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Abstract— Reported conjugated polymer actuators have typ-
ically been limited to bender or linear extender configurations.
In this paper, we present a fiber-reinforced conjugated polymer
actuator capable of torsional motion. By incorporating platinum
fibers into the material matrix during the electrochemical fabri-
cation process, we create anisotropy in the interaction between
the fiber and the material matrix, resulting in torsion and other
associated deformations upon actuation. A nonlinear elasticity-
based model is utilized to capture the actuator performance
for both small and large deformations. The effectiveness of the
model is verified through comparison with experimental results.

I. INTRODUCTION

Conjugated polymers, such as polypyrrole (PPy), are one
class of electroactive polymers that have inherent actua-
tion and sensing properties, with promising applications in
robotics and micro systems [1]–[3]. Upon application of a
potential (or voltage), a conjugated polymer in contact with
a proper electrolyte undergoes reduction/oxidation (redox),
where ions from the electrolyte move in and out of the
polymer matrix. The volume change induced by such ion
transport is considered to be the primary mechanism of
actuation for conjugated polymers [2]. The strains gener-
ated by PPy actuators are typically between 1% and 10%
[1]. Conjugated polymer actuators have numerous potential
applications in microfluidic and medical devices [4]–[7].

Reported conjugate polymer actuators have typically been
limited to bender [2], [8] or linear extender [1] configura-
tions. However, in microsurgery and other robotic applica-
tions, more complicated actuator motions will be required. It
is known that fiber-reinforced elastic material can generate
complicated deformation [9]–[11]. The anisotropy associated
with the interaction between the fibers and the material ma-
trix makes the material resist elongation in certain directions,
which generates torsional motion when the volume of the
material changes [12]. This principle provides a potentially
useful approach to fabricating compact torsional actuators
using conjugated polymers. These polymers provide an ideal
material to realize the design of fiber-reinforced elastic ma-
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terial actuators in practice, since the volume of the polymer
can be changed easily with electrical actuation.

A conjugated polymer tube was fabricated by Ding et
al. [13], where platinum wires were integrated into the
conjugated polymer during the fabrication process. However,
the purpose for the platinum wires in that paper was to
increase the electrical conductivity along the tube, so the
torsional motion introduced by the fiber-reinforced structure
was not investigated. To the best of the authors’ knowledge,
there has been no detailed investigation on torsional motion
in fiber-reinforced conjugated polymer actuators.

In this paper, torsional motion of a fiber-reinforced conju-
gated polymer actuator is investigated. A nonlinear elasticity-
based model is proposed to capture voltage-induced torsion
and other associated deformations of the conjugated polymer
tube. The model is verified with experimental measurements
made on a platinum fiber-reinforced PPy tube.

The remainder of the paper is organized as follows.
The actuation mechanism and actuator configuration are
introduced in Section II. The nonlinear elasticity model is
presented in Section III. Actuator fabrication and model val-
idation are discussed in Section IV. Finally the conclusions
are provided in Section V.

II. ACTUATOR MECHANISM

Fig. 1 illustrates the mechanism of a PPy actuator in
electrolyte. If a voltage is applied across the PPy actuator and
the electrolyte, the ions in the electrolyte will move towards
and accumulate at the interface between the PPy and the
electrolyte. The highly concentrated ions in the double layer
will diffuse into the PPy layer, and oxidize the PPy polymer.
When a negative voltage is applied, the PPy polymer is
reduced, in the sense that the ions will be repelled out of the
PPy polymer chain and move back to the electrolyte. Because
of the mass transfer introduced by this ion movement, the
volume of PPy will expand (oxidation) or shrink (reduction).
This concept has been utilized to generate bending and linear
motion [1]–[3].

The oxidation dynamics mainly involves diffusion and
migration effects [14]. When a DC voltage U is applied
across the polymer, quasi-static analysis can be applied [15].
The total transferred charges can be calculated as

Q = k1 ·U, (1)

where k1 = 1
2 (1+ h

 )C, h is the thickness of the PPy layer, 
is the thickness of the double-layer at the polymer/electrolyte
interface, and C is the double-layer capacitance. The propor-
tionality constant k1 can be obtained based on experiments.
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Fig. 1. Illustration of double-layer charging and diffusion for a
conjugated polymer film with one side in contact with electrolyte.

From (1), the transferred charge density  can be obtained
as

 =
Q
V

, (2)

where V is the volume of the PPy layer. Those ions trans-
ferred to the PPy polymer result in volume change, which
can be captured by [16]:

 =
V − k2V

V
= 1− k2 , (3)

where  represents the swelling ratio of the PPy layer, and
k2 is the swelling-to-charge ratio. When  > 1, the volume is
increased; when  < 1, the volume is decreased. The value
of k2 has the order of 10−10m3 ·C−1 [17].

Fiber-reinforced elastic materials can generate complicated
deformation when subject to swelling. When the fibers are
aligned in special ways, the material matrix containing fibers
will expand in the direction perpendicular to the fiber [12].
A specific case is studied in this paper, where the fiber is
helically wound about a elastic tube with a fixed pitch angle,
which is illustrated in Fig. 2. The elastic material we consider
here is PPy, the volume of which can be changed through
electrical activation. Theoretical analysis shows that the tube
will generate torsional motion when subject to swelling.
Platinum wires are chosen to be integrated into PPy tube
during the fabrication with some pitch angle  .

Fig. 2. Schematic of the conjugated polymer-based torsional
actuator.

III. NONLINEAR MECHANICAL MODEL BASED ON A

SWELLING FRAMEWORK

A. Nonlinear Mechanical Modeling Framework

The original and deformed configurations are shown in
Fig. 3, where F represents the deformation gradient, which

can map vectors (expressed in Z,R, domain) in the original
configuration to vectors (expressed in z,r, domain) in the
deformed configuration. The pitch angle is defined as  (0 <
 < 90o) [12].
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Fig. 3. Illustration of the actuator configuration. Left: original
configuration; right: deformed configuration.

The deformation can be characterized by the following
equation:

r = r(R),  = +Z, z = zZ, (4)

where  is the twist per unit length, and z is the elongation
per unit length in the longitudinal direction. Suppose that the
deformation takes a particle at location X in the reference
configuration to the location x in the deformed configuration.
The deformation gradient is defined as

F =
x
X

, (5)

where

dX = dR eR +Rd e+dZ eZ,

dx = dr er + rd e +dz ez,

eR,e, and eZ are the orthonormal unit vectors in the
original configuration, and er,e ,and ez are the orthonormal
unit vectors in the deformed configuration. The deformation
gradient tensor is

F =
dr
dR

er ⊗ eR +
r
R

e ⊗ e+re ⊗ eZ +zez ⊗ eZ, (6)

where ⊗ is the dyadic product. We assume that PPy is
mechanically incompressible both before and after swelling.
This assumption is based on relevant literature [18]. So the
deformation satisfies the constraint that the volume is not
changed by the deformation after swelling, which means

det F = . (7)
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This, together with (6), implies

1
R
zr

dr
dR

= . (8)

Rewriting (8) as rdr = 
z

RdR and integrating, we get

r2 = r2
i +

2
z

∫ R

Ri

RdR, (9)

where ri and Ri are the inner radii of the tube in the original
configuration and the deformed configuration, respectively.
The left Cauchy-Green deformation tensor is defined by

B = FFT. (10)

Following (6) and (8), we can further express B as

B =
2R2

 2
z r2 er ⊗ er +(2 +

1
R2 )r2e ⊗ e

+zr(e ⊗ ez + ez⊗ e )+ 2
z ez⊗ ez. (11)

The principal invariants of B are defined as

I1 = tr(B), I2 = I3tr(B−1), I3 = det(B). (12)

From (6), the invariant I1 is obtained as

I1 =
2R2

 2
z r2 +

r2

R2 +2r2 + 2
z . (13)

The elastic energy function of PPy can be denoted by m

and modeled in the neo-Hookean form as

m =
1
2
(I1 −32/3), (14)

where  is a material elastic constant that can be taken as
EPPy/3, and EPPy is the Young’s modulus [15].

Let M be the unit vector in the reference configuration
that defines the fiber direction in the material matrix:

M = sine+ coseZ, (15)

where  is the pitch angle defined in Fig. 3. Given the
deformation gradient F, the unit vector M is mapped into

m = FM = ( cos +
1
R

sin )e +z cosez. (16)

The square of the stretch of the fiber under actuation is

I4 = tr(m⊗m) = ( cos +
1
R

sin )22 + 2
z cos2 . (17)

The strain energy function of the fiber can be modeled as

 f =
1
2
(I4 −1)2, (18)

where  is another material constant. This material constant
will depend on the volume fraction of fibers in the overall
composite. Using the connection between the nonlinear the-
ory and the linear theory of anisotropic elasticity [19], we
may take  = 1

5Eplatinum in this investigation. Therefore, the
total energy of the fiber-reinforced PPy actuator is

W = m + f . (19)

The Cauchy stress tensor is [12]

 =
1

W
F

FT − pI, (20)

where p has the interpretation of the (unknown) hydrostatic
pressure. With the expression of total energy in (19), the
Cauchy stress can be written as [12]

 =
2

m

 I1
B+

2

 f

 I4
m⊗m− pI. (21)

Considering (11) and (16), we can express (21) as

 = rrer ⊗ er +e ⊗ e +z(e ⊗ ez + ez⊗ e )
+zzez⊗ ez, (22)

where

rr = −p+
R2

 2
z r2 , (23)

 = −p+
r2


(2 +

1
R2 )

+
2r2


( cos +

1
R

sin )2(I4 −1), (24)

zz = −p+


 2

z +
2

 2

z (I4 −1)cos2 , (25)

z =


zr+

2

zrcos ( cos

+
1
R

sin )(I4 −1). (26)

This framework is built on strain energy functions and
general deformation gradients, and it is thus valid for both
small and large deformations.

B. Boundary Conditions

The boundary conditions on the conjugated polymer actu-
ator are specified as follows:

rr|R=Ri = 0, rr|R=Ro = 0, (27)

which represent that there is no direct loading applied to the
inner and outer lateral surfaces. Note that R is used in (27)
since r is also a function of R. The equilibrium equation
div = 0 in the directions of r, z, and  can be written as
follows:

rr

 r
+

1
r
r


+
rz

 z
+

1
r
(rr − ) = 0, (28)

rz

 r
+

1
r
z


+
zz

 z
+
rz

r
= 0, (29)

r
 r

+
1
r



+
z
 z

+
2r

r
= 0, (30)

where r = 0, rz = 0 in this case. Considering (24), (25),
and (26), one can show that (29) and (30) reduce to  p

 z = 0

and  p
 = 0, which means that p is a function of r only.

Given r = 0 and rz = 0, one can write (28) as follows by
using (8):

drr

dR
= − R

zr2 (rr − ), (31)
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which can be furthermore expanded by considering (23):

dp
dR

=
R
zr2 (rr − )+


 2

z

d
dR

(
R2

r2 ). (32)

Integrating (32) after substituting the expression of (23)
minus (24), one can obtain an expression for p by using
the boundary condition rr|R=R0 = 0:

p = R2
 2

z r2 − ∫ R0
R (( 

2R3

 3
z r4 − R(R22+1)

zR2 )

− 2R
z

(cos + 1
Rsin )2(I4 −1))dR. (33)

Applying the other boundary condition rr|R=Ri = 0 in (33)
gives the following constraint equation:

= 0, (34)

where

 =
∫ Ro

Ri

(

2

(−2R2

 2
z r4 +2 +

1
R2 )

+( cos +
1
R

sin )2(I4 −1))RdR. (35)

C. Nonlinear Model

One can see from Fig. 3 that three variables quantify the
deformed configuration: r, z, and  . Because the profile of r
can be calculated based on (9), the variable r can be replaced
by ri to characterize the deformation together with the other
two variables. Eq. (35) has provided one constraint equation.
The other two require knowledge of the moment T and axial
load P, which are given by the following expressions:

T = 2
∫ ro

ri
zr

2dr, (36)

P = 2
∫ ro

ri
zzrdr. (37)

When one end of the tube is not constrained, it follows that
T = 0 and P = 0. These two equations, along with (34),
provide three nonlinear equations for ri,  , and z. One finds
that: the expression (35) is strongly dependent on ri, the
expression (36) for T is strongly dependent on  , and the
expression (37) for P is strongly dependent on z. In general,
the numerical analysis to obtain these variables by solving
three nonlinear equations is difficult. Therefore, in this paper,
z, representing the length change ratio in the axial direction,
will be measured and used as a given parameter. Since  and
T give the strongest dependence on ri and  , the equations
= 0 and T = 0 are retained in the analysis and numerically
solved to obtain ri and  . By substituting from (26), one can
integrate (36) and obtain the following expression:

T = a+ (b0 +b1 +b22 +b33), (38)

where a, b0, b1, b2 and b3 are terms involving material
constants. Similarly one can integrate (35) and obtain the
expression for  as follows:

= + , (39)

where  and  are also terms involving material properties
and z,  , and ri, which will not be listed in this paper due

to the page limitation. The two unknown variables ri and 
can be obtained by numerically solving the coupled equations
= 0 and T = 0 using (38) and (39).

IV. EXPERIMENTAL RESULTS

A. Actuator Fabrication

To fabricate the actuator, it is crucial to integrate the fibers
into the material matrix of PPy. This would ensure that,
when the PPy tube volume changes, the torsional motion
will be generated when the motion in other directions are
constrained. For this purpose, firstly a glass cylinder with
a diameter of 2.5 mm is used as the substrate and coated
uniformly with gold through sputtering. Then a platinum
wire with diameter of 25 m is wound uniformly along
the glass cylinder. The pitch angle  is 80o. This tube
is soaked in the electrolyte (0.05M LiTFSI in Propylene
Carbonate) and connected to the working electrode of a
potentiostat (OMNI101 from Cypress Systems). An electro-
chemical deposition process is conducted by following the
method in [20]. To maintain a constant potential on PPy
when PPy grows on the surface of glass tube, an Ag/AgCl
reference electrode (Aldrich Chemical) is used. The auxiliary
electrode is a stainless steel mesh. The electrolyte used in
experiment is a mixed solution of 0.1M pyrrole, 0.1M LiTFSI
in Propylene Carbonate with 0.5w/w% water. The current
density is maintained at 2 mA/cm2 for a total period of 20
hours. A PPy tube with wall thickness of 250 m is grown on
the tube surface, which integrates the platinum wire. Because
the sputtered gold layer has poor adhesion force with the PPy
inner surface, the PPy tube can be easily taken off from the
glass cylinder. Fig. 5 shows the fabricated prototype. The
inner diameter of the tube is 2.5 mm, and the outer diameter
is 3 mm.

Fig. 4. The experimental setup to fabricate the fiber reinforced
conjugated polymer actuator.

B. Experimental Setup for Characterizing the Actuator

The PPy tube is soaked in 0.1M LiTFSI in Propylene
Carbonate (PC), with the top out of electrolyte for electric
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Fig. 5. Fabricated platinum fiber-reinforced PPy tube.

contact. A voltage is applied across the PPy tube and the
counter electrode, which is a stainless steel mesh in the ex-
periments. A computer equipped with a DS1104 R&D Con-
troller Board (dSPACE Inc) is used for data acquisition and
processing. A laser distance sensor (OADM 20I6441/S14F,
Baumer Electric) with resolution of 4 m is used to measure
the motion of the actuator. Sticky copper film is attached to
different positions of the PPy tube for measurement purposes.
Three motion signals are measured, which are the inner
radius ri, torsional displacement y at the end of the tube
as shown in Fig. 6, and the length change at the end of the
tube that equals to z ·L based on (4), where L is the length
of the PPy tube. The model predicted variables ri and z can
be correlated directly to the measured variables, while  is
obtained based on the geometric relationship in Fig. 6:

y = Rm tan( ·L), (40)

where y is the measured displacement, L is 17.2 mm, and
Rm is 5 mm in this paper.

mR
y

Fig. 6. Experimental setup to measure  . The copper film is
attached perpendicular to the outer surface at the tube bottom.

C. Experimental Results and Discussions

The quasi-static response is studied by applying a low fre-
quency sinusoidal voltage on the actuator. The frequency is
chosen to be 0.01 Hz to allow the actuator to reach the quasi-
static condition. The peak magnitudes of the responses under
AC voltages of different amplitudes are shown in Fig. 7. The
sinusoidal voltage amplitude is varied from 2 V to 4 V. Note
that since only one laser sensor is available, measurements
of inner radius, torsional displacement, and length change
are performed separately and then synchronized through
the voltage signal. One interesting phenomenon observed in

experiments is that the inner radius and torsional displace-
ment signals have reversed phases. In particular, when the
inner radius decreases, the torsional displacement increases.
The Young’s moduli of platinum and PPy are chosen to
be 280 GPa and 80 MPa in model prediction [15], [21].
From Fig. 7, the model can predict both inner radius and
torsional displacement well within the voltage range, and the
reversed phase of these two signals. Note that there are no
experimental data points for the inner radius when the input
voltage is lower than 2.8 V, since the inner radius response is
beyond the resolution of the laser sensor when the maximum
voltage input is smaller than 2.8 V.
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Fig. 7. Comparison of inner radius and torsional displacement
between the model prediction and experiments. The input voltage
represents the amplitude of the applied 0.01 Hz sinusoidal signal,
and each data point is collected when the instantaneous value of
the input reaches the peak.

The deformation signals under the AC voltage with am-
plitude 4 V are shown in the following figures: Fig. 9 for
the inner radius, Fig. 10 for the torsional displacement, and
Fig. 8 for the length change. As discussed in Sec. III-C,
the length change is used to obtain z and taken as a given
parameter to reduce the difficulties in numerical analysis.
Therefore the model predicted inner radius and torsional
displacement are compared with the experimental data in
Fig. 9 and Fig. 10. As one can see, the model can predict the
experimental data well. It also predicts correctly the reversed
phase in inner radius and torsional displacement.

V. CONCLUSIONS

Experiments have shown that the tube-shaped conjugated
polymer actuator can generate torsional deformation when an
actuation voltage is applied across the conjugated polymer
and the electrolyte. A nonlinear elasticity-based model has
been utilized to capture the actuator performance, which
holds for both small and large deformations. The effec-
tiveness of the model has been validated with experimental
results.

Future work includes fabrication of the conjugated poly-
mer tube with different configurations, such as different tube
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Fig. 8. The change of tube length with 0.01 Hz sinusoidal voltage
input.
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Fig. 9. The change of inner radius with 0.01 Hz sinusoidal voltage
input.
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Fig. 10. The torsional displacement with 0.01 Hz sinusoidal voltage
input.

thickness and wire winding angle  , utilizing the nonlinear
elasticity model to predict the actuator performance, and
optimizing the actuator designs for different applications.
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