
Software Interface Design for Home-Based Assistive

Multi-Robot System

Patrick Benavidez, Mohan Kumar, Berat Erol, Mo Jamshidi, Ph.D and Sos Agaian, Ph.D
Department of Electrical and Computer Engineering

The University of Texas at San Antonio

San Antonio, TX, USA
patrick.benavidez@utsa.edu, mkumar2301@gmail.com, berat.erol@utsa.edu, moj@wacong.org, sos.agaian@utsa.edu

Abstract - In many assistive robotic systems, the

interface to the user is simply a tablet computer or a

monitor attached to a single robot. Missing from

approaches are the system extensibility made possible

with a tablet computer and a division of work between

multiple agents. In this paper we present the design

for a software interface to connect users to an

assistive robot system for the disabled and elderly.

The system is comprised of heterogeneous low-cost

assistive robots, a home management portal and a

cloud computing backend. The system is designed

with the premise that all components do not need to

be present for the system to function, but it will be

improved when expanded by addition of robots and

expanded computing capabilities. This paper focuses

on developing the interfaces necessary to connect the

user to these systems in a simple and easy to

comprehend manner for the target user population.

Keywords: Robotics, Robot Operating System,

assistive robot, cloud computing, user interface

design.

1 Introduction

 The authors are working on an assistive robotic

system for assisting the elderly and disabled. In the

assistive system, there exist multiple robots to aid a

user, a home management portal for the robots, and a

cloud computing backend. To facilitate design of a

future- proof system, there is a need to make the

system modular and extensible. A user, or their care

physician, can pick and choose the components that

will best benefit the user. The system can then be

expanded at any time, as the user can actually afford,

or now sees the need for the add-on.

 With this in mind, the software interface has to

work in different modes, i.e. direct to one or more

robots, to the home management portal. The robots

also have to be able to work in multiple modes,

utilizing any local and/or global information available

to them. Initial designs of graphical interfaces for the

system applications focused too heavily on direct

control of single agents in the system. Provided the

fundamentals of systems of systems (SoS), we

decided to provide a wholistic approach to controlling

the system of robots. We soon sought out usability

design software engineering tools to improve the

designs.

 The rest of the paper is structured as follows:

Section 2 provides a short background on the assistive

robot system. Section 3 describes the system interface

design, and Section 4 details the user interface design.

2 System Interface Design

2.1 System Communication

 To facilitate multiple connection paradigms, we

utilize ROS as not only the middleware for the robots,

but also as the communication standard for which

applications and robots interact. ROS utilizes a

network of applications connected by TCP/IP sockets.

TCPROS is the transport layer for messages and

services within ROS [1]. Connections between nodes

are managed via the ROS master node. To provide the

same level of support in mobile operating systems, a

mobile-friendly ROS interface needs to be used.

Luckily, developers made a Java port of the SDK,

called ROSJAVA, for handling the basic features of

ROS. Android applications can import the ROSJAVA

SDK module for integration with the ROS network.

For the Android application to connect to the system,

it simply needs to be pointed towards the ROS master.

Similar modules, packages, or SDKs will likely to be

available in the near future for other mobile operating

systems. The rosserial API is used to perform the same

functionality on devices that communicate via serial

communication devices. Particularly for Arduino,

rosserial_arduino is used to implement ROS

communication using the rosserial API.

In this complex SoS there need to be many

potential communication links used in normal

operation. In normal operations, the following

situations need to be considered:

• Addition or removal of robots at any time

2015 10th System of Systems Engineering Conference (SoSE)

978-1-4799-7611-9/15/$31.00 ©2015 IEEE 404

• Seamless system expansion at the will of the

user

• Handle and withstand partial system outages

(i.e. at the power utility, internet and cloud

levels)

If the system is not able to handle these cases, then the

flexibility and resiliency of the SoS are not being

considered properly.

2.2 Automated Discovery of Nodes in

ROS Network

Users should not have to perform multiple time-

consuming, and potentially error prone tasks to

associate a robot with a ROS network. A simple and

efficient method should incorporate some level of

autonomy in the connection process. Automatic

registration with the ROS master method can be done

in a variety of methods.

To generalize many of the approaches, there

needs to be at a minimum a standard address or port

for which a standardized communication exchange is

to take place. Normally, ROS master nodes start a

server on socket port 11311 [2]. This port can be

changed to accommodate different needs. Multiple

nodes on a single computer can be pointed to different

ROS masters. The necessary options to be set to enable

this type of operation is the same as a distributed ROS

configuration, the ROS_IP and ROS_MASTER

system environment variables [2]. If the environment

variables are set differently between two terminals in

Linux, then nodes launched from each terminal can be

on different ROS networks.

On startup, the highest level node must broadcast

its position as the master of the system. If changes to

the master need to be changed, the system will need to

change to match the desired hierarchy. Management

services on each node will need to be developed to

reassign hierarchy when changes are made to the ROS

network. This would involve restarting of ROS nodes

with the appropriate system environment variables

being set to facilitate the re-configuration. As ROS

nodes cannot exist without a master, so the choice of

host process for the management service cannot be a

ROS node. All nodes will poll all known addresses on

a network for ROS hierarchy status and connect to the

master of the system. If a current master node is at a

lower status and is operating at a lower quality of

service than an announced master of higher quality,

the management service will change the hierarchy.

3 Redesigning the Graphical User

Interface for the SoS

3.1 Introduction

 There are different models, methods and

practices for User Interface (UI) for any level of

design projects, and they have been applied to

development stages from very beginning. The most

important part for development process- in other

words, the foundation of successfully implemented

UI- is gathering the requirements for the final product

that meets the expected design. One may think we

should talk about these methods and models, their

objectives, structures and their differences for

gathering requirements. Comparison of the

methodologies and models can be considered for

another detailed research, but this study. Simply, after

surveying the literature for iterative design aspects, we

believe that User Centered Design (UCD) concepts

will bring better approaches for a fastest and reliable

application development process, in particular for our

UI design project [3].

 During the development process of new

graphical user interface (GUI), the procedure resulted

with better solutions and mitigated the communication

constraints, once applied in Agile Methodology. While

studying on the GUI, which creates the link between

the users and the system, it has realized that the most

important drawback for any system is the capability of

the application that primarily represents the system

Arduino

Microcontroller

(rosserial arduino)

Hardkernel

ODROID-XU3

Micro-Size

Computer

(ROS)

Android OS

Device

(ROSJAVA)

Home Portal

(ROS)

Cloud Data

Center

(ROS)

ROSSERIAL

TCPROS

HTTPS

Application

Store

Figure 1: Communication Protocols in System

2015 10th System of Systems Engineering Conference (SoSE)

405

[4]. Actually, this link answers crucial questions for

the success of mobile applications, such as if the

system or its application is understandable, easy to

control and modify by its users [5].

 Therefore, the Usability aspects for the mobile

platforms, applications and Quality attributes for

software systems have been studied [6]. Then, it is

found that there are Functional and Non-Functional

Requirements that evaluates the system designs and

development steps based on the system’s quality

attributes. All of these iterative learning process and

application development phases, forced us to study

Requirements Engineering (RE) and its practices,

such as Paper Prototyping, Contextual Design (CD)

and Contextual Inquiry (CI). Furthermore, we applied

our solutions, based on user centered objectives, into

our project for gathering the requirements for building

a better system [7]. This focus help us to understand

the users in the first step, and to design a better UI that

scales the interaction between the users and the

system.

3.1.1 Using Requirements Engineering as a Tool

for Developing a SoS

 User requirements aim at describing the system

functionalities. In other words, they explain what the

system has to provide to users for accomplishing their

tasks. User requirements include functional

requirements, quality attributes based on the system,

and other non-functional requirements and hardware

environment as well. All of functional requirements

mention in use cases as a documentation process, and

illustrated in Unified Modeling Language (UML)

diagrams. Following definition states best of our

emphasize to imply RE approach into a SoS.

“Requirements Engineering is the subset of systems

engineering concerned with discovering, developing,

tracing, analyzing, qualifying, communicating and

managing requirements that define the system at

successive levels of abstraction.[8]“

 Our approach for gathering the requirements is

based on a combination of current frameworks,

iterative and incremental development approaches

with UCD rules. On the other hand, these steps and

their interactions in the software life cycle as a

requirement engineering process illustrated at Figure

2 [9]. This four steps process shows basic stages for

requirements gathering as a part of RE. Following this

process increase the users’ involvement on the early

steps of the project, and reveals their expectations

from the SoS that aims to provide what they really

need.

 Based on the data that received from the users,

some system specifications and functionalities can be

extracted from the SoS. We basically applied these

steps and discussed requirements gathering in a

different perspective by working with CD approach

for SoS design. CD provided us new point of view for

understanding the system requirements based on

actual users, and helped us to understand what their

real life requirements are, especially in their work and

home environment during real work processes [10].

Moreover, we believe in that this aspect will help to

engineers and developers to solve a very important

problem, “What do users really need?”

3.1.2 Contextual Design and Contextual Inquiry

 The answer for what the users need lies on

gathering the requirements, in a correct way. From

this point of view, we came up with an idea that

describes how to gather requirements more properly

and correctly before starting to build the system of

systems and a mobile application for it.

Figure 2: Requirements Engineering Process

Moreover, we also need to express how we can create

an approach that allows the system evolve by

requirement changes based on the predefined goals. If

we make the user know what they really need and

create such an environment that matches with their

experiences, we can easily receive most correct data

for gathering the requirements. Because of these

reasons RE can be a useful tool in design stages of a

SoS. This idea is applicable by using CI, and

following the CD approach for building the system

and its application around the users’ environment. We

simply applied this UCD approach into RE processes

for requirements gathering during the design phase.

 Furthermore, CI practices for gathering

requirements, which is a practice of CD process, have

decided to be applied. CI aims to collect requirements

by observing the users in their work environment,

following their practices, recording their work

2015 10th System of Systems Engineering Conference (SoSE)

406

processes, and interviewing with them. Briefly, it is a

process for generating a background knowledge or

documenting the field data from the users’

environment for applying those data in requirements

gathering process.

3.1.3 Paper Prototyping

 Early prototyping is crucial for validating the

requirements, testing and usability purposes. Also,

prototyping helps us to receive user feedback for main

design and implementation processes, which is

priceless during the early design phases. Paper

prototyping is the cheapest and easiest way for

generating user comments for early design sketches.

Moreover, we can also get the users involved testing

early design ideas with extremely low cost [11].

Papers are affordable to make mistakes and do

corrections, comparing with a designing digital and

real prototypes after long work hours. We just need

paper, pen and pencils, markers and tapes.

Figure 3:Contextual Design Process and Activities

 In addition to these, paper prototyping is

adjustable for any level of budgets, and it is an

iterative process, new design ideas or big changes can

simply add into last prototype by drawing or printing

new papers [12, 13].

3.1.4 Summary

 According to the enlightening results of

literature review, and looking for a better approach to

mobile application design for the SoS, previous GUI

has been redesigned. For reducing complexity and

ambiguity of the application interface, and increasing

the quality attributes, the *abilities of the SoS,

fundamental usability testing questions applied into

the new design process. For the beginning, the main

page and the transactions between the menus has been

changed. Illustrations for the SoS components added

into the GUI to clarify each subsystems. Moreover, for

mapping the work environment of the SoS option,

very useful specification has embedded into the

application, the users can identified every object with

geometrical shapes that mapped by the subsystems.

As we mentioned before, usability concerns brought

up a new point of view on to the design phases;

therefore, we improved the navigational tools for the

SoS and developed better buttons that works

flawlessly with the main view of the application.

4 User Interface Design

The GUI has been redesigned in order to reduce

the complexity and increase the usability. In Figure 4

the original Main activity and Clean-E dropdown are

represented in (a) and (c). The Main activity helps the

user to navigate through different options available for

all the robots (Clean-E and Walk-E) in our system,

‘MAP’ option gives the visual representation of the

environment in which robots are performing the jobs

and ‘SETTINGS’ is for changing different system

defining parameters. All of these new arrangements

are the conclusions of early design and prototyping

stages. Since paper prototyping provide faster and

cheaper design cycles, by using sketching tools, color

pens, papers and web applications, the design changes

and new features were easy to apply. Therefore,

developers and users were able to consider the

improvements and provide a feedback immediately.

From Figure 4 (a) we can observe that the main

activity layout has not been properly utilized and the

user cannot understand the function of the buttons

unless he is familiar with all the terminology related to

the project. Both the activities displayed in Figure 4

(a) and (c) have been redesigned in such a way that the

layout is properly utilized and more important

information is displayed.

In Figure 4 (b) we have a mock up for the

redesigned version of Figure 4 (a). Instead of just using

the name of the activity for buttons, we have used an

illustration of the robot along with its name, which

helps user to easily determine the robot that currently

chosen. Coloring the menu frames differently and

separating the fields not only decreased the usability

concerns, also improved the quality attributes of the

GUI design.

2015 10th System of Systems Engineering Conference (SoSE)

407

Figure 4: Original components of the GUI are (a) and

(c), while (b) and (d) are the respective re-designed

components

Options such as turn on/off robot (POWER) or

Wi-Fi, command the robot to charge itself

(CHARGE), battery level, and cleaning status of the

home (CLEAN STATUS) are most used when dealing

with the system, providing the control for these

operations in dashboard helps the user to access them

with ease. The ‘NOTIFICATIONS’ display the

current state of all the robots. Figure 4 (d) is the

redesigned version of (c) in which the layout is

properly utilized to enable user to have more control

over robot and get information from it.

The small map towards in right bottom corner

shows the location information of the robot. Options

for scheduling cleaning, adding custom jobs, getting

status of cleaning job, robot specific settings and

commanding the robot to perform tasks like cleaning

floor and pick an object are provided in this activity.

Having separate dashboard for each of the robots not

only allows us to avoid the confusion regarding

options and settings but also help proper functioning

of the SoS. In Figure 5, original map activity and

redesigned map activity are shown. Initial design of

‘MAP’ activity was intended to provide visual

representation of location of robot. In the redesigned

version of it, ‘MAP CONTROL’ more useful option

have been added to enhance the user experience.

 The ‘MAP CONTROL’ activity can be directly

used to control the robot manually with help of touch

control pad towards left bottom, using the location

information of robot from the map. When robot is

stuck at a location because of an unavoidable or

unpredictable obstacle the manual control feature is

really handy to get it out of that situation. This activity

has an option to switch the manual control between

robots by just pressing on the icon of the robot.

Figure 5: Map activity: (b) is the redesigned version of

Map activity shown in (a).

 Most used operations such as pick the user from

a location, go to a location, charge yourself at docking

2015 10th System of Systems Engineering Conference (SoSE)

408

station and stop options have been provided to

increase the ease of access for the user. More features

such as cleanliness report for house and drag and drop

option for providing the robot the target location are

added to increase the capabilities of the system to

provide better service to the user. Figure 6 depicts

these features.

Figure 6: Features in redesigned GUI

5 Conclusions

 In this paper we proposed an improved software

interface for a multi-robot assistive system for the

disabled and elderly. We found that a well-constructed

requirements gathering process provides key

variables, if it applied correctly in early stages. On the

contrary of the general assumption, using fundamental

Requirement Engineering methods and applying

intensive tools, such as Contextual Design and

Contextual Inquiry, for gathering the user

requirements during the design stages improves

representing the SoS and its quality attributes on the

users side. In addition to these, interface designs for

touch-enabled map navigation, remote viewing and

control, and administration of the assistive robot SoS

were presented. Important to design of these interfaces

is the absolute necessity for ease of control when

considering the overall complexity of the system.

Improvements to the original software interfaces

proved to be highly informative and in line with

modern software designs.

References

[1] O. S. R. F. (OSRF). (2013). ROS/ TCPROS.

Available: http://wiki.ros.org/ROS/TCPROS

[2] O. S. R. Foundation. (2014).

ROS/Troubleshooting - ROS Wiki. Available:

http://wiki.ros.org/ROS/Troubleshooting

[3] H. Beyer, "User-centered agile methods,"

Synthesis Lectures on Human-Centered

Informatics, vol. 3, pp. 1-71, 2010.

[4] J. Nielsen, "Why WSJ Mobile App Gets **

Customer Reviews," 2015.

[5] J. Nielsen, "Agile User Experience Projects,"

2015.

[6] J. Nielsen, "Usability 101: Introduction to

Usability," 2015.

[7] D. C. Gause and B. Lawrence. User-driven

design: incorporating users into the

requirements and design phase. Software

Testing and Quality Engineering Magazine.

23-27.

[8] E. Hull, K. Jackson, and J. Dick,

"Requirements Engineering. 2005," ed:

Springer.

[9] I. Sommerville and P. Stevens, "Software

Engineering: AND Using UML, Software

Engineering with Objects and Components,"

2007.

[10] H. R. Beyer and K. Holtzblatt, "Apprenticing

with the customer," Communications of the

ACM, vol. 38, pp. 45-52, 1995.

[11] J. Nielsen, "Paper prototyping: Getting user

data before you code," Last Reviewed on

September, vol. 22, p. 2007, 2003.

[12] S. Medero, "Paper Prototyping," 2015.

[13] C. Snyder, Paper prototyping: The fast and

easy way to design and refine user interfaces:

Newnes, 2003.

2015 10th System of Systems Engineering Conference (SoSE)

409

