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Let Γ denote the space of all entire sequences. Let Λ denote the space of all analytic sequences. In
this paper, we introduce a new class of sequence space, namely, the semi-difference entire sequence
space cs ∩ d1. It is shown that the intersection of all semi-difference entire sequence spaces cs ∩ d1
is I ⊂ cs ∩ d1 and Γ(Δ) ⊂ I.

1. Introduction

A complex sequence, whose kth term is xk, is denoted by {xk} or simply x. Let w be the set
of all sequences and φ be the set of all finite sequences. Let �∞, c, c0 be the classes of bounded,
convergent, and null sequence, respectively. A sequence x = {xk} is said to be analytic if
supk|xk|1/k < ∞. The vector space of all analytic sequences will be denoted by Λ. A sequence
x is called entire sequence if limk→∞|xk|1/k = 0. The vector space of all entire sequences will
be denoted by Γ.

Given a sequence x = {xk}, its nth section is the sequence x(n) = {x1, x2, . . . , xn, 0, 0, . . .}.
Let δ(n) = (0, 0, . . . , 1, 0, 0, . . .), 1 in the nth place and zeros elsewhere, s(k) =
(0, 0, . . . , 1,−1, 0, . . .), 1 in the nth place, −1 in the (n + 1)th place and zeros elsewhere. An
FK-space (Fréchet coordinate space) is a Fréchet space which is made up of numerical
sequences and has the property that the coordinate functionals pk(x) = xk (k = 1, 2, 3, . . .)
are continuous.

We recall the following definitions (one may refer to Wilansky [1]).
An FK-space is a locally convex Fréchet space which is made up of sequences and has

the property that coordinate projections are continuous. A metric space (X, d) is said to have
AK (or sectional convergence) if and only if d(x(n), x) → x as n → ∞, (see [1]). The space is
said to have AD (or) be an AD-space if φ is dense in X, where φ denotes the set of all finitely
nonzero sequences. We note that AK implies AD (one may refer to Brown [2]).
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If X is a sequence space, we define

(i) X′ = the continuous dual of X;

(ii) Xα = {a = (ak) :
∑∞

k=1 |akxk| < ∞, for each x ∈ X};
(iii) Xβ = {a = (ak) :

∑∞
k=1 akxk is convergent, for each x ∈ X};

(iv) Xγ = {a = (ak) : supn|
∑n

k=1 akxk| < ∞, for each x ∈ X};
(v) let X be an FK-space ⊃ φ. Then, Xf = {f(δ(n)) : f ∈ X′}.

Xα,Xβ,Xγ are called the α (or Köthe-Töeplitz) dual of X, β—(or generalized Köthe-Töeplitz)
dual of X, γ dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y , then Yμ ⊂ Xμ, for μ = α, β, or γ .

Let p = (pk) be a sequence of positive real numbers with supkpk = G and D =
max{1, 2G−1}. Then, it is well known that for all ak, bk ∈ C, the field of complex numbers,
for all k ∈ N,

|ak + bk|pk ≤ D
(|ak|pk + |bk|pk

)
. (1.1)

Lemma 1.1 (Wilansky [1, Theorem 7.2.7]). Let X be an FK-space ⊃ φ. Then,

(i) Xγ ⊂ Xf ;

(ii) if X has AK, Xβ = Xf ;

(iii) if X has AD, Xβ = Xγ .

2. Definitions and Preliminaries

Let Δ : w → w be the difference operator defined by Δx = (xk − xk+1)
∞
k=1. Let

Γ =
{

x ∈ w : lim
k→∞

(
|xk|1/k

)
= 0

}

,

Λ =

{

x ∈ w : sup
k

(
|xk|1/k

)
< ∞

}

.

(2.1)

Define the sets Γ(Δ) = {x ∈ w : Δx ∈ Γ} and Λ(Δ) = {x ∈ w : Δx ∈ Λ}.
The spaces Γ(Δ) and Λ(Δ) are the metric spaces with the metric

d
(
x, y

)
= inf

{

ρ > 0 : sup
k

(∣
∣Δxk −Δyk

∣
∣1/k

)
≤ 1

}

. (2.2)

Because of the historical roots of summability in convergence, conservative space and
matrices play a special role in its theory. However, the results seem mainly to depend on a
weaker assumption, that the spaces be semi-conservative. (See Wilansky [1]).

Snyder and Wilansky [3] introduced the concept of semi-conservative spaces. Snyder
[4] studied the properties of semi-conservative spaces. Later on, in the year 1996 the semi
replete spaces were introduced by Rao and Srinivasalu [5].

In a similar way, in this paper, we define semi-difference entire sequence space cs∩d1,
and show that semi-difference entire sequence space cs ∩ d1 is I ⊂ cs ∩ d1 and Γ(Δ) ⊂ I.
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3. Main Results

Proposition 3.1. Γ ⊂ Γ(Δ) and the inclusion is strict.

Proof. Let x ∈ Γ. Then, we have

|xk|1/k −→ 0, as k −→ ∞, (3.1)

|Δxk|1/k
2

≤ 1
2

(
|xk|1/k

)
+
1
2

(
|xk+1|1/k

)
, by (1.1)

−→ 0, as k −→ ∞ by (3.1).
(3.2)

Let x ∈ Γ. Then, we have

(
|xk|1/k

)
−→ 0 as k −→ ∞. (3.3)

Then, (xk) ∈ Γ(Δ) follows from the inequality (1.1) and (3.3).
Consider the sequence e = (1, 1, . . .). Then, e ∈ Γ(Δ) but e /∈ Γ. Hence, the inclusion

Γ ⊂ Γ(Δ) is strict.

Lemma 3.2. A ∈ (Γ, c) if and only if

lim
n→∞

ank exists for each k ∈ N, (3.4)

sup
n,k

∣
∣
∣
∣
∣

k∑

i=0

ani

∣
∣
∣
∣
∣
< ∞. (3.5)

Proposition 3.3. Define the set d1 = {a = (ak) ∈ w : supn,k∈N |∑k
j=0(

∑n
i=j ai)| < ∞}. Then,

[Γ(Δ)]β = cs ∩ d1.

Proof. Consider the equation

n∑

k=0

akxk =
n∑

k=0

ak

⎛

⎝
k∑

j=0

yj

⎞

⎠ =
n∑

k=0

⎛

⎝
n∑

j=k

aj

⎞

⎠yk =
(
Cy

)
n, (3.6)

where C = (Cnk) is defined by

Cnk =

⎧
⎪⎨

⎪⎩

n∑

j=k

aj , if 0 ≤ k ≤ n,

0, if k > n; n, k ∈ N.

(3.7)
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Thus, we deduce from Lemma 3.2 with (3.6) that ax = (akxk) ∈ cs whenever x =
(xk) ∈ Γ(Δ) if and only if Cy ∈ c whenever y = (yk) ∈ Γ, that is C ∈ (Γ, c). Thus, (ak) ∈ cs
and (ak) ∈ d1 by Lemma 3.2 and (3.5) and (3.6), respectively. This completes the proof.

Proposition 3.4. Γ(Δ) has AK.

Proof. Let x = {xk} ∈ Γ(Δ). Then, (|Δxk|1/k) ∈ Γ. Hence,

sup
k≥n+1

(
|Δxk|1/k

)
−→ 0, as k −→ ∞, (3.8)

d
(
x, x[n]) = inf

{

ρ > 0 : sup
k≥n+1

(
|Δxk|1/k

)
≤ 1

}

−→ 0, as n −→ ∞, by using (3.8)

=⇒ x[n] −→ x as n −→ ∞,

=⇒ Γ(Δ) has AK.

(3.9)

This completes the proof.

Proposition 3.5. Γ(Δ) is not solid.

To prove Proposition 3.5, consider (xk) = (1) ∈ Γ(Δ) and αk = {(−1)k}. Then (αkxk) /∈
Γ(Δ). Hence, Γ(Δ) is not solid.

Proposition 3.6. (Γ(Δ))μ = cs ∩ d1 for μ = α, β, γ, f .

Proof.

Step 1. Γ(Δ) has AK by Proposition 3.4. Hence, by Lemma 1.1(ii), we get (Γ(Δ))β = (Γ(Δ))f .
But (Γ(Δ))β = cs ∩ d1. Hence,

(Γ(Δ))f = cs ∩ d1. (3.10)

Step 2. Since AK ⇒ AD. Hence, by Lemma 1.1(iii), we get (Γ(Δ))β = (Γ(Δ))γ . Therefore,

(Γ(Δ))γ = cs ∩ d1. (3.11)

Step 3. Γ(Δ) is not normal by Proposition 3.5. Hence by Proposition 2.7 of Kamthan and
Gupta [6], we get

(Γ(Δ))α /= (Γ(Δ))γ /= cs ∩ d1. (3.12)

From (3.10) and (3.11), we have

(Γ(Δ))β = (Γ(Δ))γ = (Γ(Δ))f = cs ∩ d1. (3.13)
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Lemma 3.7 (Wilansky [1, Theorem 8.6.1]). Y ⊃ X ⇔ Yf ⊂ Xf where X is an AD-space and Y an
FK-space.

Proposition 3.8. Let Y be any FK-space ⊃ φ. Then, Y ⊃ Γ(Δ) if and only if the sequence δ(k) is
weakly converges in cs ∩ d1.

Proof. The following implications establish the result.

Y ⊃ Γ(Δ) ⇔ Yf ⊂ (Γ(Δ))f , since Γ(Δ) has AD by Lemma 3.7.

⇔ Yf ⊂ cs ∩ d1, since (Γ(Δ))f = cs ∩ d1.

⇔ for each f ∈ Y ′, the topological dual of Y .

⇔ f(δ(k)) ∈ cs ∩ d1.

⇔ δ(k) is weakly converges in cs ∩ d1.

This completes the proof.

4. Properties of Semi-Difference Entire Sequence Space cs ∩ d1

Definition 4.1. An FK-space ΔX is called “semi-difference entire sequence space cs ∩ d1” if its
dual (ΔX)f ⊂ cs ∩ d1.

In other words ΔX is semi-difference entire sequence space cs ∩ d1 if f(δ(k)) ∈ cs ∩ d1

for all f ∈ (ΔX)′ for each fixed k.

Example 4.2. Γ(Δ) is semi-difference entire sequence space cs∩d1. Indeed, if Γ(Δ) is the space
of all difference of entire sequences, then by Lemma 4.3, (Γ(Δ))f = cs ∩ d1.

Lemma 4.3 (Wilansky [1, Theorem 4.3.7]). Let z be a sequence. Then (zβ, P) is an AK space with
P = (Pk : k = 0, 1, 2, . . .), where P0(x) = supm|

∑m
k=1 zkxk|, and Pn(x) = |xn|. For any k such that

zk /= 0, Pk may be omitted. If z ∈ φ, P0 may be omitted.

Proposition 4.4. Let z be a sequence. zβ is a semi-difference entire sequence space cs∩ d1 if and only
if z is in cs ∩ d1.

Proof. Suppose that zβ is a semi-difference entire sequence space cs ∩ d1. zβ has AK by
Lemma 4.3. Therefore zββ = (zβ)f by Lemma 1 [1]. So zβ is semi-difference entire sequence
space cs ∩ d1 if and only if zββ ⊂ cs ∩ d1. But then z ∈ zββ ⊂ cs ∩ d1. Hence, z is in cs ∩ d1.

Conversely, suppose that z is in cs ∩ d1. Then zβ ⊃ {cs ∩ d1}β and zββ ⊂ {cs ∩ d1}ββ =
cs∩d1. But(zβ)

f = zββ. Hence, (zβ)f ⊂ cs∩d1. Therefore zβ is semi-difference entire sequence
space cs ∩ d1. This completes the proof.

Proposition 4.5. Every semi-difference entire sequence space cs ∩ d1 contains Γ.

Proof. Let ΔX be any semi-difference entire sequence space cs ∩ d1. Hence, (ΔX)f ⊂ cs ∩ d1.
Therefore f(δ(k)) ∈ cs ∩ d1 for all f ∈ (ΔX)′. So, {δ(k)} is weakly converges in cs ∩ d1 with
respect to ΔX. Hence, ΔX ⊃ Γ(Δ) by Proposition 3.8. But Γ(Δ) ⊃ Γ. Hence, ΔX ⊃ Γ. This
completes the proof.

Proposition 4.6. ΔX is semi-difference entire sequence space cs ∩ d1.



6 International Journal of Mathematics and Mathematical Sciences

Proof. Let ΔX =
⋂∞

n=1 ΔXn. Then ΔX is an FK-space which contains φ. Also every f ∈ (ΔX)′

can be written as f = g1 + g2 + . . . + gm, where gk ∈ (ΔXn)
′ for some n and for 1 ≤ k ≤ m.

But then f(δk) = g1(δk) + g2(δk) + · · · + gm(δk). Since ΔXn (n = 1, 2, . . .) are semi-difference
entire sequence space cs ∩ d1, it follows that gi(δk) ∈ cs ∩ d1 for all i = 1, 2, . . . m. Therefore
f(δk) ∈ cs ∩ d1 for all k and for all f . Hence, ΔX is semi-difference entire sequence space
cs ∩ d1. This completes the proof.

Proposition 4.7. The intersection of all semi-difference entire sequence space cs∩d1 is I ⊂ (cs ∩ d1)
β

and Γ(Δ) ⊂ I.

Proof. Let I be the intersection of all semi-difference entire sequence space cs ∩ d1. By
Proposition 4.4, we see that the intersection

I ⊂ ∩
{
zβ : z ∈ cs ∩ d1

}
= {cs ∩ d1}β. (4.1)

By Proposition 4.6 it follows that I is semi-difference entire sequence space cs ∩ d1. By
Proposition 4.5, consequently

ΓM = Γ(Δ) ⊂ I. (4.2)

From (4.1) and (4.2), we get I ⊂ {cs ∩ d1}β and Γ(Δ) ⊂ I. This completes the proof.

Corollary 4.8. The smallest semi-difference entire sequence space cs ∩ d1 is I ⊂ (cs ∩ d1)
β and

Γ(Δ) ⊂ I.
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