
Distributed Key Management in Dynamic Outsourced Databases: a Trie-Based
Approach

V. El-khoury, N.Bennani
Lyon University, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69621, France
{vanessa.el-khoury, nadia.bennani}@insa-lyon.fr

A. M. Ouksel
The University of Illinois

Dept. of Information and Decision Sciences
Chicago, IL, USA

aris@uic.edu

Abstract

The decision to outsource databases is strategic in many
organizations due to the increasing costs of internally man-
aging large volumes of information. The sensitive nature of
this information raises the need for powerful mechanisms
to protect it against unauthorized disclosure. Centralized
encryption to access control at the data owner level has
been proposed as one way of handling this issue. However,
its prohibitive costs renders it impractical and inflexible. A
distributed cryptographic approach has been suggested as a
promising alternative, where keys are distributed to users on
the basis of their assigned privileges. But in this case, key
management becomes problematic in the face of frequent
database updates and remains an open issue.

In this paper, we present a novel approach based on Bi-
nary Tries1. By exploiting the intrinsic properties of these
data structures, key management complexity, and thus its
cost, is significantly reduced. Changes to the Binary Trie
structure remain limited in the face of frequent updates.
Preliminary experimental analysis demonstrates the valid-
ity and the effectiveness of our approach.

1. Introduction

Outsourcing databases is becoming very popular due to
the dramatic increase in the size of the databases and the
costs incurred by their management. The databases are
hosted by a third party [9], who then provides a "service"
to clients to seamless access them. Data owners can now
concentrate on their core competencies while expecting the
outsourced databases to be managed by the best experts us-
ing the latest innovative solutions at lower costs. This ap-

1The Trie structure was introduced and implemented by Fredkin in
1960. The etymology of “trie” is the middle part of the term “Retrieval”
and we pronounced it “try” in order to distinguish it from the word “tree”.

proach, it is hoped, leads to an increase in productivity as
well as cost savings.

Nonetheless, outsourcing databases is beset with new
challenges. Foremost is the issue of data privacy in the pres-
ence of sensitive information. Most corporations view their
data as very valuable assets. Therefore, it is paramount to
protect these data against unauthorized access, including by
the provider. Database encryption was seen as a solution
to prevent exposure of sensitive information even in situa-
tions where the database server is compromised. The data
will be encrypted at the server side allowing only the autho-
rized persons to access the plaintext form of the databases.
This solution however is not satisfactory as it does not al-
low access the database through ad-hoc queries. More flex-
ible techniques have been proposed [2, 10, 9] based on
storing additional indexing information with the encrypted
database. These indexes are employed by the DBMS to
enable posing queries over the encrypted data without re-
vealing either the query or the data results. Figure 1 de-
scribes this mechanism. First, the user sends the query to
the owner who maintains the metadata needed to translate it
to the appropriate representation on the server (1). Then, the
transformed query is executed on the encrypted database at
the server side (2). Once executed, the results are sent en-
crypted to the owner who decrypts them and filters out those
tuples not satisfying the user’s assigned rights (3). Finally,
the results are sent to the user in plaintext (4).

Figure 1: The service-provider architecture

2009 First International Conference on Advances in Databases, Knowledge, and Data Applications

978-0-7695-3550-0/09 $25.00 © 2009 IEEE

DOI 10.1109/DBKDA.2009.31

56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357235117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In such a scenario, the result of a query will contain false
hits that must be removed in a post-processing step after
decrypting the tuples returned by the query. This filtering
can be quite complex especially for complex queries in-
volving joins, subqueries, aggregations, etc... Clearly, the
techniques based on this architecture [2, 6, 10] are imprac-
tical as the presence of the data owner is required to enforce
access control.

Other query processing approaches [12, 5, 7] shift access
control to the user. One example is the effective mecha-
nism by Damiani et al. [5], which combines cryptography
with authorizations, thus enforcing access control via selec-
tive encryption. Access control policies are modeled using
an access matrix where rows represent users and columns
tuples. The method consists of grouping users with the
same access privileges, and encrypting each tuple accessed
by the group with the key associated with it. A hierarchi-
cal key derivation method based on a User Tree Hierarchy
(UTH 2[5]) is used to reduce the number of keys held by
a user. But the complexity of the algorithm to build this
UTH is exponential and the resulting structure does not flex-
ibly handle frequent modifications to access control poli-
cies. In many cases, the whole structure may need to be
reconstructed as it loses its properties and needs to be re-
built to maintain the derivation efficiency.

In this paper, a new key management scheme based on
the Binary Trie structure is proposed. As in [5], access con-
trol policies are modeled via an access matrix where rows
represent group of users and columns the tuples to be ac-
cessed. An algorithm is described to generate the keys ring
for each group of users based on the construction of the Bi-
nary Trie from the access matrix. This structure is charac-
terized by its low complexity and high flexibility in the face
of frequent access control modifications. Preliminary ex-
perimental analysis shows the validity and the effectiveness
of our approach.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the related work and posi-
tions our approach within existing solutions. Section 3 in-
troduces necessary basic definitions and describes the Bi-
nary Trie construction algorithm. Section 4 illustrates the
management of the access control policies in a dynamic sce-
nario. Section 5 presents and discusses the results obtained
using our approach while section 6 analyzes them. Finally,
Section 7 summarizes the work and gives some perspec-

2Given a set U of users, a set T of tuples, and an access matrix A, the
User Tree Hierarchy, denoted UTH, is a pair (N,�), such that:

• N ⊆ P (U);

• ∀t ∈ T , Aclt ∈ N ;

– ∀X, Y ∈ N , X � Y iff Y ⊆ X ;

– ∀X, Y, Z ∈ N , X � Y and X � Z ⇒ Z � Y or Y � Z

tives.

2. Related works

Early approaches to database outsourcing [2, 10, 9] en-
force access control at the owner side in a centralized man-
ner. As a result, a bottleneck may occur, which in turn will
reduce the benefits anticipated from outsourcing. Recent
approaches [7, 12, 5] shift access control from the owner to
the user. Such solutions require an off-line preprocessing
stage where data sets accessed by each user, or more accu-
rately, a user profile, are identified. An appropriate key is
then used to encrypt each data set before its outsourcing.
Finally, a set of keys are provided to each user accessed by,
for its data sets according to his/her privileges.

Enforcing access control at the user level faces still two
main problems: the determination of the key set and their
efficient generation. Each user may be accessing several
data sets, which themselves may be intersecting with those
of other users, and thus may be require subdivisions into
non-intersecting data sets, which adds enormous complex-
ity to the method. Further the key generation algorithm
must be as simple as possible to be scalable in practice,
and flexible to adapt to frequent changes in a user’s access
rights.

All related works [7, 12, 5] model the problem using
an access matrix where a row represents users or group of
users, columns the data sets accessed by users or groups of
users, and each matrix entry gives the access privileges of a
user or a group of users to a data set. In [5], the notion of
access configuration is defined for a data set d that the set
of users, or groups of users, having access privileges on d.
A key derivation tree (UTH) is built from the access matrix,
labelled heretofore A, to support the enforcement of the ac-
cess control policy. Starting from an empty root vertex, the
algorithm adds vertices to the tree structure based, each one
represents an access configuration of a data set. The ver-
tices satisfy a partial order where each vertex v is pointed
by an edge from a parent vertex p whose access configura-
tion ACp is included in ACv. Each vertex is then assigned
a secret key such that a key for vertex v is given to a user
u if and only if u belongs to a v’s access configuration and
u does not belong to v’s parent access configuration. All
the other keys for which user u has rights are obtained by
a derivation mechanism using one-way hash functions from
the assigned keys. To make the derivation mechanism more
efficient , the UTH construction algorithm adds other ver-
tices which do not correspond to an access configuration but
still corresponds to a set of users or user groups combina-
tions called non-material vertices. The construction of UTH
is exponential, O(2|U|) [5], where U is the set of users or
user groups implied by the access control policy. The flex-
ibility of the structure to adapt to frequent modifications in

57

access control policies, especially for the insertion and dele-
tion of users is extremely limited. After several updates, the
edges between vertices are so modified that UTH is enable
to maintain key derivation efficiency. Consequently, UTH
must be completely rebuilt, access configuration rekeyed,
and data deciphered and re-ciphered.

In [12], an alternative key management scheme is pre-
sented based on a partial oder access configuration directed
hierarchy. The leaves of such a structure are the access con-
figurations for single users and while the edges are con-
structed bottom-up such that each intermediate vertex is
pointed to by exactly two edges, and its access configura-
tion is the union of those of its two children. The resulting
hierarchy is then run the Diffie-Hellman [1] key generation
algorithm which assigns secret keys to vertices in a bottom-
up fashion such that a user with a single key could derive
all the secret keys assigned to its data sets. However, the
construction algorithm as well as the generation scheme are
very complex and costly. Again, access rights updates cause
a major rebuilding of the hierarchy and mandatory key gen-
eration leading in most cases to data re-keying.

In our Binary-Trie-based key generation and manage-
ment approach, each category is considered as a binary
string representing the path from the root of the trie to a leaf.
The management of structure does not suggest a partial or-
der over vertices, even though, the idea of key derivation
to minimize the number of distributed keys is preserved.
Key management complexity is reduced using the intrinsic
properties of the Binary Trie. As keys are not tightly cou-
pled to access configurations, most of the data access policy
updates do not require significant changes to the structure,
which reduces key regeneration, and thus data re-keying.

3. The Binary Trie building algorithm

In real databases, the data is represented by a set of views
V that overlap. In our approach, we assume that there is a
process used to partition these views in separate categories,
so that ci

⋂
cj = φ if i 6= j. Furthermore, the users hav-

ing the same privileges on categories are gathered in a sin-
gle group. The process to obtain disjoined categories from
views is out of the scope of this paper. Following [5], given
a system with a set G of groups and a set C of categories,
we assume that access control policies are represented in a
matrix A having |G| rows and |C| columns. An entry A[g,c]
of this matrix is a read operation of a group g over a cate-
gory c, which can assume two values: A[g,c] = 1 if g has
the privilege to read c and 0 otherwise. Table 1 represents
an example of an access matrix of four groups and five cat-
egories, where the access control list of the category c1 is
Aclc1 = {g2, g3, g4} and the capability list of the group g4
is Capg4 = {c1, c2, c3, c4}.

Let us now introduce the Binary Trie, and then describe

Table 1: Example of an access matrix

c1 c2 c3 c4 c5
g1 0 0 1 1 0
g2 1 1 0 1 1
g3 1 0 1 0 0
g4 1 1 1 1 0

the algorithm to construct it according to the desiderata
discussed. Note that this is the first time that such struc-
ture is used to manage access control policies in outsourced
databases. A Trie [8] is an ordered tree data structure that
has been used for various applications, such as the construc-
tion of natural language dictionaries, the research of words
to a compiler, database systems, networking [11], etc. In
this structure, all the descendants of any one node have a
common prefix associated with that node, while the root
is represented by an empty node. This structure has many
properties that make it particularly suitable to access con-
trol as discussed above. It allows fast retrieval time by find-
ing the longest match of a given string. Moreover, the time
complexity for the construction of strings is easy to com-
pute and it is flexible towards modifications. The structure
of a node is adapted as indicated below to handle the re-
quirements of our specific application:

• Content is used to sequentially store the prefix of the
category.

• AccessNb is the number of time that the node is vis-
ited during the insertion of categories. This value will
be useful while modifications are done in the access
matrix, particularly when a category is deleted.

• LeftChild will be represented by an edge labeled 0.

• RightChild will be represented by an edge labeled 1.

Below, the algorithm 1 illustrates the algorithm we devel-
oped that takes the access matrix A as an input and returns
the Binary Trie as output.

Given the access matrix A, ∀i, j∈ N for j:= 1;|c| the al-
gorithm scans A[g,j] by category and for i:=1; |g| each cate-
gory is scaned bit per bit. Then for each entry A[i,j], we ap-
plies the function InsertValue(value, position) to insert the
bit value at the current position in the Binary Trie. Dur-
ing this operation, two cases can be represented. For the
bit value 1 (respectively 0); if the right (respectively left)
child node exists, the field AccessNb will be incremented
by 1. Otherwise, a new right (respectively left) node is cre-
ated having AccessNb equal 1 and his content will be the
concatenation of the content value of his parent and the bit
1(respectively 0).

For example, let us insert the category c1 having the bit
sequence 0111. At the beginning, the children of the root

58

Algorithm 1 Binary Trie construction algorithm.

PROCEDURE Bui ldTRie (Mat : Ma t r i x)
Crea teNode (r o o t , ’ ’)
FOR j ← 1 TO | C | DO

p o s i t i o n ← r o o t
FOR i ← 1 TO | G | DO

p o s i t i o n ← I n s e r t V a l u e (Va lMa t r ix (i , j) , p o s i t i o n)
END FOR

END FOR
END PROCEDURE

FUNCTION I n s e r t V a l u e (va lue , p o s i t i o n)
IF v a l u e = 1

IF (R i g h t c h i l d (p o s i t i o n) = n i l)
Crea teNode (R i g h t C h i l d (p o s i t i o n) , v a l u e)
C o n t e n t (R i g h t C h i l d (p o s i t i o n)) ←
C o n t e n t (p o s i t i o n) + ’ 1 ’

ELSE
Inc rAccessNb (R i g h t C h i l d (p o s i t i o n))

END IF
I n s e r t V a l u e ← R i g h t C h i l d (p o s i t i o n)

ELSE
IF (L e f t C h i l d (p o s i t i o n) = n i l)

Crea teNode (L e f t C h i l d (p o s i t i o n) , v a l u e)
C o n t e n t (L e f t C h i l d (p o s i t i o n)) ←
C o n t e n t (p o s i t i o n) + ’ 0 ’

ELSE
Inc rAccessNb (L e f t C h i l d (p o s i t i o n))

END IF
I n s e r t V a l u e ← L e f t C h i l d (p o s i t i o n)

END IF
END FUNCTION

node point to null. Starting with the first bit ‘0’, a left child
node of the root will be created having 0 as content and 1
for the AccessNb value. Then, the second bit ‘1’ will be
scanned and the right child of the left node will be created
having 01 as content and 1 for the AccessNb value. We
proceed with the same reasoning till the leaves level. Let
us now consider the insertion of the category c2 having the
bit sequence 0101. Since the left node for the bit ‘0’ al-
ready exists, all that we have to do is to increment by 1 the
AccessNb value and so on. The Figure 2 is an illustrative
example of the Binary Trie according to the access matrix
in Table1.

Figure 2: Binary Trie example

An observation of the Binary Trie shows that the trans-
formation algorithm retains all the properties of the matrix.

Each group of users is represented by a level in this structure
according to their order in the matrix, while categories ap-
pear in the leaf level preserving the same sequence of bits.
In fact, for a given category c, ∀i∈ N and i := 1; |g| an
entry A[i,c] in the access matrix is represented by the level
i in the Binary Trie. Besides, the internal nodes store the
prefix of their descendants which is the least upper bound.
Therefore, the content of the nodes at the leaf level is noth-
ing but the bit sequence of the category c. Furthermore, for
a given group g, ∀j∈ N and j := 1; |c| , the entries A[g,j]
are represented in the level g. For example, consider the
group g1of the matrix in Table 1, for j := 1; 5 the values of
A[g1,j] correspond to the level 1 in the Binary Trie. In the
following section, we describe the algorithm of key distri-
bution as well as the key management towards the changes
in the access control policies.

4. Key management in case of dynamic access
control policies

Once the Binary Trie structure is created, the next step
consists in affecting the appropriate key ring to each group
of users. A group can just access the nodes having their
edges labeled by the bit 1, that is, the right nodes (for a level
i = 0, . . . ,|G| there is a maximum of 2i-1 right nodes). There-
fore, an encryption key is assigned to each right node, thus
to the associated group. Then, we apply the one-way-hash
function to derive the real keys that will encrypt the data it-
self in the outsourced database. Consider Φ a function that
attributes the appropriate set of keys to the corresponding
group. With respect to the trie in Figure 1,Φ(g1) = {k1},
Φ(g2) = {k01, k11}, and so on. For example, the group g1 is
authorized to access c3 and c4 respectively encrypted with
k1011 and k1101 . Since the group g1 holds the key k1, then
he will be able to derive these two keys and to decrypt the
corresponding categories.

The Binary Trie structure is built and each group of users
holds his keys ring according to his privileges as defined
in the access matrix. In the following, we discuss the five
operations that are triggered whenever a change occurs in
the access matrix.

4.1. Insert/Delete category

When the owner inserts new tuples into the database, two
cases may arise. If these tuples belong to an existing ca-
tegory in the access matrix, they will be encrypted by the
key assigned to this category (the key associated with the
node of the corresponding category). Otherwise, the owner
creates a new category cj based on Aclj. The category will
be scanned bit per bit in the matrix leading to some modifi-
cation in the Binary Trie (Algorithm 1). If the node exists, it
is sufficient to increment its AccessNb attribute, otherwise

59

we must create a new node and assign a new key if it’s a
right node. Once inserted, this key will be associated with
the groups having the same level as that node.

For example, let us insert a new category c6
havingAclc6 = {g1, g4} which is equivalent to {1001} se-
quence of bits (Figure 2), their AccessNb are updated, when
two new vertices are created in levels 3 and 4. A new key
k1001 is generated and assigned to the group g4.

Figure 3: Insert category c6

Similarly, when a tuple is removed from the database,
this requires an update on the Binary Trie. If the tuple co-
vers a whole category, it will be removed from the access
matrix as well from the structure. The idea is to scan all the
node and decrement by 1 their AccessNb. Once we get a
node with AccessNb=1, we delete this node and all its des-
cendants.

4.2. Insert/Delete group

When a new user u is inserted in the system, the owner
examine his Capu. If there is a group g ∈ Gwith a similar
capability Capu, the user will be added to group g. Other-
wise, a new group is created in the matrix and inserted at the
leaf level of the Binary Trie. Inversely, the deletion of user u
from a group g with Card(g)=1 leads to the group deletion.
As a consequence, a category c ∈ Capg will be decrypted
and re-encrypted with a new key. Moreover, the deletion of
user u from a group g with Card(g)6=1, implies keys ring re-
generation and redistribution to the remaining members of
the group.

4.3. Grant/revoke authorization

When the owner grants/revokes to a group g ∈ G the
authorization on a category c ∈ C, the entry A[g,c] in the
access matrix will change to 1 (respectively 0). Therefore,
the category will be encrypted with a new Key and modifi-
cations are needed for the Binary Trie. In fact, a partial de-
letion is done for the category c ; we scanned the category
till the biti that should be modified ; the node at the level i
will be deleted and the trie will be fixed according to the
rest of the binary sequence.

5. Theoretical and Experimental Evaluation

5.1. Theoretical evaluation

Let us have now a theoritical evaluation of our algorithm.
Consider S a set of string S1,. . . , Sn, that is, Si 6= Sj for
i 6= j. For an alphabet of k elements, the Trie of the set S
is a tree of k-ary such that each node represents a distinct
prefix in S. Thus, the time complexity to build this Trie is
O(|S1|+...+|Sn|).

Let |C| and |G| be respectively the number of categories
and groups in an access matrix. Inserting a category of |G|
bits to a Binary Trie requires adding a sequence of |G| nodes,
thus the time insertion complexity is O(|G|). Since the con-
struction of this structure is nothing else a succession of in-
sert operations where the categories may have a common
prefix, then in the worst case, the time complexity of the
Binary Trie construction algorithm is O(|C|*|G|). In [5], the
time complexity of the algorithm for the UTH building is
polynomial with respect to the number of vertices selected
to build the tree hierarchy. However, according to the proof
presented in the appendix of this article, the complexity is
exponential with respect to the number of users in the sys-
tem when the UTH is a complete tree.

5.2. Experimental evaluation

In this section, we present our experimental results val-
idating the above theory. The experiments were ran on
a Toshiba Intel-based with 1.66Ghz Core2 Duo processor
with 2 GB of RAM. We developed our program in Java ver-
sion 1.6 and ran it on Windows Vista as an operating sys-
tem. This program consists of three phases. First, we devel-
oped an algorithm to generate an access matrix policies to
be as close as possible to reality. Doing so, we control the
cardinality of the access control list of the groups. In the
second phase, an algorithm is executed to build the Binary
Trie from this access matrix. Finally, a third algorithm is
executed to generate the set of keys for each group of users
based on this structure.

In the first set of experiments, we conduct tests on cou-
ples [group, category] for a group value 450 with increasing
number of categories from 1000 to 3500 with steps size 500
(Figure 4.a). For each couple, we launch 20 simulations and
then calculate the average of time construction. Though we
conduct a second set of experiments by fixing the category
value to 3500 and increasing the number of groups from 100
to 450 with steps size 50 (Figure 4.b).

According to the graphs, the experimental results con-
forms with the theoretical complexity of O(|C|*|G|). The
curve for a different value of categories (respectively
groups) grows almost linear O(K*|G|) where K ∈ R and

60

13000

15000

17000

19000

21000

23000

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

5000

7000

9000

11000

13000

1000 1500 2000 2500 3000 3500

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

Category numberCategory number

(a) Fixed group number(450)

15000

20000

25000

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

0

5000

10000

100 150 200 250 300 350 400 450

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

Group numberGroup number

(b) Fixed category number(3500)

Figure 4: Binary trie time building evolution

is proportional to |C|. The reason is due to the categories
having same prefix in the access matrix.

6. Discussion

In this paper, we provided an efficient mechanism for key
managment based on the Binary Trie structure. As we no-
tice, this structure is flexible towards access rights granted
dynamically to the users and the growth of the accessed data
set. It efficiently handles all these changes without need of a
systematic reconstruction. Also, a derivation key algorithm
is represented so that the Binary Trie is scanned from left to
right in-depth first manner. Nevertheless, as the Binary Trie
depth grows with the increase of the groups number, this
could penalize the key generation time. For this purpose, a
flat representation of the Binary Trie [3, 4] could help to re-
duce the time of key generation by an immediate access to
the vertices. Moreover, our approach offers a good flexibil-
ity in the case of access rights update. The only case where
categories should be rekeyed is the user revoke case. Even
though, the effects on the structure of management are tiny
and do not require a complete reorganization of the Binary
Trie, but just some bonds update in the structure which is
less costly. However, our approach doesn’t reduce the num-
ber of keys held by a group. In fact, when examining the
Binary Trie, we noticed that the groups at the low-level of
the structure(espacially at the leaf level) hold a large num-
ber of keys; but the more the groups are in the bottom of the
structure, the fastest are the derivation to obtain the keys.

7. Conclusion and Perspectives

In this paper, we present a novel mechanism based on
the Binary Trie structure, for the enforcement of the access
control at the client side for the outsourced database. This
mechanism allows an off-line key generation and exploits
hierarchical key derivation methods using the one-way hash
function. Our approach has the advantage of efficiently gen-
erating the groups keys ring from the Binary Trie structure
according to their privileges and reducing the cost of the

key management in the case of access control policies mod-
ifications. Also, we proved theoretically and in experiments
that our solution is of reduced complexity and is likely to
be scalable. However, our approach does not completely
resolve the well-known data rekeying problem due to users
rights revocation. As a perspective, we plan to investigate
a remote storage of the users’ keys. In fact, since the keys
are attributed to a group of users, a single copy of them will
be stored rather than distributing the same one to each user
belonging to the group. Furthermore, this allows the users
to query the database regardless of their machine.

References

[1] Rsa laboratories.pkcs number three:
Diffie-hellman key agreement standard.
http://www.rsa.com/rsalabs/node.asp?id=2126.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order pre-
serving encryption for numeric data. Proceedings of the
2004 ACM SIGMOD international conference on Manage-
ment of data, pages 563–574, 2004.

[3] M. Ai-Suwaiyel and E. Horowitz. Algorithms for trie com-
paction. ACM Transactions on Database Systems, 9:243–
263, 1984.

[4] J. Aoe, K. Morimoto, and M. Shishibori. A trie compaction
algorithm for a large set of keys. Knowledge and Data En-
gineering, IEEE Transactions on, 8:476–491, 1996.

[5] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Selective data encryption
in outsourced dynamic environments. Electronic Notes in
Theoretical Computer Science, 168:127–142, 2007.

[6] E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati. Balancing confidentiality and efficiency
in untrusted relational dbmss. Proceedings of the 10th
ACM conference on Computer and communications secu-
rity, pages 93–102, 2003.

[7] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati. Over-encryption: management of access
control evolution on outsourced data. In VLDB ’07: Pro-
ceedings of the 33rd international conference on Very large
data bases, pages 123–134. VLDB Endowment, 2007.

[8] E. Fredkin. Trie memory. Communications of the ACM,
3:490–499, 1960.

[9] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database
as a service. Data Engineering, 2002. Proceedings. 18th
International Conference on, pages 29–38, 2002.

[10] H. Hacigumus and S. Mehrotra. Performance-conscious key
management in encrypted databases. Research Directions In
Data And Applications Security XVIII: IFIP TC 11/WG 11.3
Eighteenth Annual Conference On Data And Applications
Security, July 25-28, 2004, Sitges, Catalonia, Spain, 2004.

[11] D. Medhi and K. Ramasamy. Network Routing: Algorithms,
Protocols, and Architectures. Academic Press, 2007.

[12] A. Zych, M. Petković, and W. Jonker. Efficient key manage-
ment for cryptographically enforced access control. Com-
put. Stand. Interfaces, 30(6):410–417, 2008.

61

