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Abstract

No fundamental mechanism or model enables a theory on particle-size distribution to be built. Consequently, a wide variety of empirical
models or equations have been proposed to characterize experimental particle-size distributions, such as the Rosin–Rammler model. Because the
Nukiyama–Tanasawa equation uses four parameters to simulate differential distribution frequencies for particle-size diameters, the distribution
function is not easy to apply in order to fit experimental data. In this paper, a modification of the Nukiyama–Tanasawa model with only two
parameters has been proposed to fit the data on a particle-size distribution (PSD). The proposed normalized distribution function has been applied
successfully to the PSD analysis (cork granulate and spray atomization droplets).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Particle-size distribution is probably the most important
physical characteristic of solids. This property influences the
combustion efficiency of pulverized coal, the setting time of
cements, the flow characteristics of granular materials, the
compacting and sintering behaviour of metallurgical powders,
etc. These examples illustrate the important role of particle size
in energy generation, industrial processes, and many other
phenomena. Also, particle size is a significant parameter in
some Unit Operations such as spray drying, fluidization engi-
neering or fluid–solid heterogeneous reactions.

Many distribution functions have been proposed to char-
acterize the fraction of materials as a function of the particle size
[1–3]. These models can be applied to describe particle-size
distribution (PSD). Usually, the equations use two parameters,
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one representing the mean diameter and the other one indicating
the particle-size range. The Rosin–Rammler distribution func-
tion, Eq. (1), is the most commonly used equation for PSD
analysis.

FM Dð Þ ¼ 1� exp � D
m

� �n� �
ð1Þ

This function is suitable to characterize powders obtained
from grinding, milling, and crushing operations [4] and to
analyse the PSD of spray droplets [2,3]. However, the use of the
Nukiyama–Tanasawa equation, Eq. (2), is difficult because four
parameters are required: KD, m, n and p [5,6].

fN Dð Þ ¼ KDD
p exp � D

m

� �n� �
ð2Þ

The present work analyses the Rosin–Rammler and
Nukiyama–Tanasawa distribution functions and proposes a
more practical version of Nukiyama–Tanasawa function that use
the Sauter mean diameter, DVS, and two parameters, n and p.
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2. Theory

2.1. Distribution functions for particle-size distribution

The particle-number fraction between particle sizesD andD+
ΔD is fN (D) ΔD, where fN (D) is a density function (its
dimensions have to be length− 1). The sieve analysis of powder
materials implies that the frequency distribution has to be de-
termined usingmass fractions [5]. In this case, the density function
based on mass fractions is fM (D) and fM (D) ΔD is the mass
fraction for a particle-size range between D and D+ΔD. Both
distribution functions must satisfy the normalization conditions:Z l

0
fN Dð ÞdD ¼ 1; and

Z l

0
fM Dð ÞdD ¼ 1 ð3Þ

Assuming that all particles have equal shape and density:

fM Dð Þ ¼ D3fN Dð ÞRl
0 D3fN Dð ÞdD ð4Þ

2.2. Modified Nukiyama–Tanasawa and Rosin–Rammler dis-
tribution functions

Differential forms of the Rosin–Rammler distribution func-
tion are shown below. Eq. (5) has been formulated by dif-
ferentiation of Eq. (1), while Eq. (6) may be derived from
Eq. (3) and the correlation between fM (D) and fN (D), Eq. (4).

fM Dð Þ ¼ n
m

D
m

� �n�1

exp � D
m

� �n� �
ð5Þ

fN Dð Þ ¼ n

mC n�3
n

� � D
m

� �n�4

exp � D
m

� �n� �
ð6Þ

The mathematical transformation is indicated in Appendix A.
The Rosin–Rammler distribution functions, Eqs. (5) and (6),
require two parameters to fit the experimental data, m and n.

The Nukiyama–Tanasawa equation, Eq. (2), apparently de-
pends on four parameters (KD, m, n and p). Lefebvre [2] or Li
and Tankin [7] assume that p=2. In the mathematical meth-
odology proposed, if the normalization conditions, Eq. (3), must
be satisfied, it follows that (see Appendix A):

KD ¼ n

mpþ1C pþ1
p

� � ð7Þ

Substituting Eq. (7) into Eq. (2) gives a Nukiyama–Tana-
sawa equation with three parameters: m, n and p, Eq. (8).

fN Dð Þ ¼ nDp

mpþ1C pþ1
n

� � exp � D
m

� �n� �
ð8Þ

However, a Nukiyama–Tanasawa equation useful for mass
fraction data, Eq. (9), has been formulated using Eqs. (4) and (8).

fM Dð Þ ¼ nDpþ3

mpþ4C pþ4
n

� � exp � D
m

� �n� �
ð9Þ
Some authors, Lefebvre [2] and Dunbar and Hickey [5], also
use p=2 in Eq. (9), obtaining Eq. (10).

fM Dð Þ ¼ nD5

m6C 6
n

� � exp � D
m

� �n� �
ð10Þ

The Nukiyama–Tanasawa equations, Eqs. (8) and (9), can be
rearranged in a dimensionless form in order to make them easier
to apply without any previous value assignment to any para-
meter. For that purpose, the Sauter mean diameter (DVS) based
on particle volume/surface ratio is defined as

DVS ¼
Rl
0 D3fN Dð ÞdDRl
0 D2fN Dð ÞdD ð11Þ

Substitution of Eq. (8) into Eq. (11) and integration gives
an equation to calculate the Sauter mean diameter from the
Nukiyama–Tanasawa equation:

DVS ¼ mC pþ4
n

� �
C pþ3

n

� � ð12Þ

However, a dimensionless diameter, δ, and a normalized
distribution frequency, fN (δ), have been defined:

d ¼ D
DVS

; dD ¼ DVSdd ð13Þ

The frequency distribution, fN (δ), calculated as a function of
δ must fulfill the normalization conditionsZ l

0
fN Dð ÞdD ¼

Z l

0
fN dð Þdd ¼

Z l

0
fN dð Þ dD

DVS
¼ 1 ð14Þ

and therefore

fN dð Þ ¼ DVSfN Dð Þ ð15Þ
Substituting δ instead D in Eq. (8), the Nukiyama and

Tanasawa equation can be written in normalized and dimen-
sionless form as:

fN dð Þ ¼ n

C pþ1
n

� � C pþ4
n

� �
C pþ3

n

� �
 !pþ1

dp exp � C pþ4
n

� �
C pþ3

n

� �
 !n

dn
 !

ð16Þ

Eq. (16) has only two parameters, n and p, making it possible
to fit the experimental data with ordinary calculating programs.

The Nukiyama–Tanasawa distribution function based on
mass fractions can be determined assuming that fM (D) and fM
(δ) fulfill the normalization conditions, Eq. (3), and therefore

fM dð Þ ¼ DVSfM Dð Þ ð17Þ
Taking into account Eqs. (12), (13), and (17), Eq. (9) can be

transformed into:

fM dð Þ ¼ n

C pþ4
n

� � C pþ4
n

� �
C pþ3

n

� �
 !pþ4

dpþ3 exp � C pþ4
n

� �
C pþ3

n

� �
 !n

dn
 !

ð18Þ



Fig. 2. Fit of the Rosin–Rammler and modified Nukiyama–Tanasawa equations
to experimental data from Macías-García et al. [4].

Table 1
Rosin–Rammler and modified Nukiyama–Tanasawa equations parameters

Equation m n p RSR AMAD (%)

Masters (2001) [3] data (μm) 108

280 P. González-Tello et al. / Powder Technology 186 (2008) 278–281
When the variable change in Eqs. (16) and (18) is undone,
Nukiyama–Tanasawa equations with two parameters are
obtained, Eqs. (19) and (20). These equations are as easy to use
as the Rosin–Rammler equations, given that these distribution
functions have only two parameters because DVS can be
numerically calculated from the experimental data using Eq. (11).

fN Dð Þ ¼ n

DVSC
pþ1
n

� � C pþ4
n

� �
C pþ3

n

� �
 !pþ1

� D
DVS

� �p

exp � C pþ4
n

� �
C pþ3

n

� �
 !n

D
DVS

� �n
 !

ð19Þ

fM Dð Þ ¼ n

DVSC
pþ4
n

� � C pþ4
n

� �
C pþ3

n

� �
 !pþ4

� D
DVS

� �pþ3

exp � C pþ4
n

� �
C pþ3

n

� �
 !n

D
DVS

� �n
 !

ð20Þ

3. Results and discussion

For verification of the goodness of the fit of the Nukiyama–
Tanasawa and Rosin–Rammler equations, experimental dro-
plet-size distributions obtained by atomization were used [3,7],
together with the data on cork granulates obtained by milling
[4]. Data from Masters [3] and Li and Tankin [7] were used to
calculate the normalized frequency of size distribution, fN (D),
by Eq. (21):

fN Dð Þ ¼ NRl
0 NdD

¼ xNRl
0 xNdD

ð21Þ

where xN is the droplet fraction with a size between D and D+
ΔD. The values obtained for fN (D) from Masters [3] are shown
in Fig. 1. The Sauter mean diameter was calculated by nu-
merical integration of Eq. (11). Data from Macías-García et al.
Fig. 1. Fit of the Rosin–Rammler and modified Nukiyama–Tanasawa equations
to experimental data from Masters [3].
[4] were used to calculate mass fraction of solids, xM and fM (D)
for a particle size between D and D+ΔD and were shown in
Fig. 2. From these data, it is possible to establish the mass
fractions and the sieve diameters as the arithmetic mean of two
sieve openings of two consecutive meshes. Similar to Eq. (21):

fM Dð Þ ¼ xMRl
0 xMdD

ð22Þ

The definition of the Sauter mean diameter, Eq. (11), and the
correlation between fN (D) and fM (D), Eq. (4), leads to an
Rosin–Rammler Eq. (5) 107.36 2.14 9.810 0.021
Rosin–Rammler Eq. (6) 147.33 4.59 82.74 0.185
Nukiyama–Tanasawa Eq. (19) 1.97 1.29 7.018 0.017

Li and Tankin [7] data (μm) 108

Rosin–Rammler Eq. (5)
E-1 168.57 2.08 4.190 0.137
E-2 164.25 2.36 22.43 0.154
E-3 151.12 2.48 5.358 0.200
E-4 169.96 2.36 14.44 0.280

Nukiyama–Tanasawa Eq. (19)
E-1 1.83 1.14 4.871 0.022
E-2 2.04 1.29 25.39 0.029
E-3 2.07 1.29 14.26 0.042
E-4 1.83 1.13 28.11 0.012

Macías-García et al. [4] data (mm) 104

Rosin–Rammler Eq. (5) 3.982 2.76 3.269 0.82
Nukiyama–Tanasawa Eq. (20) 1.50 0.185 3.362 2.24
Nukiyama–Tanasawa Eq. (10) 0.442 0.89 2 2.997 2.35

E-1, E-2, E-3 and E-4 correspond to different experiments on droplet-size
distributions measured by [7].
AMAD = Absolute mean average deviation =

PNB
0 j f Dð Þexp�f Dð Þcalc

f Dð Þexp j 1
NB.
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expression to calculate the Sauter mean diameters as a function
of sieve-analysis data

DVS ¼
Rl
0 fM Dð ÞdDRl
0

fM Dð ÞdD
D

ð23Þ

Matlab 6.5 was used to fit the data series. The program
minimizes the sum of the residual squares, RSR, for each
particle-size distribution

RSR ¼
Xn

1

fN Dð Þcalc�fN Dð Þ exp
� �2

=NB ð24Þ

where NB is the number of experimental data. For fM (D), RSR
is calculated substituting fM (D) in Eq. (24) instead of fN (D).

Table 1 shows the parameters n, m or p values obtained when
the Rosin–Rammler and Nukiyama–Tanasawa equations are
used. The RSR, the absolute mean average deviation (AMAD),
and Figs. 1 and 2 show that both the Rosin–Rammler and
modified Nukiyama–Tanasawa equations acceptably fit the
experimental data (Table 1). The largest deviations between
experimental and calculated results have been found using the
modified Rosin–Rammler equation, Eq. (6). However, in order to
calculate particle-size distributions, the original Rosin–Rammler
equation, Eq. (5), apparently has a wider application range be-
cause it acceptably reproduces experimental results using particle-
number fraction data instead of mass fractions data (Fig. 1).

4. Conclusions

The Nukiyama–Tanasawa equation, Eq. (2), has been normal-
ized in a dimensionless form to be used in PSD analysis. The
mathematical models used to study the PSD analysis have been
applied to two different samples: cork granulates and atomization
sprays. The modified Nukiyama–Tanasawa distribution function
with only two parameters provides good results when it is applied
to the samples studied. This function is easily used with common
calculating tools. This means that the proposed distribution
function is as useful as thewell-knownRosin–Rammler equation.

Appendix A

Some calculation examples are shown. Functions have been
normalized including the gamma function:

C xð Þ ¼
Z l

0
yx�1exp �yð Þdy ðA� 1Þ

Normalization of the Nukiyama–Tanasawa equation
Substituting Eq. (2) into Eq. (3) leads to

Z l

0
KDD

p exp � D
m

� �n� �
dD ¼ 1 ðA� 2Þ

Making the following variable change:

y ¼ D
m

� �n

; D ¼ my
1
n; dD ¼ m

n
y
1�n
n dy ðA� 3Þ
Substituting Eq. (A-3) into Eq. (A-2) and operating

KD

Z l

0

mpþ1

n
y
pþ1�n

n exp �yð Þdy ¼ 1 ðA� 4Þ

and comparing Eqs. (A-1) and (A-4), gives

x� 1 ¼ pþ 1� n
n

; x ¼ pþ 1
n

ðA� 5Þ

KDC
pþ 1
n

� �
mpþ1

n
¼ 1 ðA� 6Þ

and consequently

KD ¼ n

mpþ1C pþ1
n

� � ðA� 7Þ

Rosin–Rammler modified equation (fN (D)—Eq. (5))
Considering the correlation between fN (D) and fM (D), Eq. (4),

and the normalized frequency distribution data, established by
Eq. (3), the result from Eq. (4) is

fN Dð Þ ¼ C � fM Dð Þ
D3

ðA� 8Þ
where C is a constant. Substituting Eq. (5) into Eq. (A-8) and
including the resulting equation into Eq. (3)Z l

0
C
n
m
D�3 D

m

� �n�1

exp � D
m

� �n� �
dD ¼ 1 ðA� 9Þ

When a procedure analogous to the previous one is followed
to obtain the gamma function, Eqs. (A-3) and (A-4), the fol-
lowing is obtained

C ¼ m3

C n�3
n

� � ðA� 10Þ

where Eq. (A-10) allows the calculation of the Rosin–Rammler
equation based on particles or droplet fractions as,

fN Dð Þ ¼ n

mC n�3
n

� � D
m

� �n�4

exp � D
m

� �n� �
ðA� 11Þ
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