooli, 

2) 

with the dependent variable scoreij being studenti’s score on the dependent measures at testj (i.e., 
pretest, immediate posttest, or delayed posttest). 

We used planned contrasts and post-hoc comparisons to clarify results from the HLM analysis. All 
reported p-values were adjusted using the Bonferroni correction for multiple comparisons. 

 
Table 1: Improvement of test scores at immediate posttest (post) over pretest (pre) and delayed posttest 
(delayed) over pretest by knowledge types and conditions.  

 
Condition Effect Fluency with 

area models 
Fluency with the 

number line 
Conceptual 

transfer Procedural transfer 

blocked post > pre 
delayed > pre 

n.s. 
p < .05, d = .52 

n.s. 
p < .01, d = .39 

p < .05, d = .42 
p < .05, d = .39 

n.s. 
n.s. 

moderately 
interleaved 

post > pre 
delayed > pre 

n.s. 
n.s. 

n.s. 
p < .01, d = .50 

p < .05, d = .29 
p < .05, d = .30 

n.s. 
p < .05, d = .45 

fully 
interleaved 

post > pre 
delayed > pre 

p < .05, d = .45 
p < .05, d = .38 

p < .01, d = .51 
p < .01, d = .75 

p < .01, d = .34 
p < .01, d = .60 

n.s. 
n.s. 

increasingly 
interleaved 

post > pre 
delayed > pre 

p < .05, d = .38 
p < .05, d = .55 

p < .01, d = .43 
p < .01, d = .46 

n.s. 
n.s. 

n.s. 
n.s. 

single-
circle 

post > pre 
delayed > pre 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

single-
rectangle 

post > pre 
delayed > pre 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

single-
number-line 

post > pre 
delayed > pre 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

n.s. 
n.s. 

 
Table 2: Differences between conditions at immediate posttest (post) and delayed posttest (delayed) by type of 
knowledge. “n.s.” indicates non-significant results. “-“ indicates that no post-hoc comparisons were computed.  
 

Effect Test Fluency with 
area models 

Fluency with 
number line 

Conceptual 
transfer 

Procedural 
transfer 

fully interleaved > blocked, moderately 
interleaved, increasingly interleaved 

post 
delayed 

- 
- 

n.s. 
n.s. 

n.s. 
p < .05, d = .33 

- 
- 

increasingly interleaved > blocked, 
moderately interleaved, fully interleaved 

post 
delayed 

p < .10, d = .30 
p < .10, d = .30 

- 
- 

- 
- 

- 
- 

moderately interleaved > blocked, fully 
interleaved, increasingly interleaved 

post 
delayed 

- 
- 

- 
- 

- 
- 

n.s. 
n.s. 

 

Results  
To investigate whether students learned from the fractions tutor, we analyzed learning gains using the simpler 
HLM described in formula (2). The main effect of test time was significant for fluency with the number line, 
F(2, 867) = 20.09, p < .01, partial η² = .03, for fluency with area models, F(2, 867) = 17.54, p < .01, η² = .02,  
conceptual transfer, F(2, 867) = 38.78, p < .01, partial η² = .03, and marginally significant for procedural 
transfer, F(2, 867) = 2.84, p < .10, partial η² = .01. The interaction between test time and condition was 
significant for fluency with area models F(12, 862) = 2.06, p < .05, partial η² = .01. These results show that 
students (regardless of condition) improved on fluency with the number line, area models, procedural and 
conceptual transfer. On fluency with area models, students’ learning gains also depended on the condition.  

To further clarify these results, we computed post-hoc comparisons that compared students’ scores at 
the immediate posttest and the delayed posttest compared to the pretest, respectively. Table 1 provides a 



summary of these post-hoc comparisons. Generally, we found significant learning gains at the delayed posttest 
for most of the multiple graphical representations conditions on fluency with area models, fluency with the 
number line, and conceptual transfer. On procedural transfer, only the moderate condition showed significant 
learning gains at the delayed posttest. Finally, we found no significant learning gains for the single graphical 
representation conditions except for the single-circle condition at the delayed posttest on conceptual transfer. 

To analyze the effect of practice schedules of multiple graphical representations, we computed the 
HLM presented in formula (1) for only the multiple graphical representations conditions. There was no 
significant main effect of condition on any posttest scale, indicating that there was no global effect of practice 
schedules of multiple graphical representations across immediate and delayed posttests. An interaction between 
test time and condition was marginally significant for fluency with area models, F(3, 867) = 2.57, p < .10, η² = 
.01, indicating that the effect of practice schedules depends on test time. The interaction between pretest score 
and condition was marginally significant for conceptual transfer, F(3, 219) = 2.52, p < .10, η² = .02, 
demonstrating that students with different pretest scores benefit from different practice schedules. 

To clarify the interaction between test time and condition, we used post-hoc comparisons separately for 
the immediate and the delayed posttest. To limit the number of comparisons, we only compared the most 
successful multiple graphical representations condition against the other three multiple graphical representations 
conditions, as summarized in Table 2. We found some support for a benefit of interleaving multiple graphical 
representations: the fully interleaved condition significantly outperformed the blocked, the moderately 
interleaved, and the increasingly interleaved conditions on conceptual transfer at the delayed posttest. 
Furthermore, we found a marginally significant advantage for the increasingly interleaved condition over the 
blocked, moderately interleaved, and fully interleaved conditions on fluency with the number line at the 
immediate and the delayed posttests. 

To clarify the interaction between pretest score and condition on proportional reasoning items, we 
computed post-hoc comparisons for students with extremely low or high pretest scores. For students with a 
pretest score of 15%, 20%, and 25%, we found a significant advantage for the interleaved over the blocked 
condition (ps < .05). We found no differences for high prior knowledge students.  

To analyze the difference between multiple graphical representations conditions and the single 
graphical representation conditions, we computed the HLM described in formula (1). We used planned contrasts 
to compare the multiple graphical representations conditions to the single graphical representation conditions. 
We found a significant advantage for the multiple graphical representations conditions over the single graphical 
representation conditions for number line test items at delayed posttest (p < .05, d =.29).  

Think-aloud study 
In order to gain further insight into the cognitive processes underlying the benefits of the interleaved practice 
schedules, we conducted a small-scale think-aloud study with six students who worked on the fully interleaved 
version of the tutoring system. As argued above, one hypothesized mechanism is that interleaved practice leads 
students to abstract across multiple graphical representations, for instance by comparing them to one another. 
Alternatively, it has been hypothesized that interleaved practice leads to the reactivation of representation-
specific knowledge. Specifically, we were interested in what kinds of spontaneous comparisons students are 
making between the graphical representations, at what points in the curriculum they make comparisons, and 
whether students who fail to make spontaneous comparisons can be prompted to do so. 

Methods 
Six 5th-grade students participated in the think-aloud study. The think-aloud study was conducted in our 
laboratory and included three sessions. During the first session, students took the same pretest that was used in 
our experimental study. The pretest took about 30 minutes to complete. During the second session, students 
worked for one hour on a subset of problems taken from the interleaved version of the tutoring system while 
being prompted to think aloud, following the procedure described in Ericsson and Simon (1984). In the third 
session, students worked with similar tutor problems for one hour while being prompted to relate the different 
graphical representations to one another. We varied the type of prompts based on a within-subjects design: the 
prompt questions were either implicit (i.e., without directly prompting comparisons between the representations; 
e.g. “How is this problem the same as the last two you did?” or “How is this problem different from the last one 
you did?”), or explicit (i.e., directly referring to aspects that the different representations share; e.g., “What is 
the unit in the circle / rectangle / number line?” or “How are the rectangle and the circle and the number line the 
same / different?”). All students received two implicit prompts and four explicit prompts, in a fixed sequence. 

Students’ utterances were recorded and transcribed. We combined top-down and bottom-up approaches 
in developing a coding scheme: the experimenters identified types of comparisons that students might make 
prior to the think-aloud study, and then refined the coding scheme after viewing the transcripts from the think-
aloud study. Comparisons between graphical representations were coded as surface comparisons if they either 
referred to the color of the representation, the shape of the representation, or the action performed on the 



representation (e.g., dragging and dropping). Comparisons were coded as conceptual if they referred to the 
corresponding features of the representations (i.e., numerator, denominator, unit), or the magnitude represented. 

Results and Discussion 
The results from the pretest indicate that all students had a good understanding of fractions. During the 
spontaneous comparison phase of the think-aloud study, we found only five instances of comparisons. These 
five comparisons were uttered by five of the six students. All five comparisons were surface comparisons.  

When prompted to compare the different representations, students generated 138 instances of 
comparisons overall. Table 3 summarizes the average number of comparisons coded as surface and conceptual 
comparisons per implicit and explicit prompt. Given the small number of students, a statistical test on the types 
of comparisons in response to implicit and explicit prompts is not warranted. Table 3 shows that students 
generated substantially more surface than conceptual comparisons per prompt. We can also see that the implicit 
prompts yielded most of the surface comparisons, but almost none of the conceptual comparisons. In contrast, 
explicit prompts seem to have yielded more of the conceptual comparisons and fewer of the surface 
comparisons, compared to the implicit prompts.    

 
Table 3: Average number of surface and conceptual comparisons per implicit and explicit prompts.  
 
 Implicit prompts Explicit prompts  
Surface 4.17 2.33 2.94 
Conceptual 0.58 1.63 1.28 
 2.38 1.98  

Conclusions 
Taken together, the results from the experiment demonstrate significant learning gains for students who worked 
with a tutoring system that supports learning with multiple graphical representations of fractions, but not for 
those students who worked with only a single graphical representation. The gains persist until one week after 
the study when we administered the delayed posttest. Learning gains were found for students in all multiple 
graphical representations conditions on all posttest scales except procedural transfer. The fact that students’ 
performance on procedural transfer does not improve may be due to the fact that comparing fractions was not 
the focus of the tutor, and that the comparison tasks in the procedural transfer items were too difficult for 
students. We did not find evidence for learning in the single representation groups. The lack of learning gains in 
the single representation control conditions demonstrates that the learning gains in the other conditions are not 
due to practice effects with the test format. Furthermore, the finding that the multiple graphical representations 
conditions outperform the single graphical representation conditions on number line items at the delayed 
posttest suggests an advantage of learning with multiple graphical representations over learning with a single 
graphical representation. Taken together with the lack of learning gains in the single representation conditions, 
these results replicate our earlier finding that multiple graphical representations lead to better learning of 
fractions than a single graphical representation (Rau et al., 2009), and extend this finding from working with a 
number line only to working with circles or rectangles only. 

We argued that interleaving multiple graphical representations may help students acquire 
representational flexibility, whereas blocking graphical representations will help students acquire fluency with 
each representation. Our results confirm that the practice schedule for learning with multiple graphical 
representations matters: interleaving multiple graphical representations enhances the acquisition of 
representational flexibility as assessed by the conceptual transfer scale of the test – in particular for students 
with low prior knowledge. On the other hand, we did not find differences between experimental conditions for 
representational fluency (i.e., on area model and number line items) – with the exception of a marginally 
significant advantage of the increasingly interleaved condition on fluency with area models. Our results 
therefore suggest that students in all multiple representations conditions were able to acquire representational 
fluency from the tutoring system; and that – contrary to our hypothesis – blocking graphical representations 
does not contribute to the development of representational fluency. We hypothesized that interleaving graphical 
representations will promote the acquisition of representational flexibility. The significant advantage of the fully 
interleaved condition on conceptual transfer supports this hypothesis. Reasoning that representational flexibility 
may build on representational fluency, we had hypothesized that increasingly interleaving representations is the 
best option. Our findings do not support this hypothesis. Rather, the finding that especially low prior knowledge 
students benefit from fully interleaved representations may suggest that developing representational flexibility is 
particularly important for novice learners and that, perhaps, representational flexibility is a prerequisite for the 
development of representational fluency. Although more research is needed to investigate whether our findings 
generalize to other domains, based on our findings we can carefully conclude that designers of intelligent 



tutoring systems should employ an interleaved practice schedule of multiple graphical representations in order 
to enhance robust conceptual understanding of fractions.  

What might be the mechanisms leading to the advantage of interleaving multiple graphical 
representations over blocking multiple graphical representations? Are students actively abstracting across 
graphical representations by explicitly comparing them to one another? Or are they, as argued above, 
reactivating knowledge that is specific to the graphical representations? Findings from our think-aloud study 
with the fully interleaved version of the tutoring system suggest that students did not spontaneously relate the 
different graphical representations to one another. The benefit from interleaving multiple graphical 
representations does not seem to stem from conscious abstraction across the different representations, but from 
more subliminal processes, such as repeatedly reactivating knowledge about the specific representations. On the 
other hand, the finding that students generate a good number of conceptual comparisons between the graphical 
representations when explicitly prompted to do so, suggests that students might benefit from explicit support in 
relating the different representations to one another.  

Although these considerations are based on the findings from only a small-scale think-aloud study, we 
believe that they provide interesting insights into the processes that may underlie the benefits of interleaving 
multiple graphical representations. Future work should investigate whether indeed the advantage of interleaving 
representations results from repeated reactivation of representational knowledge. Furthermore, future work 
should explore the benefit of explicitly supporting students in conceptually relating multiple graphical 
representations and in making sense of their differences and similarities in how they depict fractions. 
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