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The structure o f  pentagonal particles and the processes o f  their formation from nanoclusters with the fifth- 
order symmetry axes are investigated by the methods o f  computer modeling and scanning electron-ion 
microscopy using copper as an example. It is demonstrated that the mechanism o f  cluster growth to pentagonal 
particles can be realized at which the volumetric stress present in noncrystal clusters will be released without 
breaking o f  the fifth-order symmetry o f  the growing cluster shape.
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INTRODUCTION

By the present time, isolated pentagonal particles of the majority of FCC metals have been prepared by various 
crystallization methods [1]. The particle shapes have the fifth-order axes, and the particle sizes are a few micrometers. 
For the first time, the researchers succeeded in obtaining the greatest variety of particle types and coatings and films 
comprising them by the method of electrodeposition of metals from solutions. Despite intensive investigations, the 
structure of pentagonal particles, mechanism of their growth, and special features of forming their properties caused by 
the fifth-order symmetry are widely debated topics [1].

In the present work, a mechanism of forming the pentagonal particles from nanoclusters is first investigated by 
computer modeling on the atomic level. The work is based on the approach described in [2]. The energy of copper 
nanoclusters shaped as perfect and imperfect decahedrons as well as perfect and imperfect pentagonal nanorods are 
compared for nanoclusters comprising from 103 to 106 atoms. As a result of modeling, a mechanism of pentagonal 
particle growth is suggested that allows volumetric stresses of the nanoclusters to be released retaining the fifth-order 
symmetry axes of their shapes. Results of modeling are confirmed by investigations of the pentagonal copper rod 
structure with a Quanta 200 3D scanning electron-ion microscope.

1. GEOMETRY AND CHARACTERISTICS OF THE NANOCLUSTERS

The decahedron cluster structure is described in detail in the literature (for example, see [2] and references 
therein). Here we briefly describe the characteristics of the atomic cluster structure used below to perform computer 
modeling of copper clusters and to describe its results.

Figure la  shows a perfect decahedron copper cluster. In this case, the atomic cluster structure is described by 
the number of atoms m on the edge of each tetrahedron and by the number of atoms N  in the cluster. The decahedron is 
formed by five tetrahedrons bounded by the {111} crystallographic planes. The tetrahedrons have the edge in common 
lying on the fifth-order decahedron axis. Each tetrahedron is adjacent to two other tetrahedrons and has the (111) face in 
common with each neighbor. The remaining tetrahedron faces form the decahedron surface which comprises ten {111}

'Belgorod State University, Belgorod, Russia; 2Tol’yatti State University, Tol’yatti, Russia, e-mail: 
kolobov@bsu.edu.ru; lipnitskii@bsu.edu.ru. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, 
pp. 27-32, February, 2009. Original article submitted June 11, 2008.

mailto:kolobov@bsu.edu.ru
mailto:lipnitskii@bsu.edu.ru


Fig. 1. Perfect decahedron including N  = 609 copper atoms formed by five deformed tetrahedrons 
with orientation of the common edge along the [110] crystallographic direction. The edge of each 
tetrahedron comprises m = 9 atoms, the common edge lies on the fifth-order decahedron axis (a): 
perfect nanorod with / =10 and m = 4 (by. cut of a pentagonal copper rod prepared by 
electrodeposition (c); cross section of the relaxed decahedron cluster comprising N  = 141774 atoms 
with built-in close-packed planes (parallel to the [110] direction) near one twin (d): cross section of 
the relaxed decahedron cluster comprising TV = 921503 atoms with symmetrically built-in close- 
packed planes of atoms near each twin (e): cross section of the nanorod relaxed cluster comprising 
Nc = 10289 columns of atoms with built-in close-packed planes of atoms that fill two gaps between 
truncated tetrahedrons (/).

low-energy faces providing a low surface energy of the decahedron cluster. However, the ideal tetrahedron is enclosed 
in a solid angle of 70.5° (more precisely, arccos(l/3)); therefore, tetrahedrons must be deformed to fill the decahedron 
with five tetrahedrons without gaps to compensate for an angle of 7.5° required to obtain 360°. This leads to distortions 
of the FCC lattice and excessive volume energy, which results in energetically favorable crystal structure without 
volumetric deformations with increase in the cluster size.

The pentagonal rod (Fig. lb) can be considered as a decahedron in which each tetrahedron is truncated by the 
(100)-type plane parallel to the fifth-order decahedron axis (for more detailed consideration of the pentagonal nanorod 
structure, see [3] and the references therein). Taking into account the high ratio of the rod length to its transverse size, 
we neglect the end faces in calculations of the nanorod energy. This allows periodic boundary conditions to be used 
along the rod axis. The nanorods are formed by columns of atoms oriented along the rod axis (the [110] close-packed 
direction). For the examined rod, there are Nc columns comprising / atoms each, so that the number of atoms in the 
calculation grid is Y / x Yc. For this definition, the quantity / is equal to the period of the calculation grid along the 
rod axis in units of the shortest spacing of atoms, and Nc is the number of atoms in the plane perpendicular to the rod 
axis. The cross sectional rod area is proportional to ,YC. and the rod radius is proportional to Yc12.

We note that a continuous decahedron can also be constructed without deformation of tetrahedrons. For this 
purpose, it is suffice to build additional close-packed planes of atoms in the gaps between tetrahedrons. This will 
transform the atomic decahedron cluster structure into the crystal structure without excessive volumetric energy with



five intergranular boundaries. As demonstrated the results of this work, exactly the transition to such structures from 
noncrystal ones with increase in their sizes explains the formation of pentagonal particle structure from growing 
clusters.

The parameter convenient for a comparison of the stability of clusters having different sizes is given by the 
expression [2] AN = | /■:'/, (A) — A'e,coh |/  Y2 3, where ecoh is the cohesive binding energy per atom in the single crystal, 
Eb (N ) is the binding energy of the cluster of N  atoms. Thus, AN is the excess cluster energy compared to the perfect 

single crystal divided by the number of surface atoms proportional to TV2 3 . The excess cluster energy AN can be used 
to compare directly two clusters of the same sizes based on their excess energies. In addition, the quantity AN is also
useful for a comparison of clusters having different sizes and for a description of contributions from the surface, jogs, 
and volume to the surface cluster energy. Thus, for clusters having the same shapes but different sizes, AN has the form 

[2]

AM =[cNV3+bN2/3+ a N ] /N 2/3. (1)

Here the parameters c, b, and a describe linear, surface, and volumetric contributions to the surface cluster energy, 
respectively. The last contribution is present only for clusters with noncrystal structure.

For nanorods, analogous characteristics have the form [3]

Ac =[^(A ^)-A ^8coh]/(W c1/2) 

and (2)
Ac =[c + bNc1,2+aNc\ / N cV2 .

In this case, Ac is the excess nanorod energy compared to the perfect single crystal divided by the number of 

surface atoms proportional to /.vJ 2 for the nanorod.

2. CLUSTER MODELS

Each cluster considered in this work was constructed in two stages. First, the initial arrangement of atoms in the 
cluster corresponding to a concrete structure type was assigned. Then relaxation to 0 K was carried out by the method of 
molecular dynamics. The relaxation terminated when the maximal force acting on each atom was <0.5 meV/A. For 
nanorods, the period along the rod axis, which decreased under the action of the surface stress, was also relaxed.

In this work, three types of cluster structures in the form of a decahedron and four types of cluster structures in 
the form of a nanorod were considered. First of all, the noncrystal structure of the perfect decahedron was considered 
with the above-described initial arrangement of atoms of five deformed tetrahedrons. The initial arrangement of atoms 
in clusters with the second decahedron structure type comprised five perfect tetrahedrons with additional close-packed 
planes of atoms filling gaps between two tetrahedrons, as illustrated by Fig. Id  for the cluster from N  = 141774 atoms. 
As a result, the cluster was constructed that represented a polycrystal of five grains divided by four perfect twins 
Z3( 111) and one grain boundary near the twin. Additional planes were built in the clusters if the shortest spacing of 
atoms did not exceed the radius of the first coordination sphere. Analogously, clusters with other structures illustrated 
by Fig. Id, e. and/ with reference local structure were constructed. To visualize the atomic cluster structure, we used 
the definition of the local structure suggested in [4] based on an analysis of the topology of bonds among neighbors of 
each atom of the object being modeled which was successfully used in [5] to analyze model nanocrystal FCC metal 
structures. The suggested analysis allows dislocations, twins, stacking faults, grain boundaries, and other defects of the 
crystal structure as well as regions with reference crystal lattice to be distinguished. With the help of shades of grey 
color, we distinguished atoms having the local environment of the FCC (light grey color) and HCP lattices (grey color) 
as well as the local environment other than FCC and HCP lattices (black color).
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Fig. 2. Calculated energy excess of decahedron copper clusters: Av (in units of electronvolts 
divided by the number of surface atoms) as a function of TV2 3. Here 1 denotes the perfect 
decahedron, 2 is for the imperfect decahedron with one grain boundary deviated from the 
twin by an angle of 7.5°, and 3 is for the imperfect decahedron with five grain boundaries 
each deviated from the twin by an angle of 1.5°.

It should be noted that the chosen criterion for the incorporation of additional planes does not provide complete 
release of the volumetric stress. However, this had no effect on the results of our investigations, and the correction for 
the residual volume energy was introduced where necessary.

3. RESULTS OF CALCULATIONS AND THEIR DISCUSSION

Figure 2 shows the calculated energy excess AN for decahedron clusters. The interpolation of these values 
toward larger cluster sizes by Eq. (1) until they intersect the Av plots drawn for perfect and imperfect decahedrons with 
planes built in one gap between the tetrahedrons is also shown here. From Fig. 2 it can be seen that for clusters with 
T V 2/3 = 10,000 ( T V =  1,000,000), the cluster energies are minimal for the perfect structure, and imperfect decahedrons 
possess lower energy for the asymmetrical built-in planes (within a solid angle of 7.5°). These energy values 
demonstrate the determining influence of the surface cluster energy in this interval of cluster sizes. However, 
an increase in the volume energy with increasing cluster sizes caused by the lattice deformation in the perfect 
decahedron results in the energetically more favorable formation of the imperfect decahedron in which volumetric 
deformations decrease due to the built-in planes of atoms. Interpolation shown in Fig. 2 demonstrates that decahedron 
structures change for clusters formed by 18 million atoms. To estimate the transitive cluster size, we took it equal to the 
diameter of the sphere whose volume is equal to the total volume of atoms in the cluster. This size is Dd = 74 mn. It 
should be noted that without volumetric stresses, the AN plot for the imperfect decahedrons in Fig. 2 should be saturated 
at constant b = 2.613 calculated by interpolation for increased decahedron sizes, since a significant contribution to the 
energy excess AN for larger sizes comes only from the surface and internal boundaries. In this regard, we took the 
corrected value Dd = 66 mn ( T V =  12.5 mln atoms) determined as an intersection point of the plot Av for the perfect 
decahedrons with the straight line AN= 2.613 (Fig. 2).

Figure 3 shows the energy excess Ac calculated for the rod clusters. Interpolation of Ac with the help of Eq. (2) 
is also shown in the figure. It started from TVC12 = 100. As can be seen, the growth of the imperfect rods compared to



Fig. 3. Calculated energy excess for the pentagonal rod copper clusters: Ac (in units of electronvolts 
divided by the number of surface atoms) as a function of \'c' 2. Here 1 denotes the perfect rod, 2 is for 
the imperfect rod with one grain boundary deviated from the twin by 7.5°, 3 is for the imperfect rod 
with two grain boundaries each deviated from the twin by an angle of 3.75°, and 4 is for the symmetric
imperfect rod with five grain boundaries each deviated from the twin by an angle of 1.5°. The
coincidence of the interpolated straight lines with the rod types is seen from the figure.

perfect ones becomes energetically more favorable starting from A'J 2 = 220. This corresponds to the pentagonal rod 
with the (100) face width of 36 run (m = 139) and the diameter of the circle circumscribed about the rod cross section 
Dc = 61 nm. In this case, imperfect pentagonal rods with volumetric stresses released due to asymmetrical incorporation 
of the additional planes only near one twin E3(l 11) have lower energies.

To analyze the results of modeling, we note that the grain boundaries in the examined imperfect clusters, 
according to the Brandon criterion [6], belong to special boundaries with inverse density of the coinciding sites E = 3,
since the deviation from an angle of 70.5° (the perfect twin with E = 3) is about 15/(3)'2. The fact that the grain
boundaries are special causes their special properties, first of all, their low mobility. This was confirmed by 
experimental investigations of the stability of facets adjacent to the E3( 111) boundaries in copper with increasing 
temperature [7]. In [7], the stability of these facets was established for temperatures up to the copper melting 
temperature.

The results of modeling and the stability of the boundaries with E = 3 suggest the following mechanism of 
pentagonal particle growth from clusters with the fifth-order axes. The structures with the fifth-order axes are formed 
during cluster growth due to the fact that they are energetically more favorable for small cluster sizes, despite the 
presence of volumetric deformations. After sizes of about 60 nm, the structures of growing particles change with 
smooth transition to structures providing volumetric deformation release when particles grow further. The indicated 
transition in the process of growth is realized because new structures are energetically more favorable and there is no 
barrier between the initial and subsequent structures. Since the perfect and examined imperfect pentagonal rods grow 
due to incorporation of additional planes like the (100) ones, there is no barrier when going from the growth of perfect 
to the subsequent growth of imperfect pentagonal rods. The growth of decahedron clusters has a special feature caused 
by the dynamic instability of the built-in additional FCC planes, like the (111) ones, on the decahedron surface toward 
the occurrence of the HCP planes [8]. This causes the cluster shape to change from the decahedron to others. However, 
as indicated above, in this case the system of grain boundaries close to E3(l 11) is inherited by the growing particle



because of high stability and low mobility of the special grain boundaries with E = 3. In some cases, an icosahedron 
cluster grows from the decahedron as a result of dynamic instability, since the decahedron is an integral part of the 
icosahedron [8]. This explains the observed rod and icosahedron shapes of pentagonal particles [1].

To test the asymmetrical character of misorientation of the neighboring crystallites in the pentagonal rods 
predicted above, the corresponding angles of the copper rod prepared by electrodeposition (whose cut perpendicular to 
the rod axis is shown in Fig. 1 c) were calculated. Calculations of the direct polar figure demonstrated that these angles 
were (72 ± 0.5), (71 ± 0.5), (71 ± 0.5), (72 ± 0.5), and (74 ± 0.5)°. This does suggest the separation of one boundary 
with a larger misorientation angle compared to other boundaries.

CONCLUSIONS

As a result of computer modeling of copper clusters, the mechanism of pentagonal particle growth from 
clusters with the fifth-order axes has been proposed and proved. According to this mechanism, particles having special 
grain boundaries with inverse density of coinciding sites E = 3 are formed without volumetric deformations.

This mechanism predicts a higher probability of forming pentagonal rods with asymmetrical misorientation of 
neighboring crystallites forming the rod, in agreement with the experimentally established misorientation angles in the 
copper rod prepared by electrodeposition.
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