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Abstract—A six-dimensional Langevin approach is developed for the analysis of near-barrier heavy-
ion fusion and deep-inelastic collisions. In its framework, vibrational and rotational degrees of freedom
of both nuclei are taken into account explicitly. Calculated fusion cross sections, compound nuclei spin
distributions, and angular and energy distributions of deep-inelastic products show satisfactory agreement
with experimental data. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fokker–Planck and Langevin equations may be
successfully applied for the description of low-energy
fusion and deep-inelastic collisions. These equations
are based on the concepts of nuclear friction and
stochastic behavior of the system with many degrees
of freedom. The solution of the Langevin equations is
less difficult compared to the Fokker–Planck equa-
tion and does not require additional simplifying as-
sumptions. It is well known that the deformations of
nuclear surfaces and the rotation of deformed nuclei
seriously affect the dynamics of nuclear interaction.
Therefore, taking them into account is important for
the description of low-energy nucleus–nucleus colli-
sions. But this dramatically increases the calculation
time and difficulty, which is the main reason why up
to now only two- or four-dimensional calculations
have been performed [1]. In the present work, vibra-
tional and rotational degrees of freedom of both nuclei
are taken into account explicitly in the framework
of the six-dimensional Langevin approach. Fusion
cross sections, compound nuclei spin distributions,
and angular and energy distributions of deep-inelastic
products are calculated and compared with experi-
mental data.

2. THEORETICAL MODEL

Collective degrees of freedom play a significant
role in low-energy (≤10 MeV/nucleon) fusion and
deep-inelastic collisions. For the description of these
processes, a six-dimensional Langevin model may be
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applied. The geometry of collision is shown schemat-
ically in Fig. 1. Let us assume for simplicity that
the symmetry axes of nuclei belong to the plane of
reaction. We shall use the following notation: r is the
distance between centers of mass of nuclei, θ is the
polar angle, ϕi are the angles between the symmetry
axes of the nuclei and the beam direction, βi are the
dynamic quadrupole deformations, βi0 are the static
quadrupole deformations of the ground states, q =
{r, θ, ϕi, βi} is the complete set of six variables, and
pr, pθ, pϕi , and pβi

are the conjugated momenta. We
suppose that the index i = 1 corresponds to the pro-
jectile, and i = 2 to the target. Let us also introduce
angles α1 = ϕ1 + θ and α2 = ϕ2 − θ.

The surface of the deformed axially symmetric nu-
cleus taking into account volume conservation may
be described by the formula

Ri (αi, βi) =
Ri0 (1 + βiY20 (αi))

3

√
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3
5
δ2
i +

2
35

δ3
i

, (1)

where Ri0 = ri0A
1/3
i , δi =

√
5/(4π)βi, and Y20 (αi)

is a spherical harmonic of the second order. In our
calculations, we chose the parameter r0 = 1.2 fm for
both nuclei.
To describe surface vibrations of nuclei we will

use the harmonic oscillator model. The corresponding
Lagrangians may be written in the form

Lvibi =
p2

βi

2Bi
− Ci

(βi − βi0)
2

2
, (2)

where Ci are the rigidity parameters and Bi are
the mass parameters; they may be calculated in the
framework of the liquid drop model or from experi-
mental data about vibrational states of nuclei.
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Fig. 1. The geometry of the collision process.

The full Lagrangian is then

L =
p2

r

2µ
+

p2
θ

2µr2
+
∑

i

p2
ϕi

2Ji
(3)

+
∑

i

(
p2

βi

2Bi
− Ci

(βi − βi0)
2

2

)
− V (q) ,

where µ is the reduced mass of the system; Ji are the
inertia momenta of nuclei; and V is the interaction
potential, which consists of Coulomb and nuclear
parts.
The Coulomb interaction is a sum of monopole–

monopole and monopole–quadrupole interactions,
VC = V

(mm)
C + V

(mq)
C . The monopole–monopole one

was chosen in the form

V
(mm)
C = Z1Z2e

2

{
1/r, r > RC,

(3 − r2/R2
C)/(2RC), r < RC,

(4)

where RC = R01 + R02. We shall denote the quadru-
pole momenta of nuclei byQi; then,

V
(mq)
C =

Z1Q2e
2

2R2
P2 (cosα2) f(q) (5)

+
Z2Q1e

2

2R2
P2 (cosα1) f(q),

where

Qi ≈
3√
5π

ZiR̃
2
i βi, R = R̃1 + R̃2,

R̃i = R0i

/
3

√
1 +

3
5
δ2
i +

2
35

δ3
i ,

f(q) =


R2/r3, r > R̃1(1 + δ1) + R̃2(1 + δ2),
r2/R3, r < R̃1(1 − δ1/2) + R̃2(1 − δ2/2),
s2(q)R2/r3 + c2(q)r2/R3, in other cases.

Here, s2(q) + c2(q) = 1, and functions s(q) and c(q)
are chosen so that f(q) is continuous together with
its first derivative.
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Fig. 2. The compound nuclei spin distribution for the
reaction 16O(Ec.m. = 80.4 MeV) + 144Nd → 160Er∗.
The experimental data (triangles) are compared with the-
oretical calculations by Fröbrich [5] (histogram) and our
results obtained with and without fluctuations (solid and
dashed lines, respectively).

Woods–Saxon potentials with volume or surface
form factors or a “proximity” potential [2] may be
chosen as the nuclear part of the interaction. We
must note that all potentials will give almost the
same fusion cross sections, compound nuclei spin
distributions, and angular and energy distributions
of deep-inelastic products if positions and heights of
their barriers are the same. In our calculations, the
Woods–Saxon volume potential

VN (q) = V0
1

1 + exp[(r −RV )/a]
(6)

is used, where RV = R1 (α1, β1) + R2 (α2, β2) and
the diffuseness parameter a = 0.5 fm.
Phenomenological nuclear friction is introduced to

describe the dissipation of kinetic energy into degrees
of freedom that are not taken into account explicitly
within this model (mostly single-particle ones). The
Rayleigh function is written in the standard form

D =
1
2

6∑
k,n=1

γkn(q)q̇k q̇n, (7)

where γkn(q) is the friction tensor calculated within
the surface friction model [3].
Friction leads to the heating of nuclei and appear-

ance of stochastic forces Fk(t) =
√
γkkTΓ(t), where

Γ(t) is a Gaussian-distributed random value with
the following properties: 〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 =
2δε(t− t′) (see, for example, [1]); the temperature of
the nuclei T =

√
E∗/d is determined by the excita-

tion energy E∗ and the level density parameter d =
(A1 +A2)/8MeV−1 [4].
3
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Fig. 3. (a) The excitation function for the reaction 16O + 144Sm. Triangles represent experimental data [6], and the dashed
line is our calculation for spherical nuclei. (b) The excitation function for the reaction 16O + 154Sm. Squares represent
experimental data [6]; the dashed line is our calculation for spherical nuclei; the solid line is our calculation taking into account
static deformation of 154Sm with averaging over initial orientations.
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Fig. 4. Double differential cross section (in mb/(sr MeV)) for the reaction 56Fe(Ec.m. = 345MeV) + 165Ho. (a) Experiment
[7]; projectile-like fragments with 12 ≤ Z ≤ 35 were detected. (b) Calculation; stochastic forces were taken into account.
The set of Langevin equations
d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= −∂D

∂q̇k
(8)

+
√
γkk (q)T (E∗) Γ(t), k = 1, 6,

is solved numerically. The incident energy, impact pa-
rameter, deformations, and orientations of the nuclei
are the initial conditions that we need for its solution.
In case of stochastic forces, for each impact parame-
ter, a number of trajectories are calculated. Those of
them that go far enough behind the potential barrier
cannot go outside and contribute to the fusion cross
section. Others go outside or even may be reflected
from the barrier without overcoming it, which leads
the system to deep-inelastic, quasi-elastic, or elastic
P

channels. In the case of deformed ground states, av-
eraging over randomly chosen initial orientations is
performed.

3. RESULTS OF OUR CALCULATIONS

The feature mentioned above results in smearing-
out of calculated compound nuclei spin distributions,
which allows us to reproduce the corresponding
experimental data successfully. The compound nu-
clei spin distribution for the reaction 16O(Ec.m. =
80.4 MeV) + 144Nd → 160Er∗ is given in Fig. 2.
The experimental data (triangles) are compared with
theoretical calculations by Fröbrich [5] (histogram)
HYSICS OF ATOMIC NUCLEI Vol. 66 No. 8 2003
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and with our results obtained with and without fluc-
tuations (solid and dashed lines, respectively). In spite
of the fact that only relative motion degrees of freedom
were included in our calculations, the results show
good agreement with experiment and Fröbrich’s
calculations performed taking into account dynamic
deformations and using “nose-to-nose” geometry.
Rotational degrees of freedom are very important

in the case of highly deformed nuclei collisions.
A good example of this fact is a significant differ-
ence in the fusion cross sections of 16O with two
isotopes 144Sm and 154Sm. The ground state of
144Sm is spherically symmetric, but 154Sm is highly
deformed with quadrupole deformation β20 = 0.27. In
the latter case, instead of one Coulomb barrier, we
obtain a multidimensional potential surface strongly
depending on the orientation of the colliding nuclei.
The excitation functions for the fusion reactions
16O + 144Sm and 16O + 154Sm are given in Fig. 3.
Triangles and squares represent experimental data
[6], dashed lines are calculations for spherical nuclei,
and the solid line in Fig. 3b is a calculation taking
into account the static deformation of 154Sm with
averaging over initial orientations. In Fig. 3a, the
Coulomb barrier for spherical nuclei is marked with
an arrow, and in Fig. 3b, the barriers B1 and B2

correspond to the different orientations of the target
α2 = 0◦ and 90◦, respectively. The role of rotation
and dynamic deformation is much less in this case;
including them hardly changes the results. We can
see that static deformation of 154Sm plus averaging
over initial orientations allows one to obtain fusion
events at subbarrier energies, which leads to better
agreement with experimental data. The Langevin
forces do not significantly influence the fusion cross
section in this case because of the low excitation
energy, i.e., low temperature of the touching nuclei.
In calculation of deep-inelastic processes with en-

ergies about 10 MeV/nucleon, stochastic forces play
a much more noticeable role and taking them into ac-
count is necessary for a realistic description of energy
and angular distributions of fragments. The experi-
mental double differential cross section (Wylczynski
plot) for the reaction 56Fe(Ecm = 345MeV) + 165Ho
is given in Fig. 4a. In the experiment projectile-like
fragments with 12 ≤ Z ≤ 35 were detected. The re-
sults of our calculation are shown in Fig. 4b. Here,
stochastic forces were taken into account without
dynamic rotations and deformations. A pronounced
ridge is observed in the experimental data. It is shown
as a dashed line in both figures. We see that the model
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 8 200
properly reproduces the position of the maximum in
the double differential cross section corresponding
to so-called grazing collisions. The main reason for
the discrepancy between theoretical calculations and
experiment for large energy losses is the nucleon ex-
change in the collision process, which we did not take
into account. This will be our immediate task for the
future.

4. CONCLUSION

A six-dimensional Langevin approach is pro-
posed for description of near-barrier fusion and
deep-inelastic collisions. The role of vibrational and
rotational degrees of freedom in the dynamics of
nucleus–nucleus collisions was investigated. It was
shown that taking them into account is important for
reproducing the experimental data because the inter-
action potential strongly depends on these degrees
of freedom. Taking into account fluctuations allows
one to reproduce compound nuclei spin distributions
without influencing much the value of the fusion cross
section. Stochastic forces also play an important role
in forming angular and energy distributions of the
fragments formed in deep-inelastic processes.

The solution of the Langevin equations gives us
important information about the dissipated energy,
dynamic deformations, and orientations of nuclei at
the moment of their contact, which is important for
the analysis of the system’s further evolution into
channels of complete fusion and deep-inelastic scat-
tering.

Nucleon exchange plays an important role in the
dynamics of heavy-ion collision. Taking into account
additional degrees of freedom describing nucleon ex-
change is our immediate task for the future.
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