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The Effects of Nucleotide Substitution Model Assumptions on Estimates of
Nonparametric Bootstrap Support

Thomas R. Buckley and Clifford W. Cunningham
Department of Biology, Duke University, Durham, North Carolina

The use of parameter-rich substitution models in molecular phylogenetics has been criticized on the basis that these
models can cause a reduction both in accuracy and in the ability to discriminate among competing topologies. We
have explored the relationship between nucleotide substitution model complexity and nonparametric bootstrap sup-
port under maximum likelihood (ML) for six data sets for which the true relationships are known with a high
degree of certainty. We also performed equally weighted maximum parsimony analyses in order to assess the effects
of ignoring branch length information during tree selection. We observed that maximum parsimony gave the lowest
mean estimate of bootstrap support for the correct set of nodes relative to the ML models for every data set except
one. For several data sets, we established that the exact distribution used to model among-site rate variation was
critical for a successful phylogenetic analysis. Site-specific rate models were shown to perform very poorly relative
to gamma and invariables sites models for several of the data sets most likely because of the gross underestimation
of branch lengths. The invariable sites model aso performed poorly for several data sets where this model had a
poor fit to the data, suggesting that addition of the gamma distribution can be critical. Estimates of bootstrap support
for the correct nodes often increased under gamma and invariable sites models relative to equal rates models. Our
observations are contrary to the prediction that such models cause reduced confidence in phylogenetic hypotheses.
Our results raise severa issues regarding the process of model selection, and we briefly discuss model selection

uncertainty and the role of sensitivity analyses in molecular phylogenetics.

Introduction

Model-based methods of phylogenetic analysis are
becoming increasingly popular because of the inherent
ability to account for properties of the evolutionary pro-
cess during tree selection. The importance of evolution-
ary models has been underscored by a number of recent
studies (e.g., Lockhart et a. 1996; Sullivan and Swof-
ford 1997), which have shown that unrealistic assump-
tions concerning the evolutionary process can cause sys-
tematic error. Ignoring the major features of the evolu-
tionary process can cause misinterpretation of the data
and subsequent errors in phylogenetic reconstruction.
Furthermore, if enough data are available, misspecified
models can lead to very strong statistical support for
incorrect hypotheses (Yang, Goldman, and Friday 1995),
as estimated by nonparametric bootstrapping (Efron
1979; Felsenstein 1985).

In molecular phylogenetics, a nonparametric boot-
strap analysis involves the resampling of nucleotide or
amino acid sites from an alignment, with replacement,
SO as to generate a number of psuedoreplicate data sets
of the same length as the original aignment. The opti-
mal topology or any other quantity of interest is then
estimated from each pseudoreplicate. Bootstrapping is
generally regarded as a method for estimating the vari-
ance associated with any particular parameter for which
the sampling distribution is not obvious (Manly 1997).
However, the exact statistical interpretation of bootstrap
proportions on a phylogenetic tree has been under de-
bate for some time (Sanderson 1989, 1995; Felsenstein
and Kishino 1993; Hillis and Bull 1993; Efron, Hallor-
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an, and Holmes 1996; Swofford et al. 1996; Andrieu,
Caraux, and Gascuel 1997; Lee 2000). Most authors, at
least implicitly, interpret bootstrap proportions as rough
measures of statistical support for a node, given the data
and the assumptions of the phylogenetic method.

Under model-based methods of phylogenetic esti-
mation, bootstrap proportions can vary greatly as the
parameter richness of the model changes (Sullivan, Mar-
kert, and Kilpatrick 1997; Waddell and Steel 1997; Cun-
ningham, Zhu, and Hillis 1998; Krajewski et al. 1999;
Tourasse and Guoy 1999; Inagaki et a. 2000; Buckley,
Simon, and Chambers 2001). For example, Buckley, Si-
mon, and Chambers (2001) observed that the addition
of among-site rate variation parameters to the substitu-
tion model caused the bootstrap support for some nodes
to increase and others to decrease, relative to bootstrap
proportions estimated under the assumption of equa
rates among sites. It is commonly assumed that changes
in bootstrap proportions associated with shifts in model
structure are caused by the counteracting forces of var-
iance and bias. In the context of phylogenetics, bias re-
fers to the failure of an estimator to accurately recon-
struct the true topology because of misleading assump-
tions (e.g., model misspecification). In the case of tree
topology, variance would be problematic to quantify but
is an inevitable outcome of increasing model
complexity.

Given the bias-variance relationship, there are four
possible explanations for changes in bootstrap support
associated with changes in model complexity. First, as
a model becomes increasingly parameterized, bootstrap
values may decrease because the sampling variance as-
sociated with the model increases (Yang, Goldman, and
Friday 1995). Second, bootstrap values may also in-
crease because the improving fit between the model and
the data boosts phylogenetic accuracy. Third, if the ex-
traneous parameters are grossly unrealistic, then the bias
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of the model may actually increase, causing a drop in
accuracy over pseudoreplicates. Fourth, the addition of
parameters to a model may have little or no effect on
either bias or variance, or aternatively any decrease in
bias may be negated by a corresponding increase in var-
iance. In this situation, we would expect our confidence
in the estimated phylogeny to remain unchanged. Be-
cause of the counteracting forces of variance and hias it
is difficult to predict the effects on bootstrap proportions
as a model becomes increasingly parameterized, espe-
cially when the models under consideration differ by
only a few parameters. Objective model selection is an
attempt to choose a model that avoids the dual problems
of both under- and overfitting (Akaike 1973; Goldman
1993; Frati et a. 1997; Burnham and Anderson 1998;
Posada and Crandall 1998; Forster 2000; Wasserman
2000).

These predictions and observations conflict with
the claims of some authors (e.g., Reyes, Pesole, and Sac-
cone 1998, 2000; Takahashi and Nei 2000; Xia 2000)
who have questioned the utility of complex models in
phylogenetic analysis, and in particular, models that as-
sume unequal substitution rates among sites. Further-
more, some authors have also questioned the appropri-
ateness (Takahashi and Nei 2000) or practicality (San-
derson and Kim 2000) of using objective model selec-
tion criteria for choosing a substitution model.

In the following study, we explored the effects of
substitution model assumptions on bootstrap proportions
by analyzing a variety of data sets for which all the
evolutionary relationships are known with a very high
degree of confidence. We also compared the results from
equally weighted parsimony analyses because this meth-
od makes a stringent set of assumptions, such as equal
substitution rates among sites and between nucleotides
(Yang 1996) that can be relaxed using ML methods.
Furthermore, the parsimony method ignores branch
length information during tree selection, unlike the com-
monly used ML methods. Our results strongly contradict
the argument that complex substitution models are only
useful for extremely long sequences (e.g., Takahashi and
Nei 2000) and also have implications for the process of
model selection in molecular phylogenetics.

Materials and Methods
Data Sets
Bird Whole Mitochondrial Genomes

We analyzed sequences from whole mitochondrial
genomes (14,043 bp from al tRNA-, rRNA-, and pro-
tein-coding genes, with the exception of ND6) from nine
taxa including turtle, aligator, rhea, ostrich, falcon,
duck, oscine songbird, and suboscine songbird (Mindell
et a. 1999). Relationships among these species are
known with a high degree of confidence based on mor-
phological characters (Cracraft 2001), DNA-DNA hy-
bridization data (Sibley and Ahlquist 1990), immuno-
logical data (Prager and Wilson 1980), various nuclear
genes (Stapel et a. 1984; Groth and Barrowclough
1999; GarciasMoreno and Mindell 2000; Lovette and
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Bermingham 2000), and mitochondrial and nuclear
rRNA genes (van Tuinen, Sibley, and Hedges 2000).

Arthropod EFla

Phylogenetic analyses of a wide variety of gene
sequences al support the hypothesis that hexapods and
crustaceans form a monophyletic group (Pancrustacea)
to the exclusion of myriapods and chelicerates (Friedrich
and Tautz 1995, 2000; Regier and Schultz 1997, 2001,
Boore, Lavrov, and Brown 1998; Garcia-Monchado et
al. 1999; Schultz and Regier 2000; Wilson et al. 2000;
Giribet, Edgecombe, and Wheeler 2001; Hwang et al.
2001). We have reanalyzed eight EFla sequences (1,092
bp) from Regier and Schultz (1997) and Schultz and
Regier (2000) including; Periplaneta americana (cock-
roach), Pedetontus saltator (Archaeognatha insect),
Tomocerus sp. (Collembola), Nebalia hessleri (Mala-
costracan crustacean), Armadillidium vulgare (Malacos-
tracan crustacean), Narceus americanus (Myriapoda),
Scutigera coleoptrata (Myriapoda), Dysdera crocata
(Spider), and Dinothrombium pandorae (Spider).

Primate Mitochondrial DNA

We obtained the alignment of 888 bp of mitochon-
drial DNA (mtDNA) sequences (protein-coding and
tRNA genes) from nine primate species, distributed with
the PAML package (Yang 1997a) and originaly de-
scribed by Hayasaka, Gojobori, and Horai (1988). Most
systematists recognize that human and chimpanzee are
sister species, based on analyses of a wide variety of
molecular markers (e.g., Shoshani et al. 1996; Satta,
Klein, and Takahata 2000). The relationships among the
other primate species are corroborated by whole mito-
chondrial sequences (Waddell et al. 1999), Alu repeats
(Zietkiewicz, Richer, and Labuda 1999), various nuclear
genes (Goodman et al. 1998; Murphy et al. 2001; Page
and Goodman 2001), morphological, and fossil data
(Goodman et al. 1998).

Insect 18S rRNA

We analyzed a subset of the insect 18S rRNA se-
quences (902 bp) from Whiting et al. (1997), also ana-
lyzed by Huelsenbeck (1998), including a collembolan
(Hypogastura sp.), an odonate (Libellula pulchella), a
plecopteran (Cultus decisus), a lepidopteran (Ascalapha
odorata), a trichopteran (Pycnopsyche lepida), a mecop-
teran (Bittacus chlorostigmus), and a siphonapteran
(Ctenocephalides canis). The relationships among all
these seven taxa are known with a high degree of con-
fidence (Kristensen 1995; Whiting et al. 1997).

Vertebrate Cytochrome Oxidase Subunit 11

Russo, Takezaki, and Nei (1996) examined the per-
formance of a range of phylogenetic methods using dif-
ferent mitochondrial genes from a group of vertebrates
(carp, loach, trout, frog, chicken, opossum, mouse, rat,
cow, blue whale, and finback whale) where all of the
relationships are well known. These authors concluded
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Table 1
AIC Differences for each Data Set Analyzed
Arthropod Primate Insect Vertebrate  Rodent

Bird mtDNA EFla mMtDNA  18S rRNA COll mtDNA
JCE9 (). .o 17,115.076  1,578.818 1193316 233.325 1,451.106 518.072
[N () I 14,639.222  1,549.349 935.571 234.679 1,301.903  406.634
HKY85(4).............. 12,132.099 1,338.093 523355 173.897 1,068.698 270.228
GTR(8)....ccviiiee. 9,393.294 1,227.198 444576  148.050 966.911  224.015
GTR+1(9) ............ 2,188.336 364.700 174.692 6.187 445880  109.360
GTR+T9)............ 807.290 346.311 124561 Best 354.934  109.119
GTR+ 1 + T (10)....... 799.881 318.725 125.933 2.000 343730  111.080
GTR + SSR (10, 11) ... .. Best Best Best — Best Best

NoTte.—The number of free parameters are given in parentheses after each model. The two values given after the SSR
model represent the number of parameters when only protein-coding sites are included (three rate classes) and when RNA

coding sites (four rate classes) are included, respectively.

that one of the worst-performing genes was the cyto-
chrome oxidase subunit 11 gene (COIl, 681 bp).

Sgmodontine Rodents Mitochondrial DNA

Sullivan, Holsinger, and Simon (1995) analyzed
mitochondrial 12S rRNA and cytochrome b sequences
from a group of sigmodontine rodents for which the
relationships among taxa were known with a high de-
gree of confidence. Although a combined analysis of
both genes yielded the well-supported phylogeny, the
12S rRNA gene, when analyzed separately, yielded a
strongly supported and incorrect topology. These taxa
are all very closely related with the oldest divergence
estimated to have occurred approximately 6 MYA (Sul-
livan, Holsinger, and Simon 1995).

Nucleotide Substitution Models and Nonparametric
Bootstrapping Strategy

All analyses were done using various beta versions
of PAUP* 4.0 (Swofford 1998). We restricted our anal-
yses to equal-weighted maximum parsimony (Fitch
1971) and eight different ML nucleotide substitution
models, including JC69 (Jukes and Cantor 1969), F81
(Felsenstein 1981), HKY85 (Hasegawa, Kishino, and
Yano 1985), GTR (e.g., Yang 1994a), GTR + | (in-
variable sites; Hasegawa, Kishino, and Yano 1985),
GTR + T" (gamma-distributed rates; Yang 1994b), GTR
+ | + I' (mixed invariable sites and gamma-distributed
rates; Gu, Fu, and Li 1995), and GTR + SSR (site-
specific rates;, Swofford et al. 1996). For the SSR mod-
els, we partitioned the data into the three codon posi-
tions and pooled any tRNA or rRNA sites that were
present into a single rate category. We used eight rate
categories for the gamma distribution and ML estimates
of base frequencies.

We evaluated the fit of these models to the data
using the Akaike information criterion (AIC; Akaike
1973). We chose the AIC for model selection rather than
the more commonly used likelihood ratio tests because
the AIC alows non-nested models to be ranked and
compared (e.g., SSR and I'-rates models), and facilitates
the identification of groups of models that have similar
fits to the data (see Burnham and Anderson 1998). Fol-
lowing Burnham and Anderson (1998), we present AIC

differences (4;). The AIC difference for model i is. A,
= AIC; — min AIC, where min AIC is the best-fit mod-
el. AIC vaues were caculated from the well-supported
topologies for each data set. Tree lengths were estimated
under each substitution model by summing the branch
lengths for all branches in the true tree.

We used a variety of search strategies depending
on the computational burden of analyzing each data set.
For the primate mtDNA, arthropod EFla, vertebrate
COll, and sigmodontine rodent mtDNA sequences, we
obtained starting trees using stepwise addition with 10
random addition replicates and analyzed 500-1,000,
500, 500, and 2000 bootstrap replicates, respectively.
For the bird mtDNA and insect 18S rRNA data sets, we
analyzed 100—200 and 1,000 replicates, respectively,
with neighbor-joining (Saitou and Nei 1987) start trees.
For all data sets, we employed TBR branch swapping.
All the parsimony analyses consisted of 2,000 bootstrap
replicates with start trees obtained by stepwise addition
with 10 random addition replicates. For each data set,
we estimated model parameters from the true tree and
then fixed those parameter values for each replicate. For
some of the data sets, we repeated the analyses using
different search strategies and determined that varying
the number of replicates or the method of obtaining a
start tree had little effect on bootstrap proportions for
these data.

To generate pseudoreplicate data sets for the GTR
+ SSR analyses, we used CodonBootstrap 2.21 (J. Boll-
back, personal communication), which samples codons
rather than individual nucleotides. This process allows
the coding structure of the gene to be maintained over
different pseudoreplicates (Bollback and Huelsenbeck
2001).

Results

For each data set, we present the results from the
AIC model fitting (table 1), parameter estimates under
the GTR + I' model (table 2), tree lengths (table 3), and
mean bootstrap proportions for the set of correct nodes
(table 4). We discuss later, the influence of substitution
model assumptions on estimates of bootstrap support for
each data set.
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Table 2
Parameter Estimates for Each Data Set Under the GTR + I' Model
Arthropod Primate Insect Vertebrate Rodent
Bird mtDNA EFla mtDNA 18S rRNA coll mMtDNA
TAc s 0.300 0.281 0.347 0.262 0.351 0.365
T nnn. 0.310 0.231 0.312 0.218 0.286 0.223
TG v v e 0.151 0.239 0.090 0.278 0.114 0.156
Treon.. 0.239 0.248 0.251 0.242 0.249 0.256
I'ac 4574 2.623 12.221 1.175 0.727 6.447
I'ac 7.377 3.409 79.557 1.656 4.342 13.859
FATe oo 1.415 2.428 8.204 1.046 1.323 6.867
fea 0.383 1.603 7.302 0.393 0.396 4.167
fere v 8.380 12.011 83.295 4.430 8.843 46.888
Qs 0.394 0.332 0.423 0.273 0.274 0.137

NoTe.—The rgr parameter is scaled to 1.0 for all data sets.

Bird Whole Mitochondrial Genomes

For this data set, the well-supported topology was
only recovered under the GTR + I'and GTR + | + T
models. Our bootstrap analyses (fig. 2A) show that sup-
port for the correct root of the avian tree (node A) is
moderate under the GTR + T" (64%) and GTR + | +
I" (71%) models, and is extremely low under the equal
rates models (1% to 6%). The GTR + | model has a
poor fit to the data relative to the GTR + I', GTR + |
+ I', and GTR + SSR, models (table 1), and yields low
support for node A (36%). The GTR + SSR, model has
the best fit to the data (table 1), yet this model gives
only 15% bootstrap support for node A (fig. 2A). Ad-
ditionaly, the GTR + | and GTR + SSR, models also
gave lower estimates of the total tree length relative to
the GTR + I' and GTR + | + I' models (table 3). The
GTR + | + T' model gave the highest mean bootstrap
proportion for the set of correct nodes (table 4).

Under the equal rates, GTR + |, and GTR + SSR,
models, nodes B and E are disrupted by the outgroup
taxa rooting the tree within the song birds. Accordingly,
these two nodes also received much higher support un-
der the GTR + I'and GTR + | + I" models. Both nodes
C and D were very well supported, with the GTR + T’
and GTR + | + I" models, giving the highest bootstrap
values for node C. All models gave 100% bootstrap sup-
port for node D.

Like the simple ML models, the parsimony analysis
performed very poorly in recovering the true tree across
bootstrap replicates. For example, nodes A, B, and E

were never observed in any of the 2,000 replicates. The
parsimony method also gave the lowest mean bootstrap
proportion for the correct nodes.

Arthropod EFla

The correct tree was recovered only under the GTR
+ 1, GTR + I', and GTR + | + I' models for these
data. For three of the nodes in the arthropod EFla phy-
logeny (fig. 1B), we observed large differences in sup-
port among the various models (fig. 2B). Node C, the
monophyly of the Pancrustacea, was poorly supported
under parsimony (26%) and under the JC69 model
(49%), whereas support peaked under the GTR + |
model (77%). Support for node E (hexapod monophyly)
was highest under the among-site rate variation models,
especially under the GTR + I' model (54%). Support
for node F was lowest under the GTR + SSR; model
(47%) and highest under the GTR + | model (70%).
For this data set, the GTR + | model indicated the high-
est support for the set of nodes in the true tree (table 4),
although this model gave lower estimates of the total
tree length relative tothe GTR + I"'and GTR + | + T
models (table 3). Furthermore, support for the GTR +
I model was extremely low under the AIC, even when
the GTR + SSR; model was excluded from the set of
candidate models (table 1). Parsimony yielded the low-
est mean bootstrap proportion for the set of correct
nodes (table 4).

Table 3
Varied Sites and Tree Lengths Estimated Under Different Substitution Models
Arthropod Primate Insect Vertebrate Rodent

Bird mtDNA EFla mtDNA 18S rRNA coll mtDNA
No. of sites........ 14,043 1,092 888 902 681 1,028
% Varied sites . .. .. 52.8 49.5 56.3 24.6 56.2 18.1
JC69 ... 1.383 1481 1.285 0.461 1.664 0.252
F8L...oovvvivnnn. 1.389 1.476 1.296 0.461 1.663 0.252
HKY85........... 1.409 1.492 1.361 0.464 1717 0.255
GTR .......c..... 1.391 1.499 1.349 0.467 1.690 0.256
GTR+ l.......... 1.770 1.864 1.708 0.574 2.168 0.305
GTR+T......... 2.584 3.000 2.752 0.605 3.740 0.309
GTR+1+T..... 2.632 2.380 2.682 0.616 4.015 0.310
GTR + SSR....... 1.750 1.821 1713 — 2.450 0.284
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Table 4
Mean Bootstrap Support Values on the True Trees Under Various Substitution Models
Arthropod Primate Insect Vertebrate Rodent
Bird mtDNA EFla mtDNA 18S rRNA coll mtDNA
Parsimony . ....... 35.2 61.3 86.3 66.8 76.5 89.8
JC69 ... 38.3 68.2 88.3 70.5 80.5 89.2
F8L ............. 38.6 68.5 88.7 70.8 80.6 89.6
HKYS85.......... 40.4 70.7 91.0 74.0 86.9 92.2
GTR ............ 41.6 725 91.8 73.8 90.5 92.0
GTR + l......... 60.8 76.5 91.0 70.8 929 90.4
GTR+T........ 75.2 72.8 95.5 74.3 87.6 89.6
GTR+1+7T 78.2 755 96.0 74.7 86.9 89.2
GTR + SSR...... 48.0 71.0 90.5 — 89.1 78.4

Primate Mitochondrial DNA

Parsimony and the JC69 and F81 models led to the
selection of an incorrect topology for the primate data
set. The remaining models all converged on the correct
topology. For the primate mtDNA data set, we observed
that all nodes, with the exception of the human-chim-
panzee node (A), were very well supported, irrespective
of the substitution model. The strongest bootstrap sup-
port values for node A were obtained under the param-
eter-rich GTR + I' (86%) and GTR + | + I' (85%)
models (fig. 2C). The equal rates models gave much
lower estimates of bootstrap support ranging from 44%
(JCBY) to 58% (GTR). The performance of parsimony
for this node was aso poor (47%). The model with the
lowest AIC value for this data set, and therefore the
best-fit model, was GTR + SSR, (table 1), which gave
a bootstrap support value of only 51% for the chimpan-
zee-human node (fig. 2C). Of al the among-site rate
variation models employed, the GTR + | model had the
worst fit to the data (table 1) and gave a bootstrap value
of only 56% for the chimpanzee-human node. The es-
timated total length of the tree was the highest under
the GTR + | + I' model (table 3), and additionally, this
model yielded the highest mean bootstrap value for the
set of correct nodes, whereas parsimony gave the lowest
mean bootstrap proportion (table 4).

Insect 18S rRNA

Only the GTR + T" and GTR + | + T" models led
to the selection of the correct topology for these data.
Bootstrap support for node A (fig. 2D) is highest under
the among-site rate variation models, ranging from 52%
(GTR + 1) to 59% (GTR + | + I'). In many of the
bootstrap analyses, node A is disrupted because the long
plecopteran branch joins with the long collembolan
branch, and this attraction is reduced under the more
complex models. As with all the other data sets, the GTR
+ | model has the worgt fit to the data of the among-site
rate variation models (table 1) and gives dightly lower
estimates of bootstrap support for node A.

Both the lepidopteran and the trichopteran branches
are relatively long and share a common node (C), a dif-
ferent situation from the plecopteran and the collembo-
lan branches. Based on previous simulation studies (e.g.,
Yang 1997b), we expected a priori that the equal rates
ML models would yield greater support for this node

than the among-site rate variation models, and this is
indeed what we observed. This node receives very
strong support under the equal rates models (97% to
99%) and parsimony (94%), whereas support is slightly
lower under the among-site rate variation models (87%
to 89%). Node B, supporting the monophyly of the Hol-
ometabola, is strongly supported under ML (98% to
99%) but dlightly less so under parsimony (88%). The
grouping of the short siphonapteran and mecopteran
branches (node D) received low bootstrap support under
all models, with the support from the among-site rate
variation models being dlightly lower than that from the
equal rates models (fig. 2D).

The GTR + | + I' model gave the highest mean
bootstrap proportion, although this value was very sim-
ilar to that from a number of other models (table 4).
Parsimony gave the lowest mean bootstrap proportion.
The GTR + | + I' model also has the highest estimate
of the total length of the tree (table 3).

Vertebrate Cytochrome Oxidase Subunit |1

With the single exception of node E, most nodes
in this data set were relatively easy to reconstruct. Ad-
ditionally, al methods and models with the exception of
parsimony and ML under the JC69 and F81 models led
to selection of the correct topology. Support for node E
was lowest under the JC69 model (16%) and increased
steadily as the substitution model became more com-
plex, and peaked under the GTR + SSR; model (84%).
Node F also received much greater support under the
among-site rate variation models than under the equal
rates models and parsimony. Bootstrap values for nodes
C and G were more erratic with respect to model com-
plexity. The GTR + | model inferred the largest mean
bootstrap proportion for the correct nodes, whereas par-
simony yielded the lowest mean bootstrap proportion.

Sigmodontine Rodents Mitochondrial DNA

All models led to the selection of the correct to-
pology for these data. As with the other data sets, the
GTR + SSR, model had the lowest AIC value (table
1). There was only moderate variation in bootstrap sup-
port among the different models (fig. 2F). However, sup-
port for node B was much lower under the GTR + SSR,
model (51%) than under parsimony (92%) or the re-
maining ML models (78% to 92%). The rodent mtDNA
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A

Oscine songbird

Duck B

Chicken Dinothrombium pandorae

Falcon

Rhea
Dysdera crocata

Suboscine songbird Scutigera coleoptrala

Ostrich
Tomocerus sp

Narceus americanus

Pedetontus saltator

Periplaneta americana

Turtle Nebalia hessleri

0.1
Armadilfidium vulgare 0.1

Alligator

C D Collembola

Tarsier Plecoptera

Crab-eating macaque
Mecoptera

Lemur Lepidoptera

. . 0.1

Squirrel monkey Trichoptera
E F O. leucogaster
Loach O. torridus
Chicken
P. gossypinus
P. eremicus P. leucopus
0.01
Blue whalé “zinhack whale P. melanoti

P. polionotus

Fic. 1.—Well-established phylogenetic relationships for the taxa analyzed in this study: (A) Bird whole mitochondrial genomes; (B) ar-
thropod EFla sequences; (C) primate mtDNA sequences; (D) insect 18S rRNA sequences; (E) vertebrate COIl sequences; and (F) sigmodontine
rodent mtDNA sequences. The branch lengths were estimated under the GTR + I" model.
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Fic. 2—Graphs showing bootstrap values estimated under parsimony and the nine nucleotide substitution models for each correct node.
The nodes are labeled as in figure 1. (A) Bird whole mitochondrial genomes, (B) arthropod EFla sequences, (C) primate mtDNA sequences,
(D) insect 18S rRNA sequences, (E) vertebrate COIl sequences, and (F) sigmodontine rodent mtDNA sequences.

was the only data set where an equal rates model
(HKY 85) yielded the highest mean bootstrap support for
the correct nodes (table 4). The GTR + | + I' model
had the lowest mean bootstrap proportion (table 4). The
GTR + I, GTR + T', and GTR + | + I' models gave
very similar estimates of the total tree length (table 3)
and additionally had similar AIC differences (table 1).

Discussion
Maximum Parsimony Versus Maximum Likelihood

Drawing general conclusions from a small number
of data sets can be problematic because we do not know
how representative the example data sets are of typical
phylogenetic problems. The parameter estimates (table
2) and tree lengths (table 3) are typical of many data
sets, and therefore our results should have more general

implications. The known phylogeny approach (e.g.,
Cunningham, Zhu, and Hillis 1998) does have an ad-
vantage over simulation studies of phylogenetic methods
(e.g., Huelsenbeck and Hillis 1993) because the former
avoids the simplifying assumptions inherent in gener-
ating data under a known model. The approach of using
strongly corroborated empirical phylogenies represents
an alternative approach to evaluating phylogenetic meth-
ods (e.g., Allard and Miyamoto 1992; Sullivan, Holsin-
ger, and Simon 1995; Cunningham 1997; Naylor and
Brown 1998). We view the approach that we have taken
here as complementary to simulation studies and studies
of artificially generated phylogenies.

Of dl the phylogenetic methods that we investi-
gated, maximum parsimony yielded the lowest mean
bootstrap proportion for every data set with the excep-



tion of the rodent mtDNA data. These results agree with
theoretical studies (e.g., Yang 1996; Swofford et al.
2001) that have demonstrated the utility of ML coupled
with realistic models when rates of change vary among
branches (e.g., the bird mtDNA and insect 18S rRNA,;
fig. 1). The increased statistical support for the correct
relationships that we observed under ML aso likely
stems from the increased accuracy of this method rela-
tive to equally weighted parsimony because of its in-
herent ability to accommodate biases in the data, such
as among-site rate variation. We also observed that the
JC69 model always outperformed parsimony except for
the rodent mtDNA, in agreement with the simulation
study of Yang (1996). Parsimony did indicate slightly
higher support for the set of correct nodes for the rodent
mMtDNA data set, which we attribute to the inflation of
variance associated with a complex model coupled with
a small number of varied sites (table 3). However, it is
important to note that the more complex ML models did
not indicate strong statistical support for incorrect
hypotheses.

Single-rate Versus Among-site Rate Variation Models

Some authors have questioned the utility of substi-
tution models that explicitly describe the distribution of
among-site rate variation. For example, based on the re-
sults of a simulation study, Takahashi and Nei (2000)
claimed that the HKY85 and gamma models are only
useful when extremely long sequences are available
(>10,000 bp). Reyes, Pesole, and Saccone (2000) as-
serted that if an among-site rate variation model does
not match the process that generated the data, then the
results obtained under the more complex model can be
less significant than results obtained under an equal rates
model. The results presented here provide a number of
empirical refutations to these arguments. Our results
have clearly illustrated that the relationship between the
parameter-richness of the assumed substitution model
and the confidence assigned to a phylogenetic hypoth-
esis is complex, as one would expect, as a result of the
counteracting forces of variance and bias. Increases in
bootstrap support resulting from more accurate model-
ing of the substitution process presumably results from
a decrease in bias. Eventually, we expect that bootstrap
values would begin to decrease as the model becomes
overparameterized. Our results suggest that this point
has not been reached for the combination of models and
data sets analyzed here. The use of among-site rate var-
iation models certainly does not necessarily lead to a
decrease in accuracy or statistical support for phyloge-
netic hypotheses and, in most of the situations described
here, does quite the opposite.

For every data set that we analyzed, with the ex-
ception of the rodent mtDNA sequences, the mean boot-
strap proportion for the correct nodes was highest for
one of the among-site rate variation models. Even for
sequences as short as the primate mtDNA data set (888
bp), the parameter-rich GTR + | + I' model yielded the
highest mean bootstrap value for the correct tree. Some
of the data sets showed only small differences in mean
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bootstrap support among models. On this basis, it could
be argued that the less complex and more computation-
aly efficient models work just as well. However, within
such data sets, bootstrap proportions for some individual
nodes exhibited relatively large shifts in support. For
example, the greatest difference in mean bootstrap sup-
port between models for the primate data set is 9.7%
(parsimony vs. GTR + | + T'). However, the support
for some nodes was less stable than that suggested by
this figure. For example, bootstrap support for node A
varied from 36% (parsimony) to 86% (GTR + I).

As with the other data sets, support for some nodes
in the rodent mtDNA phylogeny increased with the in-
clusion of among-site rate variation parameters, and the
support for others decreased. However, for this data set,
the highest mean bootstrap proportion was obtained un-
der the equal rates HKY 85 model. The overall reduced
support for the true tree in the rodent data set under the
among-site rate variation models agrees with the simu-
lation studies of Takahashi and Nei (2000) who ob-
served a dight reduction in phylogenetic accuracy when
rates across sites models were used to estimate trees
from sequences with a very small number of variable
sites. However, we dispute the general conclusions of
these authors that among-site rate variation models have
little utility in general because these models worked
very well for the other data sets that we analyzed here,
including short sequences (e.g., insect 18S rRNA and
vertebrate COIll sequences) and sequences from closely
related species (e.g., the human-chimpanzee-gorilla ra-
diation). It can be instructive to compare the results from
simple models (e.g., JC69) with those of more complex
models for data sets of closely related taxa as advocated
by Stanger-Hall and Cunningham (1998). However, we
do not advocate running simple models exclusively un-
less this can be justified statistically and biologically.

The pattern of variation in bootstrap support values
among the various models that we observed agrees with
the increasingly well-known and predictable behavior of
various phylogenetic methods in different regions of tree
space (Felsenstein 1978; Yang 1996, 1997b; Cunning-
ham, Zhu, and Hillis 1998; Huelsenbeck 1998; Siddall
1998; Bruno and Halpern 1999; Steel and Penny 2000;
Swofford et al. 2001). We observed a potential example
of long-branch attraction in the insect 18S rRNA se-
quences where support for node A is very low under
parsimony and the equal rates ML models because of
an attraction between the long plecopteran and the long
collembolan branches. Conversely, in this same data set,
we also observed reduced support under the among-site
rate variation models relative to parsimony and the equal
rates models for node C where two long branches (Lep-
idoptera and Trichoptera) are correctly joined. This ob-
servation probably results from misinterpretation of the
data by the underfitted ML models and parsimony be-
cause of the unequal branch lengths (Felsenstein 1978;
Yang 1997b; Huelsenbeck 1998; Bruno and Halpern
1999). This observation also supports the theoretical
predictions (e.g., Bruno and Halpern 1999; Swofford et
al. 2001) that best-fit ML models can require more data
than parsimony or an underfitted ML model to achieve
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equivalent levels of statistical support for such nodes.
However, we agree with Swofford et al. (2001) that the
realistic ML models give more appropriate estimates of
confidence for such nodes. Contrary to the expectations
of Siddall (1998) and Siddall and Whiting (1999), we
did not observe an example in any of the data sets that
we have analyzed here where a complex model yields
drastically higher estimates of statistical support for an
incorrect node when parsimony or an underfitted ML
converged on the correct node.

Our results suggest that the inflation of variance
associated with among-site rate variation models (e.g.,
Reyes, Pesole, and Saccone 2000; Takahashi and Nei
2000) is not a major concern for these data sets, prob-
ably because the increase in variance is often offset by
a decrease in hias. Our results exemplify the general
point made by Shibata (1989) that model underfitting is
potentially a much worse problem than overfitting. It
will be interesting to see whether our observations are
consistent with those from further empirical studies.

Site-specific Rate Models Versus Gamma and
Invariable Sites Models

We observed that for several data sets, the SSR
models seriously misled the analyses, even when these
models were preferred by the AIC. For example, the
AIC indicated that the GTR + SSR, model is the best-
fit model for the bird mtDNA data set. However, this
model was incapable of recovering the true phylogeny
for this data set, and worse, it provided extremely low
support for the correct root of the avian tree (15%). In
contrast, the AIC indicated that the GTR + | + I" model
fitted the data poorly relative to the GTR + SSR, model;
yet, this model indicated relatively strong bootstrap sup-
port for the correct node (71%). The poor performance
of the SSR model was also observed for both the pri-
mate and rodent mtDNA data sets. Importantly, in those
data sets where the SSR models performed poorly, they
tended to be no worse than the equal rates models (nev-
ertheless, see node B in the rodent mtDNA tree).

The failure of model selection to identify the model
with the highest predictive accuracy is of great concern.
We suspect that the good fit of the SSR model results
from the fact that this model is derived from patterns of
variation observed in the data (i.e., the nonrandom dis-
tribution of variable sites among codon positions). How-
ever, the SSR models perform poorly because they ig-
nore biological information that is essential for accurate
phylogenetic reconstruction, namely, the fine-grained
rate heterogeneity within rates classes (Buckley, Simon,
and Chambers 2001). Although model selection was in
some cases misleading, when the nested gamma and in-
variable sites models were considered in isolation, mod-
el selection performed well. For the gamma and invari-
able sites models, both the AIC and likelihood ratio tests
led to selection of the same model in amost all cases
(data not shown). The substitution model used for phy-
logenetic analysis should always be justified statistically
and biologically (e.g., Burnham and Anderson 1998; Po-
sada and Crandall 1998).

In agreement with a previous study (Buckley, Si-
mon, and Chambers 2001), we observed that the SSR
models consistently gave lower estimates of branch
lengths relative to the GTR + I' and GTR + | + T
models (table 3), probably because of the false assump-
tion of equal rates among sites within rate categories.
This underestimation of the number of substitutions may
make analyses using the SSR models more susceptible
to systematic error, especially when coupled with rate
heterogeneity among lineages, and we believe that this
is the phenomenon that we are observing with the bird
mtDNA sequences.

Invariable Sites Models Versus Mixed Gamma and
Invariable Sites Models

For the bird mtDNA, the GTR + | model was the
worst fitting of the among-site rate variation models, and
indeed this model gave low estimates of bootstrap sup-
port for the correct root of the tree (36%). The poor
performance of the GTR + | model was also observed
in the primate mtDNA data set, especialy the support
for the chimpanzee-human clade. We also observed that
the GTR + | model gave consistently lower estimates
of tree length for all data sets relative to the models that
incorporated a gamma distribution. The presence of rap-
idly evolving sites in the bird and primate data sets may
be causing the invariable sites model to underestimate
the rate of change over the tree, leading to selection of
an incorrect topology.

Because likelihood calculations under an invariable
sites model are much faster than under a gamma rates
model, the use of an invariable sites model may be de-
sirable for large data sets. Cunningham, Zhu, and Hillis
(1998) argued that invariable sites models would in
some cases be an acceptable approximation to the dis-
tribution of among-site rate variation even if a gamma
rates model fits the data better. This seems to be the
case, for example, with the arthropod EFla sequences.
However, for the bird and primate mtDNA data sets, the
invariable sites model was a poor substitute for the gam-
ma rates model (see also Buckley, Simon, and Chambers
2001), as was suggested by the AIC. In general, it seems
difficult to predict when a suboptimal among-site rate
variation model will be an acceptable approximation,
although for the bird and primate mtDNA data sets, the
AlIC was agood guide if the SSR models were excluded.

When one or more substitution models have small
AIC differences (e.g., A; = 2.0), it may be appropriate
to perform a sensitivity analysis because the statistical
justification for preferring one model to another is weak
(Chatfield 1995). Because the process of model selection
is essentialy an estimation procedure, there will often
be an uncertainty associated with selecting the best-fit
model, as we have shown for several of the data sets
that we have analyzed here. A good example of model
selection uncertainty (Madigan and Raftery 1994; Chat-
field 1995; Gelman et al. 1995; Burnham and Anderson
1998) was observed in the insect 18S rRNA data set
where the AIC difference for the GTR + | + T" model
was only 2.0, indicating that the data are essentially un-



able to differentiate between the GTR + T and GTR +
I + I models. Although the estimates of bootstrap sup-
port and tree length between the two models are similar,
this will not aways be the case (e.g., Buckley, Simon,
and Chambers 2001). Although sensitivity analyses will
increase the computational burden of ML phylogenetic
reconstruction, we do not believe that the problem is as
severe as was asserted by Sanderson and Kim (2000)
because through prudent application of the AIC and bi-
ological knowledge, we can focus on a small set of rea-
sonable models. We also note that it is very difficult to
accommodate model selection uncertainty if likelihood
ratio tests are used (Burnham and Anderson 1998).

Conclusions

We have presented analyses from a number of data
sets that contradict the argument that complex models
are of little utility in molecular phylogenetics (e.g., Tak-
ahashi and Nei 2000). For a number of known phylog-
enies, we have explored the complexity of the bias ver-
sus variance relationship using nonparametric bootstrap-
ping. We observed that for these data sets, although the
SSR models always had a superior fit to the datarelative
to invariable sites and gamma rates models, the SSR
models often gave misleading estimates of phylogenetic
relationships. Additionally, bootstrap support values for
most of the data sets increased under more realistic mod-
eling of the nucleotide substitution process. Although
our results clearly illustrate the utility of realistic mod-
els, we dtill have much to learn concerning the effects
of model misspecification on phylogenetic inference.
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