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Abstract. Bayesian Decision theoretic rough set[1] has been invented
by the author in 2012. In this paper the attribute reduction by the aid of
Bayesian decision theoretic rough set has been studied. Also the concept
of bayesian rough set based on coverage is introduced. By an example a
comparative study is shown in the field of attribute reduction.
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1. Introduction

Pawlak[2] in 1982 defined the concept of Rough set. After the invention of
Pawlak rough set, some more rough set concepts which are the generalized forms
of Pawlak rough set were investigated. Such as probabilistic rough set, Decision
theoretic rough set, Bayesian rough set etc. In 2002 the concept of Bayesian rough
set model[3] was introduced and a detail study is done in 2012. Throughout this
paper, the concepts of Bayesian decision theoretic rough set is studied. Also attribute
reduction is done by Bayesian decision theoretic rough set model and a bayesian
rough set model depending on coverage.

2. Preliminaries

In this section the various concepts of rough set defined by various Researchers
which are necessary for further investigation were studied.
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Definition 2.1 ([2]). Pawlak[2] in 1982 defined the concept of Rough set. According
to Pawlak the rough set is defined as below:
Typically objective of rough set theory is to form an approximate definition of the
target set X ⊆ U in terms of some definable sets especially when the target set
is indefinable or vague. The upper and lower approximation of X with respect to
equivalence relation A are denoted as AX and AX respectively and defined as:
AX = {E: P(X/E)>0, E∈ U/A}

AX = {E: P(X/E)=1, E∈ U/A}

Definition 2.2 ([4]). In practical applications Pawlaks rough set model cannot
deal with data sets which have some noisy data effectively. Lots of information in
the boundary region will be abandoned which may provide latest useful knowledge.
By applying the parameter the approximate regions can be adjusted and controlled
in VPRSM. Given a parameter β, 0 ≤ 1 − β <P(X) < β ≤ 1, three kinds of
approximation regions of concepts X⊆U with respect to equivalence relation A can
be defined as follows:
positive region :

POSβ
A(X)=

∪
{E: P(X/E)≥ β,E ∈ U/A}

negative region :

NEGβ
A(X)=

∪
{E : P (X/E) < 1− β,E ∈ U/A}

boundary region :

BNDβ
A(X)=

∪
{E : 1− β < P (X/E) < β,E ∈ U/A}

Definition 2.3 ([3]). Slezak and Ziarko[3] put forward BRSM in which the prior
probability of the event under consideration is chosen as a benchmark value. BRSM
is a hybrid product which connects rough set theory and Bayesian reasoning validity
and reasonably. It is more appropriate to application problems concerned with
achieving any certainty gain during the procedures of prediction or decision making
rather than meeting a special certainty goal.
In BRSM three kinds of B approximation regions of concepts X ⊆ U with respect
to equivalence relation A can be defined as follows
B positive region :
POS∗

A(X)=
∪
{E : P (X/E) > P (X), E ∈ U/A}

B negative region:
NEG∗

A(X)=
∪
{E : P (X/E) < P (X), E ∈ U/A}

B boundary region:
BND∗

A(X)=
∪
{E : P (X/E) = P (X), E ∈ U/A}

Definition 2.4 ([1]). In Bayesian Rough set model the parameter is considered as
E but if we consider it as the decision then we get the concept of Bayesian decision
theoretic rough set model which is defined as follows:
apr∗Di

([x]C) = Pos∗Di
([x]C) = ∪{[x]C : |[x]C ∩Di|/[x]C | > P (Di}

Neg∗Di
([x]C) = ∪{[x]C : |[x]C ∩Di|/[x]C | < P (Di}

Bnd∗Di
([x]C) = ∪{[x]C : |[x]C ∩Di|/[x]C | = P (Di}

It is actually a Bayesian rough set model depending on decision.
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3. Attribute reduction by Bayesian decision theoretic rough set
model

Definition 3.1. In Bayesian Decision Theoretic Rough Set Model the part positive
decision is the set of decision classes with the precision higher than P (Di). A pos-
itive decision may lead to a definite and immediate action. The part of boundary
decision is the set of decision classes with the precision equal to P (Di). A boundary
decision may lead to a ”wait-and-see” action. A decision with the precision lower
than P (Di) is not strong enough to support any further action. The union of posi-
tive decision and boundary decision can be called the set of generalized that support
actual decision making. Let DPOS , DBND, DGEN denote the positive, boundary
and general decision sets, respectively. For an equivalence class [x]C ∈ πA

DPOS([x]C) = {Di ∈ πD : P (Di/[x]C) > P (Di}
DBND([x]C) = {Di ∈ πD : P (Di/[x]C) = P (Di}
DGEN ([x]C) = DPOS([x]C) ∪DBND([x]C)
A reduct R ⊆ C for positive decision preservation can be defined by requiring that
the positive decisions of all objects are unchanged. Constructing a reduct for deci-
sion preservation can apply any traditional methods, for example the methods based
on the discernibility matrix. Both rows and columns of the matrix correspond to the
equivalence classes defined by C. An element of the matrix is the set of all attributes
that distinguish the corresponding two equivalence classes. Namely, the matrix el-
ement consists of all attributes on which the corresponding two equivalence classes
have distinct values and thus distinct decision making. A discernibility matrix is
symmetric. The elements of a positive decision-based discernibility matrix MDPOS

and a general decision-based discernibility matrix MDGEN
are defined as follows. For

any equivalence classes [x]C and [y]C ,
MDPOS

([x]C , [y]C) = {a ∈ C : Ia(x) ̸= Ia(y) ∧DPOS([x]C) ̸= DPOS([y]C)}
MDGEN

([x]C , [y]C) = {a ∈ C : Ia(x) ̸= Ia(y) ∧DGEN ([x]C) ̸= DGEN ([y]C)}

Skowron and Rauser showed that the set of attribute reducts are in fact the set
of prime implicants of the reduced disjunctive form of the discernibility function.
Thus, a positive decision reduct is a prime implicant of the reduced disjunctive form
of the discernibility function
f(MDPOS

) = ∧{∨(MDPOS
([x]C , [y]C)) : x, y ∈ U(MDPOS

([x]C , [y]C) ̸= ϕ)}

The expression ∨(MDPOS
([x]C , [y]C)) is the disjunction of all attributes in

MDPOS ([x]C , [y]C), indicating that the pair of equivalence classes [x]C and [y]C can
be distinguished by any attribute in M. The expression ∧{∨(MDPOS

([x]C , [y]C))
is the conjunction of all ∨(MDPOS ([x]C , [y]C)), indicating that the family of dis-
cernible pairs of equivalence classes. In order to derive the reduced disjunctive form,
the discernibility function f(MDPOS ) is transformed by using the absorption and
distributive laws. Accordingly, finding the set of reducts can be modeled based on
the manipulation of a Boolean function. Analogically, a general decision reduct is a
prime implicant of the reduced disjunctive form of the discernibility function.
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Table 1. Information Table

C1 C2 C3 C4 C5 C6 D

O1 1 1 1 1 1 1 M

O2 1 1 0 0 1 1 M

O3 1 1 1 1 1 1 M

O4 1 1 0 0 1 1 Q

O5 1 0 1 0 1 1 Q

O6 1 0 1 0 1 1 F

O7 1 1 1 0 0 0 F

O8 1 1 1 0 0 0 F

O9 1 0 1 0 1 1 F

Table 2. D Pos, D Bnd, D Gen

C1 C2 C3 C4 C5 C6 DPOS DBND DGEN

[O1]C 1 1 1 1 1 1 {M} ϕ {M}
[O2]C 1 1 0 0 1 1 {M,Q} ϕ {M,Q}
[O3]C 1 1 1 1 1 1 {M} ϕ {M}
[O4]C 1 1 0 0 1 1 {M,Q} ϕ {M,Q}
[O5]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}
[O6]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}
[O7]C 1 1 1 0 0 0 {F} ϕ {F}
[O8]C 1 1 1 0 0 0 {F} ϕ {F}
[O9]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}

f(MDGEN
) = ∧{∨(MDGEN

([x]C , [y]C)) : x, y ∈ U(MDGEN
([x]C , [y]C) ̸= ϕ)}

Let us now consider an examples to show the attribute reduction by Pawlaks rough
set model , Variable precision rough set model and Bayesian decision theoretic rough
set model.

Example 3.2. Let us consider the information table(table1).

According to the definition of Bayesian decision theoretic rough set model and
Pawlak rough set model a reformation of table 1 indicating the decision associated
with each equivalence class [x]C is shown in table2
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Table 3. Discernibility Matrix

[O1]C p [O2]C p [O3]C p

[O1]C ϕ ϕ
[O2]C ϕ ϕ ϕ ϕ
[O3]C ϕ ϕ ϕ ϕ ϕ ϕ
[O4]C {3,4} {3,4} ϕ ϕ {3,4} {3,4}
[O5]C {2,4} {2,4} {2,3} ϕ {2,4} {2,4}
[O6]C {2,4} {2,4} {2,3} ϕ {2,4} {2,4}
[O7]C {4,5,6} {4,5,6} {3,5,6} {3,5,6} {4,5,6} {4,5,6}
[O8]C {4,5,6} {4,5,6} {3,5,6} {3,5,6} {4,5,6} {4,5,6}
[O9]C {2,4} {2,4} {2,3} ϕ {2,4} {2,4}

[O4]C p [O5]C p [O6]C p

[O1]C
[O2]C
[O3]C
[O4]C ϕ ϕ
[O5]C ϕ ϕ ϕ ϕ
[O6]C {2,3} ϕ ϕ ϕ ϕ ϕ
[O7]C {3,5,6} {3,5,6} {2,5,6} {2,5,6} ϕ ϕ
[O8]C {3,5,6} {3,5,6} {2,5,6} {2,5,6} ϕ ϕ
[O9]C {2,3} ϕ ϕ ϕ ϕ ϕ

[O7]C p [O8]C p [O9]C p

[O1]C
[O2]C
[O3]C
[O4]C
[O5]C
[O6]C
[O7]C ϕ ϕ
[O8]C ϕ ϕ ϕ ϕ
[O9]C ϕ ϕ ϕ ϕ ϕ ϕ

According to this discernibility matrix in Bayesian decision theoretic rough set
model, we can find and verify the following reducts positive decision preservation:
{C2, C3, C4}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, {C2, C4, C6}, {C3, C4,
C5}, {C3, C4, C6}. According to Pawlak we can find and verify the following reducts
positive decision preservation: {C4, C5}, {C4, C6}, {C2, C3, C4},{C2, C3, C5}, {C2,
C3, C6}.
N. ow similarly as above if we reduce the attribute using variable precision rough
set model than we get

{C3,C4}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, {C2, C4, C6} as the reduced
attributes.
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H. ence the attribute reduction by

(1) Pawlak method is {C4, C5}, {C4, C6}, {C2, C3, C4},{C2, C3, C5}, {C2, C3,
C6}

(2) Variable Precision rough set method is {C3,C4}, {C2, C3, C5}, {C2, C3,
C6}, {C2, C4, C5}, {C2, C4, C6}

(3) Bayesian decision theoretic rough set model is {C2, C3, C4}, {C2, C3, C5},
{C2, C3, C6}, {C2, C4, C5}, {C2, C4, C6}, {C3, C4, C5}, {C3, C4, C6}.

I. n first and second there are five alternative reductions but in third there are seven
alternative reductions.

4. Bayesian rough set depending on coverage

In this section another rough set model is introduced and by the previous example
positive region general region and boundary region were studied. Also considering a
second example a comparative study is shown between other methods and this new
method.

Definition 4.1. apr∗Di
([x]C) = Pos = ∪{[x]C : |[x]C ∩Di|/Di| > P ([x]c}

Neg = ∪{[x]C : |[x]C ∩Di|/Di| < P ([x]c}
Bnd = ∪{[x]C : |[x]C ∩Di|/Di| = P ([x]c}

The positive, boundary and general decision sets are defined as

Definition 4.2. DPOS([x]C) = {Di ∈ πD : P ([x]c/Di) > P ([x]c}
DBND([x]C) = {Di ∈ πD : P ([x]c/Di) = P ([x]c}
DGEN ([x]C) = DPOS([x]C) ∪DBND([x]C)

Considering the previous example(table1) we get all the region associated with
each equivalence classes in Bayesian rough set depending on coverage which is shown
in table4.

This table is similar as table 2. Hence attribute reduction will give the same
result as Bayesian decision theoretic rough set model.

Now let us consider another example

Example 4.3. In this table(table5) the significance of attributes C1, C2, C3, C5,
C6 are zero but the significance of the attribute C4 is 1/3 . So if we remove attribute
C4 then it will effect the consistent decision rule. Now after finding the discernibility
matrix if we reduce the attribute then we get the following results

(1) By pawlak method the reduction is {C3, C4}, {C4, C5, C6},{C2, C4, C6}
(2) By Variable precision rough set method the reduction is {C3, C4}, {C4, C5,

C6},{C2, C4, C6}
(3) By Bayesian decision theoretic rough set method the reduction is {C3, C4},

{C4, C5, C6},{C2, C4, C6}
(4) By Bayesian rough set method depending on coverage the reduction is {

C4}, {C3, C6},{C2, C3, C5}
Hence we get a comparative study between the various methods of attribute

reduction.
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Table 4. DPOS , DBND, DGEN in Bayesian rough set depending on coverage

C1 C2 C3 C4 C5 C6 DPOS DBND DGEN

[O1]C 1 1 1 1 1 1 {M} ϕ {M}
[O2]C 1 1 0 0 1 1 {M,Q} ϕ {M,Q}
[O3]C 1 1 1 1 1 1 {M} ϕ {M}
[O4]C 1 1 0 0 1 1 {M,Q} ϕ {M,Q}
[O5]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}
[O6]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}
[O7]C 1 1 1 0 0 0 {F} ϕ {F}
[O8]C 1 1 1 0 0 0 {F} ϕ {F}
[O9]C 1 0 1 0 1 1 {Q,F} ϕ {Q,F}

Table 5. Information Table

C1 C2 C3 C4 C5 C6 D

O1 1 0 0 1 1 1 M

O2 1 0 0 1 1 1 M

O3 1 0 1 0 1 0 M

O4 1 0 1 0 1 0 M

O5 1 0 0 0 1 1 Q

O6 1 0 1 0 1 0 Q

O7 1 1 1 1 0 1 F

O8 1 0 0 1 1 1 F

O9 1 1 1 1 0 1 F
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