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Diabetes is a common endocrine disorder with an ever increasing prevalence globally, placing significant burdens on our healthcare
systems. It is associated with significant cardiovascular morbidities. One of the mechanisms by which it causes death is increasing
the risk of cardiac arrhythmias. The aim of this article is to review the cardiac (ion channel abnormalities, electrophysiological
and structural remodelling) and extracardiac factors (neural pathway remodelling) responsible for cardiac arrhythmogenesis in
diabetes. It is concluded by an outline of molecular targets for future antiarrhythmic therapy for the diabetic population.

1. Introduction

Cardiometabolic disorders place significant burdens on the
healthcare system worldwide [1]. Their prevalence has been
rising over the past decades due to an aging population
and an increasing level of obesity [2, 3]. Diabetes mellitus
is an endocrine disorder characterized by reduced insulin
production (type 1) or increased insulin resistance (type
2), leading to hyperglycaemia. There is increasing evidence
that diabetes increases the risk of cardiac arrhythmias. This
involves abnormalities in action potential conduction or
repolarization (Figures 1 and 2), due to a complex inter-
play of ion channel abnormalities and electrophysiological
remodelling superimposed upon a cardiomyopathic process
together with autonomic dysregulation (Figure 3). Some of
these findings are derived from experiments performed in
animal models, which have been proven extremely useful
for dissecting the molecular mechanisms responsible for
arrhythmic phenotypes [4]. In this review, the pathophys-
iology underlying cardiac arrhythmias in diabetes mellitus
is explored in detail, followed by an outline of potential
therapeutic targets for reducing arrhythmic risk and sudden
death in diabetic patients.

2. Arrhythmogenic Mechanisms in
Diabetes Mellitus

The common arrhythmogenic mechanism is reentry, which
occurs when an action potential fails to extinguish itself
and reactivates a region that has recovered from refrac-
toriness. This can arise from abnormalities in conduction
or repolarization or both [5]. Circus reentry requires three
prerequisites: (i) conduction velocity (CV) which must be
sufficiently slowed so that the tissue ahead of the action
potential (AP) wavefront remains excitable, (ii) unidirec-
tional conduction block which must be present to prevent
waves from self-extinguishing when they collide, and (iii) an
obstacle around which an AP can circulate [6]. This need not
be a structural defect but can be a functional core of refractory
tissue, which may arise dynamically from ectopic activity [7].
Repolarization abnormalities can result in early or delayed
afterdepolarizations (EADs and DADs), which can initiate
triggered activity when their magnitudes are sufficiently
large to reach the threshold potential for sodium channel
reactivation. They can also increase the dispersion of repo-
larization, promoting unidirectional conduction block and
reentry. In diabetes mellitus, arrhythmogenesis can be due to
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Figure 1: Both conduction and repolarization abnormalities promote arrhythmogenesis in diabetes.
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Figure 2: Cardiac and extracardiac factors responsible for promot-
ing arrhythmogenesis in diabetes.

the following mechanisms. Abnormalities in conduction are
mediated by myocardial ischaemia [8] or in repolarization
[9, 10] by ion channel dysfunction, increased adrenergic
drive, and calcium overload [11]. These abnormalities are
superimposed upon a cardiomyopathy, in which the struc-
tural changes also predispose to arrhythmias. Extracardiac
abnormalities, for example, neural pathway remodelling, can
further promote arrhythmogenesis [12]. Ventricular arrhyth-
mias are thought to underlie sudden cardiac death (SCD) in
type 2 diabetic patients and also the “dead-in-bed syndrome”
observed in otherwise young healthy adults with type 1
diabetes [13].

3. Abnormal Conduction

CV depends upon sodium channel activation followed by
electrotonic spread of the ionic currents via gap junctions,
which are electrical coupling pathways located between
adjacent cardiomyocytes [14]. Each gap junction is made of
two connexons, and each connexon is a hexamer of connex-
ins (Cx). Altered gap junction expression or function can

produce conduction abnormalities and in turn predispose
to reentrant excitation. Protein kinase C- (PKC-) mediated
phosphorylation, a calcium-dependent process, at serine 368
of Cx43, has been linked to reduced gap junction conduc-
tance [15, 16]. Dephosphorylation of gap junctions results
in their uncoupling [17] and lateralization [18, 19]. There
is consistent evidence demonstrating altered gap junction
function or expression in different experimental models
of diabetes. Thus, in transgenic mice with cardiac-specific
overexpression of peroxisome proliferator-activated receptor
𝛾 1 (PPAR𝛾1) modelling human diabetes, reduced Cx43
expression without alterations in CV was observed [20]. This
may increase anisotropy and higher likelihood of reentry.
In streptozotocin- (STZ-) induced diabetic rats, expression
levels of Cx40, 43 and 45 in the SA node, are significantly
increased, which were associated with SA conduction delay
[21]. This can be explained by increased expression levels of
Cx45, which has the lowest unitary conductance and whose
expression reduces CV. In both atria and ventricles of the
same model, Cx43 phosphorylation was decreased because
of reduced PKC𝜀 expression [22]; Cx43 was upregulated in
the atria, whereas its expression level was unchanged in the
ventricles [23]. Furthermore, the lack of insulin signalling can
lead to reduced CV of propagating APs.

Myocardial fibrosis is increasingly recognized to be a
pathogenic factor in diabetic cardiomyopathy [24]. Fibrosis
resulting from fibroblast activation is mediated by growth
factors, such as transforming growth factor-𝛽 [25]. This
produces conduction abnormalities via two mechanisms:
(i) reduced coupling between cardiomyocytes, leading to
increased axial resistance; (ii) increased coupling between
fibroblast and cardiomyocyte, increasing membrane capac-
itance [26]. Both mechanisms lead to a decrease in CV.
Cardiac magnetic resonance (CMR) with late gadolinium
enhancement is used for the diagnosis andmonitoring of car-
diomyopathy [27–29] and is potentially useful for examining
fibrosis in diabetic cardiomyopathy.

Hypoglycemic episodes are associated with myocar-
dial ischaemia [8], which may predispose to ventricular
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arrhythmias by producing conduction defects via the follow-
ing mechanisms [14]. Ischaemia results in ATP depletion,
metabolic switching to anaerobic glycolysis, extracellular
H+ accumulation, and intracellular Ca2+ overload. Cytosolic
Ca2+ binds to the conserved C2 domain of PKC, thereby
activating it [30]. There are several downstream targets of
PKC. Firstly, PKC phosphorylates the serine residue at 1505
position of the sodium channel inactivation gate between
domains III and IV, which decreases 𝐼Na [31]. Secondly, it also
phosphorylates connexins (Cx) 43 at serine 368, reducing gap
junction conductance [15, 16]. Ca2+ overload is also associ-
ated with dephosphorylation of gap junctions [32], resulting
in their uncoupling [17] and lateralization [18, 19]. Thus,
myocardial ischaemia secondary to hypoglycaemia reduces
CV and increases dispersion of conduction, predisposing to
reentrant excitation.

4. Abnormal Repolarization

Action potential repolarization has two phases: (i) early
rapid repolarization resulting from the activation of the fast
and slow transient outward potassium currents, 𝐼to,f and
𝐼to,s, and (ii) prolonged plateau resulting from a balance
between the inward currents mediated by the voltage-gated
L-type calcium channel (LTCC, 𝐼Ca,L) and sodium-calcium
exchanger (𝐼NCX) and the outward currents mediated by the
voltage-gated delayed rectifier potassium channels (𝐼K: rapid
and slow currents, 𝐼Kr and 𝐼Ks) [33].There is also contribution
from the inward rectifying current (𝐼K1). Of these, the human
ether-à-go-go-related gene (HERG) K+ channel is the major
component of delayed rectifier K+ current [34].

In diabetes mellitus, prolongations in action potential
durations (APDs) are due to several mechanisms. The lack
of insulin signalling resulted in electrophysiological remod-
elling: 𝐼to is reduced as a result of reduced expression of Kv4.2
and KChiP2 genes [35]. This current is posttranslationally
regulated by a number of different kinases. For example,
the p90 ribosomal S6 kinase (p90RSK) is a serine/threonine
kinase with N- and C-terminal kinase domains. Reactive

oxygen species (ROS), which are raised in diabetes [36],
increases the activity of p90RSK and reduced the activity
of 𝐼to,f , 𝐼K,slow, and 𝐼SS channels [37]. Moreover, transgenic
mice with cardiac-specific overexpression of peroxisome
proliferator-activated receptor 𝛾 1 (PPAR𝛾1) showed abnor-
mal lipid accumulation in cardiomyocytes and reduced
expression as well as function of 𝐼to,f and 𝐼K,slow[20]. The
Rad (Ras associated with diabetes) protein is implicated in
diabetes: in its dominant negativemutant, LTCCwas upregu-
lated [38]. Together, increased inward currents and decreased
outward currents lead to prolonged ventricular repolariza-
tion. Conversely, genetic mutations of key ion channel genes
causing prolonged ventricular repolarization can also lead
to diabetes. For example, mutations in KCNE2 are respon-
sible for long QT syndrome type 5. Whole-transcript tran-
scriptomics demonstrated that KCNE2−/− mice additionally
showed diabetesmellitus, hypercholesterolemia, and elevated
angiotensin II levels [39]. Hypoglycaemia causes intracellular
depletion of ATP in cardiomyocytes and hyperglycaemia
increases the production of reactive oxygen species (ROS),
both leading to HERG channel dysfunction [40]. KATP
channels are thought to provide a link between cellular energy
status and membrane electrophysiology. They are normally
inhibited by ATP and activated by ADP. During ischaemia,
there are ATP depletion and ADP accumulation, activating
𝐼K,ATP and promoting APD shortening [41]. In diabetes,
initial APD shortening is also observed but this becomes
fully reversed in a time-dependent manner. This failure of
APD adaptation, when accompanied by increased adrenergic
drive, can engage in steep APD restitution, in turn leading to
the production of arrhythmogenic APD alternans [7].

Hypoglycaemia is also associated with another cause of
delayed repolarization, hypokalaemia [42, 43], which arises
from insulin therapy or increased adrenergic drive [44, 45].
Hypokalaemia inhibits 𝐼K1, thereby prolonging APDs and
causing L-type Ca2+ channel reactivation [46]. This then
leads to early afterdepolarizations (EADs) and consequent
triggered activity [47]. Hypokalaemia also preferentially
prolongs epicardial APDs and leaving endocardial APDs
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unchanged, increasing the transmural repolarization gradi-
ent [47]. In combination with reduced effective refractory
periods (ERPs), excitation wavelength (conduction velocity
(CV) × ERP) is reduced. Furthermore, increased steepness
of APD restitution results in the development of APD
alternans [48] and in turn in wavebreak, conduction block,
and initiation and maintenance of reentrant activity [7, 49].

Hypoglycaemia also increases adrenergic drive with
the following proarrhythmic consequences [50]. Firstly, the
release of catecholamines leads to abnormal Ca2+ cycling
and intracellular Ca2+ accumulation. This in turn stimulates
spontaneous Ca2+ release from the sarcoplasmic reticulum,
thereby activating three calcium-sensitive currents: the non-
selective cationic current, 𝐼NS, the sodium-calcium exchange
current, 𝐼NCX, and the calcium-activated chloride current,
𝐼Cl,Ca. Thus, such inward currents observed during phase 4
of the action potential lead to delayed afterdepolarizations
(DADs), eliciting triggered activity.

Abnormal Ca2+ dynamics have been implicated in
diabetes. For example, cardiomyocytes of leptin-deficient
ob/ob mice showed reduced amplitudes of Ca2+ tran-
sients, and insulin elicited extra transients via inositol
1,4,5-trisphosphate (IP

3
) signalling and impaired mitochon-

drial Ca2+ handling [51]. Furthermore, decreases in DAG-
mediated nonselective cation currents were associated with
reduced TRPC3 expression at the plasma membrane, which
increases Ca2+ influx [52]. Dysregulation of the type 2
ryanodine receptor (RyR2) has been detected in a STZ-
induced diabetes rat model, in which increased frequency of
Ca2+ sparks with reduced amplitudes was associated with
increased sensitivity to Ca2+ activation and dyssynchronous
Ca2+ release [53, 54]. Abnormal RyR2 gatingmechanismmay
arise from increased phosphorylation by protein kinase A
(PKA, serine 2808) and Ca2+/calmodulin-dependent protein
kinase II (CaMKII, serine 2808 and serine 2814) [55–57], as
well as oxidation by ROS and reactive carbonyl species (RCS),
which are increased in diabetes [58–60]. Uncontrolled hyper-
glycaemia can lead to activation of CaMKII and subsequent
Ca2+ release from the SR [61]. Dyssynchronous Ca2+ release
can be explained by remodelling of the transverse tubular
system, whereby RyR2 become orphaned when they are
decoupled fromLTCCs [62]. Interestingly, catecholaminergic
polymorphic ventricular tachycardia (CPVT) is caused by
RyR2 mutation, and patients suffering from this condition
are also prone to impaired glucose homeostasis and insulin
secretion [63]. It would be interesting to determine whether
diabetic patients with acquired dysfunction in RyR2 develop
bidirectional VT classically associated with CPVT.

Moreover, diabetes mellitus is an independent risk fac-
tor for atrial fibrillation, yet the underlying physiological
mechanisms are incompletely understood. It may involve ion
channel remodelling in the atria. For example, the small con-
ductanceCa2+-activatedK+ (SK) channels contribute to atrial
repolarization. SK2 and SK3 isoforms are downregulated,
leading to APD prolongation [64]. Normally, SK channels do
not play a role in ventricular repolarization. In heart failure,
SK currents and ion channel expression can be upregulated
and become more sensitive to Ca2+ modulation, potentially

leading to ventricular arrhythmias [65]. Altered expression of
SK channels in the ventricles may play a role in diabetes but
this remains to be tested experimentally.

5. Diabetic Cardiomyopathy: Cardiac
Electrophysiological and Structural
Remodelling with Superimposed Autonomic
Dysregulation

Diabetic cardiomyopathy is characterized by diastolic dys-
function with preserved systolic function, findings that are
similarly observed in genetically modified, leptin receptor
deficient, diabetic db/db mice on echocardiography [66, 67].
Cardiac magnetic resonance imaging is excellent for char-
acterizing structural abnormalities, such as areas of fibrosis
by late gadolinium enhancement [27–29]. Afferent and effer-
ent neural pathways normally regulate inotropic, lusitropic,
chronotropic, and dromotropic responses of the heart. In
diabetes, these can become dysregulated with impaired
baroreceptor control of heart rate [68]. Reduced heart rate
variability (HRV) has long been associated with increased
mortality [69]. In diabetes, a reduction inHRVwas associated
with increased incidence of inducible VT by programmed
electrical stimulation [70]. Electrophysiological modelling is
likely to be an early event, appearing before structural abnor-
malities. Thus, STZ-induced diabetic rats showed decreases
in both maximal transport capacity of SERCA2a and RyR2
conductance, associated with impairment of both inotropic
and lusitropic responses in response to adrenergic stimu-
lation [71]. This finding differs from human findings with
impaired positive inotropic response with preservation of
positive lusitropic effects of beta-adrenoceptor stimulation
[72].

Brady-arrhythmias in the form of sinoatrial (SA) and
atrioventricular (AV) nodal blocks are seen in diabetes [73,
74]. Sinoatrial node (SAN) dysfunction was demonstrated in
db/db mice, which demonstrated prolonged SAN recovery
time [66]. These mice showed no significant differences
in conduction intervals and wave amplitudes compared to
control mice. By contrast, sinus tachycardia at rest has
been associated with excessive mortality in diabetic patients
[75]. This may be related to autonomic dysregulation, with
increased adrenergic drive with or without impairment of
parasympathetic response. Thus, in Akita diabetic mice, the
SAnode is less responsive to acetylcholine because of a reduc-
tion in acetylcholine-activated K+ current (𝐼K,ACh), which is
due to altered phosphoinositide 3-kinase (PI3K) signalling
[76].

Some aspects of altered cardiac electrophysiology in
diabetes do not arise from abnormalities in the heart itself,
but instead from neural pathways innervating it. Thus,
in STZ-induced diabetic mice, both baroreflex tachycardia
and bradycardia were blunted. This was associated with
remodelling of the baroreceptor circuitry, in which the sizes
of cardiac ganglia and ganglionic principal neurons were
decreased. In a different model, the OVE26 diabetic mice
showed neural degeneration in the nucleus ambiguus, which
is one of the two brainstem nuclei innervating the cardiac
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Table 1

Molecular target Mechanism of action References

Gap junction inhibitors Increase refractory period
Improve conduction [47]

Gap junction openers

Increase conduction
velocity and decrease
heterogeneity in
repolarization or
refractoriness

[49]

Late sodium channel
blockers Inhibit afterdepolarizations [83]

Ryanodine receptor
stabilizers

Decrease heterogeneity in
Ca2+ transients and inhibit
afterdepolarizations

[84]

Antifibrotic agents Reduce cardiac fibrosis [82]

ganglia [77]. Furthermore, altered balance between chemoat-
tractants (e.g., nerve growth factor) and chemorepellants
(Sema3a) leads to disruptions in innervation pattern, precip-
itating arrhythmias, and sudden death [78].

6. Clinical Relevance and Future Therapies

Traditional agents used for treatment of diabetes or associated
comorbidities such as hypertension have been shown to exert
cardiac protective effects in diabetes by previously unknown
mechanisms.Thus, for example, in the STZ-induced diabetic
rat model, 𝐼to and 𝐼SS are downregulated and the cardiac
renin-angiotensin system is activated. Experimental evidence
has demonstrated augmentation of both currents by the
antihypertensive angiotensin II receptor blockers [79]. The
ACE inhibitor enalapril [80] and angiotensin II receptor
blocker losartan [81] were also shown to exert antifibrotic
effects in hypertension andmay have similar cardioprotective
effects in diabetes by similar mechanisms. The antifibrotic
hormone relaxin could be delivered using adenoviruses [82]
and may reverse fibrosis in diabetic cardiomyopathy. Ion
channels represent an attractive target for managing arrhyth-
mic complications of diabetes mellitus (Table 1). Novel agents
such as late sodium current blockers [83] and gap junction
openers [49] can be used to reduce abnormal repolarization
and conduction, respectively. Alternatively, gap junction
inhibitors can prolong effective refractory periods and exert
antiarrhythmic effects [47]. Paradoxically, mild gap junction
uncoupling could improve the safety margin of conduction
and increase CV, removing unidirectional conduction blocks
and converting these into bilateral conduction. Their use
in diabetes warrants future exploration. Ryanodine receptor
stabilizers have the potential to normalize Ca2+ handling in
diabetes, which remains to be tested [84]. However, caution
must be exercised to screen for deleterious, ventricular
proarrhythmic effects. KATP channels play a role in not only
insulin secretion but also cardiac repolarization. Whilst the
KATP channel activators have been used to increase insulin
release, they have the potential to cause life-threatening
ventricular arrhythmias, especially in a subset of patients
with ischaemic complications. In diabetes, mitochondrial

KATP channel activation in cardiomyocytes by dioxide led to
impaired APD adaptation, which promoted the occurrence
of VT [85]. Future efforts therefore require an integrated
approach by computation modelling, where effects of drugs
on complex spatiotemporal properties of cardiac dynamics
are tested to reduce the likelihood of life-threatening side
effects. Animal models will be useful for studying arrhyth-
mogenic mechanisms and provide a platform for assessing
the efficacy of pharmacological therapy with translational
applications [86–88].
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