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We present a new adaptive gain robust controller for polytopic uncertain systems. The proposed adaptive gain robust controller
consists of a state feedback law with a fixed gain and a compensation input with adaptive gains which are tuned by updating laws.
In this paper, we show that sufficient conditions for the existence of the proposed adaptive gain robust controller are given in terms

of LMIs. Finally, illustrative examples are presented to show the effectiveness of the proposed adaptive gain robust controller.

1. Introduction

In order to design control systems, it is necessary to derive a
mathematical model of the controlled system. It is well known
that if the mathematical model describes the controlled
system completely, one can design a satisfactory control sys-
tem by using some controller design methods. However,
there are some gaps between the controlled system and its
mathematical model and the gaps are referred to as uncer-
tainties. The uncertainties included in the mathematical
model may occur deterioration of control performance and,
at the worst, control systems become unstable. Therefore,
robust stability analysis and robust stabilization for uncertain
dynamical systems have received much attention for a long
time (e.g., see [1] and references therein). In particular,
there are lots of existing results for state feedback robust
control such as quadratic stabilizing controllers, % control
systems (e.g., see [2-4]), and so on. In addition for a class of
uncertain linear systems a connection between #*° control
and quadratic stabilization has been established [5].

By the way in most practical situations, it is desirable to
design robust control systems which achieve not only robust
stability but also an adequate level of performance. Thus,
robust controllers with achievable performance level have

also been well studied. For instance, guaranteed cost control
is introduced by Chang and Peng [6], and Riccati equa-
tion approach [7] and LMI one [8] have been suggested. Addi-
tionally, several researches have dealt with the problem of
designing a robust controller that satisfies additional con-
straints on the closed-loop poles’ location (e.g., see [9, 10]).
Besides, some design methods of variable gain controllers
for uncertain linear systems have also been shown (e.g., see
[11-13]). Maki and Hagino [11] have presented a robust con-
troller with adaptation mechanism for linear systems with
time-varying parameter uncertainties. In their work, the con-
trol gain is tuned online based on the information about
parameter uncertainties and a target model with adjustable
parameters is also introduced. In the work of Oya and Hagino
[12] an error signal between the desired trajectory and the
actual response is defined and an adaptive compensation
input is determined so as to reduce the effect of uncertainties.
These robust controllers consist of a fixed gain controller and
avariable gain one, and the variable gain controller is adjusted
by updating rules.

In this paper, we consider a design problem of an adaptive
gain robust controller for polytopic uncertain systems. The
proposed adaptive gain robust controller is composed of a
state feedback law with a fixed gain and a compensation input.



The compensation input is defined as a state feedback with
a fixed gain and one with adaptive gains tuned by updating
rules. The advantage of our new adaptive gain robust control
is that, for the case that conventional quadratic stabilizing
controller based on Lyapunov criterion cannot be obtained,
the proposed design method may be able to design stabilizing
controller. This paper is organized as follows. In Section 2, we
show notations which are used in this paper, and Section 3
contains our main result. We show that sufficient conditions
for the existence of the proposed robust controller are given
in terms of LMIs. Finally, simple numerical examples are
included to show the effectiveness of the proposed robust
controller design approach.

2. Notations

In this section, we introduce notations which are used in this
paper as well as the existing works (e.g., see [13]).

In the paper, the following notations are used. For a
matrix &/, the transpose of the matrix ¢ and its inverse are
denoted by o/” and o/™", respectively. Additionally H,{</}
and I, mean &/+ /" and n-dimensional identity matrix, resp-
ectively, and the notation diag(#,,...,¢ ;) represents a
block diagonal matrix composed of matrices &f; for i =
1,..., . For real symmetric matrices & and %, o >
B (resp., o > PB) means that o — R is positive (resp., non-
negative) definite matrix. For a vector & € R", ||| denotes the
standard Euclidian norm and, for a matrix &, ||</|| represents
its induced norm. The symbols “2” and “*” mean equality by
definition and symmetric blocks or symmetric elements in
matrices, respectively.

3. Problem Formulation

Consider the following uncertain linear system:

N
%x(t) = <A+];9k9k>x(t)+3u ), 1)
where x(t) € R" and u(t) € R™ are the vectors of state
(assumed to be available for feedback) and the control input,
respectively. In (1), the matrices A € R and B € R™" are
the nominal values of system parameters, and the matrix
D, € R™ (k = 1,...,./) denotes the structure of uncer-
tainties. Besides, 6, € R' represents unknown parameters
which satisfy the relation

N
Zek = l, Gk > 0. (2)
k=1

Namely, the uncertain system of (1) is a class of polytopic
uncertain systems. Additionally, we assume that the pairs
(A, B) and (A + 9, B) are stabilizable.

The nominal system, ignoring the unknown parameters
in (1), is given by

d_ _ _
X (t) = AX(t) + Bu (t). (3)
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In this paper, first of all, we consider the standard linear
quadratic control problem for the nominal system of (3).
Namely, we define the following quadratic cost function for
the nominal system of (3):

g = ro (7 ) @z @) +7" 0 Ra@)dt, (@)
0

where the matrices @ € R™" and # € R"™" which are
selected by designers are semipositive and positive definite. It
is well-known that the optimal control input minimizing the
quadratic cost function of (4) is given by u(¢) = Kx(t), where
K € R™" represents the optimal control gain matrix for the
nominal system of (3). Note that the closed-loop system
matrix A g = A+ BK is stable (the design parameter @ € R™"
is selected such that the pair (A, Z’) is detectable, where 7
is any matrix satisfying @ = %", and then the closed-
loop system matrix Ay is stable) and the optimal feedback
gain matrix K € R™" can be computed as K = ~% 'B' %,
where & € R™" is the unique solution of the algebraic Riccati
equation:

H{A"?}| - 2B%'B'2 + @ =0. ()

Now, by using the optimal feedback gain matrix K €
R™" for the nominal system of (3), we consider the following
control input:

u(t) 2 Kx(t) + & (x,0,t), (6)

where &(x,0,,t) € R™ is a compensation input so as to com-
pensate the effect of unknown parameters [12]. The compen-

sation input &(x, @k, t) is defined as

N
E(x,6,t) 2 Hx(t)+ ) 0, () Kpx (B) )
k=1

where & € R™" and K, € R™" (k = 1,...,./) are fixed
gain matrices and 0,(t) (k = 1,...,./) are time-varying
adjustable parameters. The decision method of fixed gain

matrices % and K, and adjustable parameters 6, (t) are
shown in Section 4. From (1), (6), and (7), we have the
uncertain closed-loop system described as

d N
0= <A + ZGk%) x(t)

k=1

N
+B <Kx ) + Fx () + ZékKk ) x (t))
k=1

(8)
N
= <AK +BX + Z@k9k>x(t)

k=1

N
+ Y 6, (£) BKyx (t) .
k=1
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By introducing the complementary variables 6 () £ 8, () —
0, (k = 1,---, ), the uncertain closed-loop system of (8)
can be rewritten as

d N
Ex(t) = ;e)k (Ax + D, + BH) x(t)

N
+ ) (B, (t) + 6, ) BKyx (1)
k=1
9)

M=

Qk(AK+9k+BKk+B%)x(t)

=~
I

1

N
+ Y B, (t) BKx (8) .
k=1

Here we have used the relation of (2). In addition, defining
the time-varying matrix

T (x,t) = (BK;x (t), BK;x (t),...,BK yx (t)),  (10)

we obtain the following uncertain closed-loop system:

d & _
0= k;ek (Ag, +BH)x () + T (x,)0(t), (1)

where Ay, and 0(t) are given by

A@k = AK+9k+BKk’
B B o (12)
6t)=(6,(1),....6, @) .

From the above, our control objective in this paper is to
design the compensation input of (7) such that the uncertain
closed-loop system of (11) is asymptotically stable, that is,
deriving the fixed gain matrices # € R™" and K, € R™"
and updating rules of adjustable parameters 6, (t) which
stabilize the uncertain closed-loop system of (11).

4. Main Results

In this section, we show a design method of the proposed
adaptive gain robust controller such that the uncertain
closed-loop system of (11) is asymptotically stable. The follow-
ing theorem shows a sufficient condition for the existence of
the proposed robust control system.

Theorem 1. Consider the uncertain linear system of (1) and the
control input of (6).

Firstly, in order to design the fixed gain matrices K;, € R™"
we solve the following LMIs for the symmetric positive definite
matrix X, € R™" and the matrix Y, € R™":

H,{(Ax + D) X + BY} + @, <0, (13)

where @, € R™" (k = 1,..., /) are symmetric positive defi-
nite matrices selected by designers. If there exist the symmetric
positive definite matrix X, € R™" and the matrix %, € R™"

satisfying the LMIs of (13), the fixed gain matrices K;, € R™"
are determined as K, = %X,

Next, the fixed gain matrix # € R™" and the updating
rule of adjustable parameters 0, (t) € R” are designed as

H=wS",
g (14)
E6 (t) = =2, 'TF (x, 1) S x (t)

provided that the following LMIs for the symmetric positive
definite matrix § € R™" and the matrix W € R™" are
feasible:

H{Ag S+BW} <0 (k=1,...,4), (15)
where 3y € R in (14) is the symmetric positive definite
matrix selected by designers. Then asymptotical stability of the
uncertain closed-loop system of (11) is guaranteed.

Proof. First of all, for the design parameters @, € R™" if the
LMIs of (13) are feasible, then, by solving the LMIs of (13), the
fixed gain matrices K; € R™" are derived as K, = %, 2} -
Note that then the matrices Ag, + BH (k = 1,...,/) are
stable.

Next, we introduce the following quadratic function as a
Lyapunov function candidate:

Z (x,1) 2 x" (t) Xx(t) +0" (£) 20 (1), (16)

where & € R™ and £, € R are symmetric positive
definite matrices. Note that the matrix 2 € R™" satisfies
=8 Namely, the quadratic function 7"(x, t) is positive
definite and radially unbounded. The time derivative of
the quadratic function 7'(x,t) along the trajectory of the
uncertain closed-loop system of (11) can be expressed as:

d

N
27 e =x"() [He {];eksr (Ag, + B%)H x ()

+H, {x" (1) 2Tk (x,1) 6 (1)}

" <%§(t)>T295(t) N0 ze(%é(w)
1)

Thus from the updating rule of (14) and the relation of (17)
we have

d B, &
Z'%(x, t)=x' (t) I:He {k;eksr (Ag, +B%)H x(t).
(18)

Namely, if the matrix inequality

N
H, {Zeksr(A@k + B,%)]» <0 (19)
k=1



is satisfied, then the following relation for Vx(¢) # 0 holds:

d
—7 (x,t) <0 20
27 0 (20)
that is, the uncertain closed-loop system of (11) is asymptoti-
cally stable.
By introducing the matrix 7" = F'§ one can easily see
that the condition of (19) is equivalent to

N
H, {Zek (Ag, S+ B‘W/)]» <0. (21)

k=1

Since the unknown parameters 0, satisfy the relation of (2),
we find that the inequality condition of (21) is equivalent to
the LMIs of (15).

Thus the proof of Theorem 1 is accomplished. O

Remark 2. Tt is well known that if the LMIs of (A.l) are not
feasible then the conventional quadratic stabilizing controller
cannot be designed. Furthermore, the conventional design
method does not have design parameters. On the other hand,
in this paper, by introducing the adjustable parameter, the
control input is constructed as (6) and (7). One can see from
stabilizability of the pair (A + 9y, B) that the LMIs of (13)
are feasible. Namely, the fixed gain matrices K, € R™"
can always be derived and the matrix A, = Ag + Dy +
BK, in (12) is stable, because the fixed gain matrices K
are derived by using the solution of LMIs of (13). Besides,
LMIs of (15) may be feasible provided that the LMIs of
(A.1) are not feasible (see Section 5). Therefore, for the case
that the conventional quadratic stabilizing controller cannot
be derived, the proposed design approach has possibility of
robust stabilizing controller design. Note that the analysis of
conservativeness for the proposed robust controller is one of
our future research subjects.

Remark 3. In this paper, by introducing adjustable parame-
ters ék(t) (k=1,..., /), we have proposed an adaptive gain
robust controller. The adaptive action of the time-varying
parameters 0, (t) can be adjusted by selecting the design
parameter 3, € R”*' in (14). In order to construct an
adaptive robust control system, the adjustable parameters
ék(t) (k = 1,...,/) are introduced and the time-varying
adjustable parameter 8 (¢) differs from an estimate for the
unknown parameter. Namely, we introduce the adjustable
parameter §k(t) so as to reduce the effect for the uncertainties
adaptively and determining 0(t) in (14) is not to estimate
the unknown parameter 0, [14]. Besides, the value of the
adjustable parameter 6, (t) depends on its initial value and
the design parameter £, € R”*" in (14) and the adjustable

parameters ék(t) do not satisfy the relation of (2) usually (see
Example 1in Section 5).

Remark 4. In this paper, we consider the polytopic uncertain
system of (1) which has uncertainties in the state matrix only.
The proposed design method of the adaptive gain robust
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controller can also be applied to the case that the uncertainties
are included in both the system matrix and the input one. By
introducing additional actuator dynamics and constituting an
augmented system, the uncertainties in the input matrix are
embedded in the system matrix of the augmented system [15].
Therefore the same design procedure can be applied.

5. Numerical Examples

In order to demonstrate the efficiency of the proposed control
scheme, we have run two simple numerical examples. The
control problems considered here are not necessarily practi-
cal. However, the simulation results stated below illustrate the
distinct feature of the proposed controller design.

Example 1. Consider the uncertain linear system

d_. (200 10 0 (Y o
Ex()_( 0.0 1.0+62)x()+(1.o>u()’ (22)

where 8, and §, are unknown parameters and these parame-
ters are supposed to vary within the intervals [-1.5,1.5] and
[-1.0, 1.0], respectively. Namely, one can see that the matrices
D (k=1,...,4) in (1) can be described as

-1.5 0.0 1.5 0.0
91 = > 92 = >
* =10 * =1.0
-1.5 0.0 1.5 0.0
D, = . D, = .
* 1.0 * 1.0

Now we select the weighting matrices @ € R”* and & €
R™ suchas @ = 1.0 X I, and % = 3.0 in (5). Then, solving
the algebraic Riccati equation of (5), we obtain

(23)

K =(-1.8142x 107" -3.0887) x 10",

> (7.4177><10‘1 1.8142><10‘1) (24)

B * 3.0887

Next, we solve LMIs of (13). The design parameters @, € R***
in (13) are setat @, = 1.0x1I,, @, = 3.0xL,, @; = 1.0x10"' x I,
and @4 = 7.0 x I, and then we can obtain symmetric positive
definite matrices 2, € R*? such as

1.8171 x 10> 1.3633 x 10?
e * 2.7714x10° )’

2:

2.6483 x 10° 8.2403 x 107!
* 2.6475x10° )’
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1.8185x 10° 1.3610 x 107
Ly = ,

* 2.7712 x 10°
2.6497 x 10> -2.1580
X, =
* 2.6475 x 10°

and matrices %, € R given by

(25)

%, = (~1.5440 7.2608) x 10°,
%, = (-2.1701 6.8521) x 10°,

(26)
%, = (~1.8187 1.7131) x 10°,

%, = (-2.1704 1.5548) x 10°.
Thus we have the following gain matrices
K, = (-1.0501 2.6715),
K, = (-8.1862 x 107" 2.5879),
(27)

K; = (-1.0502 6.6976 x 107"),

K, = (-8.1866 5.8659) x 10"

Besides, solving the LMIs of (15), we obtain
1.3942 -1.0158
x 43169 )

W = (-2.9440 —1.3793),

S

(28)

H = (-2.8294 —9.8528 x 107").

From the above, the proposed adaptive gain robust controller
can be obtained.

Now, in this example, the initial value for the uncertain
system of (22) and a design parameter for the updating law
of (14) are selected as x(0) = (1.0 - 2.0)" and Yy = 1.0 x
10" x I,, respectively, and the initial value of the adjustable

parameter is set at 5(0) = (0.0 0.0 0.0 0.0)". Besides, we
consider the following two cases for the unknown parameters

O (k=1,2):
(i) Case 1: §; = —-1.5and §, = —1.0;
(ii) Case 2: 6, = —1.5and §, = 1.0;
that is, the unknown parameters 0, are given as follows.
(i) Case 1: 6, = 1.0,0, =05 =6, = 0.0.
(ii) Case 2:0, =0, =0, = 0.0,0; = 1.0.

State

702 1 1 1
0 0.5 1 1.5 2
Time t
—— Case 1l
““““ Case 2
FIGURE 1: Time histories of the state x, (t).

0.5 T T T

State

Time t

FIGURE 2: Time histories of the state x, ().

The results of the simulation of this example are depicted
in Figures 1-5. In Figures 1-3, “Case 1” and “Case 2” represent
the time histories of the state variables x, (t) and x,(t) and the
control input u(t). Figures 4 and 5 show the time histories of
the adjustable parameters ék(t) (k=1,...,4).

From Figures 1-5, we find that the proposed adaptive gain
robust controller stabilizes the linear system of (22) in spite
of plant uncertainties. In addition, one can see from Figures
4 and 5 that in this example the parameters 51 (t) and éz(t)
take negative value; that is, , () does not satisfy the relation
of (2) and the time-varying adjustable parameter 0, (t) does
not mean an estimate of unknown parameter 6, € R'.
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FIGURE 3: Time histories of the control input u(¢).
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FIGURE 4: Time histories of adjustable parameters 8, (¢): Case 1.

Example 2. Consider the linear system with coefficient matri-
ces of

1.5 1.0 0.0
A= 00 1.0 20 |,
-2.0 -1.0 -1.0
0.0
B=1| 00 [,
1.0

0.0 —9.5x 107" 0.0
2,=| 00 0.0 0.0 |,

0.0 0.0 0.0
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Control input

— 8 85(0)
“““ 0,(t) - 0,(0)

FIGURE 5: Time histories of adjustable parameters 8, (t): Case 2.

0.0 9.5%x 107! 0.0
P,= 00 00 00 |,

0.0 0.0 0.0

0.0 0.0 0.0

2,= 00 00 -15x107" |,
0.0 0.0 0.0
0.0 0.0 0.0

D,=| 00 00 1.5x10™"
0.0 0.0 0.0

(29)

By selecting the design parameters in (13) such as @ = 3.0xI;,
R =40, O, =3.0x1;,0Q, =9.0xI;,Q; = .0x10" xI;,and
@, = 8.0 x I, respectively, and solving the algebraic Riccati
equation of (5), we have

K =(-1.1174x 10" -9.5394 -5.3173),

2.2507 x 10> 1.2893 x 10*> 4.4696 x 10! 30)
30
P = * 8.9733 x 10! 3.8158 x 10"

* * 2.1269 x 10

Additionally, the solution of LMIs of (13) and fixed gain

matrices K, € R™? (K = 1,...,4) can be computed as
1.1711 x 10" -4.0285 x 10> 9.3258 x 10

Z, = * 1.8472 x 10* -1.1168 x 10* |,
* * 2.5536 x 10*
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%, = (-3.0832 x 10° —7.8885 x 10* 3.8937 x 10%),

9.1439 x 10° —8.3256 x 10° 1.7793 x 10?
Z, = * 1.1592 x 10*  —7.5956 x 10° |,
* * 2.5293 x 10*

%, = (4.8391 -7.8488 7.6165) x 10*,

1.0718 x 10° -1.8219 x 10°> 2.6448 x 10>
Xy = * 3.7569 x 10° —-8.8775x 10° |,
* * 4.7077 x 10*

%, =(1.6538 x 10* —5.5147 x 10" 2.3278 x 10°),

4.2455 x 10° -7.737 x 10° —1.8843 x 10°

X, = * 2.1156 x 10* -7.4184 x 10° |,

* * 1.9875 x 10*

%, =(1.9074 12019 3.9039) x 10°,
(1)
K, = (-3.8863 x 10> -3.2965 1.5024),

K, = (-8.6679 x 107" —6.7430 9.9241 x 107'),
(32)
K; = (—4.4573 x 100 -3.3716 x 10' 1.0909),

K, = (-7.9847 —1.9438 1.1646).

Finally, by using these gain parameters of (32), we can obtain
the following solution of the LMIs of (15) and a fixed gain
matrix Z € R of (34):

5.4616 x 10™* -1.6403 x 1072 4.7503 x 107>

S = * 8.9260 x 107 -2.5601 x 10! |,

* * 23132 x 10°

W =(9.2471 x 107" 9.1270 x 107> 1.4001107°).
(33)

Thus the following gain matrix can be computed:

H = (-6.0417 x 10° —2.0255 x 10* —2.8346 x 10%).
(34)

On the other hand, the uncertain system with the coeffi-
cient matrices of (29), the conventional quadratic stabilizing
controller based on Lyapunov criterion, cannot be designed;
that is, the LMIs of (A.1) are not feasible. This result shows
that, for the case such that the robust controller based on
Lyapunov criterion cannot be obtained, the proposed con-
troller design method has possibility of robust control system
design. Therefore, the proposed design approach is very
useful.

6. Conclusions

This paper has dealt with a design problem of adaptive
gain robust controllers for polytopic uncertain systems. The
proposed adaptive gain robust controller consists of fixed gain
parameters and time-varying adjustable ones. In this paper,
we show an LMI-based design algorithm of the proposed
robust controller and simple numerical examples are given
for illustration of the proposed controller design method.
The simulation result has shown that the closed-loop system
is well stabilized in spite of plant uncertainties for the case
such that the robust stabilizing controller based on quadratic
stabilization cannot be derived.

The proposed adaptive gain robust controller can easily
be obtained by solving LMIs; that is, the proposed design
method is very simple. Besides, one can see that, for the
case that conventional quadratic stabilizing controller based
on Lyapunov criterion cannot be obtained, the proposed
controller design method has possibility of robust controller
design. Therefore, the proposed design approach is very
useful.

The future research subjects are extensions of the pro-
posed adaptive gain robust controller to such a broad class of
systems as uncertain time-delay systems, uncertain discrete-
time systems, and so on.

Appendix

In this appendix, the conventional quadratic stabilizing con-
troller via Lyapunov criterion is shown.

One can easily see that the following theorem shows the
LMI-based design method of quadratic stabilizing controllers
for the polytopic uncertain system of (1).

Theorem A.1. Consider the polytopic uncertain system of (1)
and the control input u(t) = Kx(t).

There exists the state feedback gain matrix K such that the
control law u(t) = Kx(t) is a quadratic stabilizing control, if
there exist a symmetric positive definite matrix 2 € R™" and
a matrix Y € R™" satisfying the following LMI conditions:

(A+D)X+BY <0 (k=1,...,0). (AD)
If the solution of the LMI of (A.1) exists, then the state feedback
gain matrix K € R™" is obtained as K = Y X"

Proof. See the studies by Boyd et al. [16] and Oya et al. [17]
for details. O
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