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Abstract— The partial volume effect is a corrupting artifact
that affects nuclear imaging data such as PET and SPECT data,
manifest as a blurring action on the resultant image data. This
artifact is a result of the image acquisition process, wherevoxels
in the PET or SPECT images are typically composed of a mixture
of activity concentrations. This prevents accurate localization and
quantitation of the target region activity. A further well- known
image artifact found in most types of signal and image data is
additive noise which is caused by limited photon count statistics
for PET or SPECT imaging data. This work presents a novel
methodology for statistically combining image noise reduction
and partial volume estimation with particular application to low
contrast to noise ratio image data, e.g. image data with poortarget
localization.

Each possible partial volume mixture is modeled as a Gaussian
distribution and neighborhood statistical information is also in-
corporated in the form of the voxel neighborhood intensity mean,
which has previously been shown to also be Gaussian distributed.
This leads to an analytical solution of the optimal expectedmean
(thus minimizing the mean square loss), providing an equation
that can iteratively and adaptively reduce the noise in eachimage
voxel. Once the noise is reduced a further step that estimates the
partial volume mixtures using an adaptive Markov Chain Monte
Carlo method is found to improve the partial volume estimates
in comparison to existing partial volume estimation techniques
without a noise reduction step.

I. I NTRODUCTION

T HE partial volume effect is a corrupting artifact that affects
nuclear imaging data such as PET and SPECT. This

artifact is a result of the image acquisition process, where,
the relatively large voxels in the PET or SPECT images are
typically composed of a mixture of activity concentrations.
The partial volume effect manifests as a blurring action on
the resultant image data. This prevents accurate localization
and quantitation of the activity information being imaged.A
further well-known image artifact found in most types of signal
and image data is additive noise. The accurate quantitation
of activity is therefore affected by the partial volume effect
and image noise. The result of the acquisition process and the
objective of the methodology described in this paper, namely
noise reduction is illustrated in figure 1.
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Fig. 1. Illustration of the effect of the image acquisition process and the
resulting noise reduction on the acquired noisy imaging data.

This work presents a novel methodology for combining
image noise reduction and partial volume estimation with
particular application to low contrast to noise ratio imagedata.
In contrast to other approaches, (e.g. [1], [2], [3], [4], [5], [6],
[7]), no assumptions are made about the spatial distribution of
the tracer or correspondence with prior anatomical information.

Often partial volume correction methods rely on a high-
resolution anatomical data set which is segmented into regions
that correspond to assumed contiguous regions of functional
activity in the functional imaging modality. The segmented
anatomical data sets are then convolved with a point spread
function of the functional modality, the result of which is aset
of mixing templates. These mixing templates in combination
with the observed functional image intensities can be used to
estimate the amount of physiological activity. However this as-
sumes a correspondence with the prior anatomical information,
which may not be valid and or good quality (segmented) high
resolution anatomical imaging data may not be available.

Other techniques have included the use of extra-vascular den-
sity images for partial volume correction in cardiac imaging [8],
[9]. An extra-vascular density image is created by subtracting
a blood pool image from a transmission image. The result of
which quantifies tissue activity rather than the activity arising
from the tissueand vascular components. The methodology
presented in [8], [9] is interesting, particularly becauseof the
absence of high resolution anatomical information, but thework
is of limited use for non-cardiac imaging applications.

Previous work, such as [10], [11], [12] proposed partial
volume analysis models that do not use prior high resolution
anatomical information. These models rely on statistical anal-
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ysis of the functional image intensities to determine relative
quantities of activity concentrations. However, as with any
methodology, the relative performance of the techniques are
sensitive to the amount of noise in the imaging data, where low
contrast to noise ratio imaging data prevents accurate activity
concentration determination.

Often data samples may have what is often known as
context. For spatially located data samples this context is space.
Intuitively, if a data sample in a particular location is classified
with a particular class label then any data samples located near
to that data sample are likely to have a similar class label. This
prior knowledge is often useful in improving the classification
performance of otherwise ambiguous data samples in imaging
data with low contrast to noise ratios.

Spatially derived contextual information is one possible
source of information that can improve classification perfor-
mance. This work demonstrates that the contextual information
can be correctly modeled and incorporated into partial volume
classification and builds on the work presented in [11], [12],
[13]. An analytical approximation for the expected partial
volume content of a voxel is derived providing a result that
is intuitive and simple to calculate.

II. M ETHODOLOGY

A PET or SPECT image acquisition process produces
imaging data that consists of finite sized voxels,{ω} with
noise affected intensities,g(ω). The imaging data can also be
considered to consist ofn individual activity concentrations
represented by a mean activity concentration vector,µ =
{µ1 µ2 ... µn} for the entire imaging data. Each voxel can
then be considered to be composed of a linear combination
of each of these mean activity concentrations, the proportion
of which is controlled by elements from amixing vector,
α(ω) = {α1(ω) α2(ω) ... αn(ω)} where each mixing element
is limited to valuesαi(ω) ∈ [0, 1] ∀i where1 is representative
of total voxel content and0 is zero voxel content. So that each
voxel can be described by a single inferred noiseless composite
activity concentration,µ(ω) = α1(ω).µ1 + α2(ω).µ2 + ... +
αn(ω).µn = α(ω)T .µ. Thus for a particular voxel,ω with
intensity g(ω), the inferred intensity value in the absence of
noise isµ(ω).

Bayes theorem can be used to determine the probability
density for a composite noiseless activity concentration value
given a particular noisy intensity value:

p(µ(ω)|g(ω)) =
p(g(ω)|µ(ω)).p(µ(ω))

p(g(ω))
, (1)

wherep(g(ω)) is the overall marginal probability density for
the measured intensity values,g(ω) and is given byp(g(ω)) =
∫

µ(ω) p(g(ω)|µ(ω)).p(µ(ω)).dµ(ω). The prior probability for
the noiseless intensity values,p(µ(ω)) may take a form similar
to that found for raw activity concentrations as described previ-
ously in e.g. [12], [14]. The intensity likelihood,p(g(ω)|µ(ω))
is a description of the range of noisy image intensities thatare
likely to occur for any particular composite noiseless activity
concentration,µ(ω).

µ µNg

Fig. 2. Graphical illustration of the dependencies betweenthe noisy intensity
value,g, the composite noiseless activity concentrationµ and the neighboring
composite noiseless activity concentration,µN .

This formulation is, however, sensitive to the amount of noise
found in the imaging data, especially for imaging data with
a low contrast to noise ratio. Nevertheless this formulation
can be extended to improve estimation accuracy by including
additional information such as the composite noiseless activity
concentration values of the neighboring voxels, describedhere
with µN (ω).

Therefore the posterior density can be extended (dropping
the point specific notation):

p(µ|g, µN ) =
p(g|µ, µN ).p(µ, µN )

p(g, µN )
.

Noting the independence ofg from µN in the numerator due
to the mutual dependence onµ, (see also figure 2):

p(µ|g, µN ) =
p(g|µ).p(µ|µN ).p(µN )

p(g|µN ).p(µN )
.

=
p(g|µ).p(µ|µN )

p(g|µN )
. (2)

This result is particularly convenient as will be seen shortly.
The locally defined prior mixing distribution,p(µ|µN ) en-
capsulates the probabilistic information describing the range
of probable composite activity concentrations,µ given the
neighboring composite activity concentrations,µN .

A. Form of the Localized Mixing Prior

The neighborhood information may be succinctly described
by the mean of the composite activity concentrations,µ(ωj)
that are neighbors to the voxel of interest,ωi:

µN (ωi) =
1

|Nωi
|

∑

ωj∈Nωi

µ(ωj), (3)

where|Nωi
| is the cardinality of the set of neighbors to point

ωi:
Nωi

= {ωj | ‖ωi − ωj‖ < CD}. (4)

i.e.Nωi
is a set of points located within a certain distance,CD,

of ωi.
The squared difference between the composite activity con-

centration for voxelωi and the mean of the neighboring voxels,
ωj results in a Gaussian form of the locally defined prior
mixing distribution (omittingω):

p(µ|µN ) =
1

√

2.π.σ2
N

. exp

(

−
(µ − µN )2

2.σ2
N

)

, (5)

whereσ2
N is a variance measure which determines the amount

of information that is drawn from the neighboring voxels. A
large value of this spatial variance measure results in little



information from being drawn from the neighboring voxels.
The amount of spatial regularization, i.e. the value ofσ2

N is
controlled here by the magnitude of the locally defined image
gradient, in common with [14]. The gradient magnitude is
a well defined measure of change, where gradient kernels,
such as a Sobel gradient kernel incorporate small amounts of
smoothing, thus providing useful estimates of image changein
a noisy environment.

B. Analytic Derivation of the Composite Activity Concentration
Posterior Distribution

The probability density function of the image intensities,
p(g|µ) may also be described by a Gaussian distribution, which,
as will be seen shortly, is a convenient description of the intensi-
ties. However, due to the discrete photon counting action inthe
PET or SPECT image data acquisition process the imaging data
are usually said to be governed by a Poisson random process
which ultimately results in Poisson distributed image data.
However, other non-Poisson type processes are also inherent to
the image acquisition process, including the filtering action of
the point spread function and steps in the image reconstruction
process, which may reduce the validity of a Poisson description
of the imaging data. A Gaussian probabilistic description may
therefore be inaccurate, particularly for low count data, but for
the purposes of this work it is deemed to be a sufficiently
accurate description of the imaging data.

Thus the numerator of equation 2 consists of two Gaussian
distributions: the intensity likelihood

p(g|µ) =
1

√

2.π.σ2
α

. exp

(

−
(g − µ)2

2.σ2
α

)

, (6)

and the locally defined composite activity concentration prior,
p(µ|µN ) given by equation 5. The variance of the intensity
likelihood is given byσ2

α = α2
1.σ

2
1 + α2

2.σ
2
2 + ... + α2

n.σ2
n, due

to the linear combination of then Gaussian distributed noisy
activity concentration intensities present in the imagingdata,
see e.g. [15], [12].

The denominator of equation 2 may also be described by
a combination of these two distributions via a marginalization
operation:

p(g|µN ) =

∫

µ

p(g|µ).p(µ|µN ).dµ. (7)

Thus, the posterior distribution given by equation 2 may be
described by (after canceling the common Gaussian normaliz-
ing factors):

p(µ|g, µN ) =

exp

(

−
1

2

{

(g − µ)2

σ2
α

+
(µ − µN )2

σ2
N

})

/

∫

µ

exp

(

−
1

2

{

(g − µ)2

σ2
α

+
(µ − µN )2

σ2
N

})

.dµ (8)

The common exponential term in the numerator and denomi-
nator may be manipulated

exp

(

−

{

(g − µ)2

2.σ2
α

+
(µ − µN )2

2.σ2
N

})

= exp

(

−

{

σ2
N .(g − µ)2 + σ2

α.(µ − µN )2

2.σ2
α.σ2

N

})

,

multiplying out the bracket terms results in

= exp

(

−
σ2

N .g2 − 2.g.σ2
N .µ+

σ2
N .µ2 + σ2

α.µ2 − 2.σ2
α.µN .µ + σ2

α.µ2
N

2.σ2
α.σ2

N

)

. (9)

Grouping the factors ofµ results in

= exp

(

−
µ2.(σ2

N + σ2
α)

−µ.2.(σ2
α.µN . + g.σ2

N ) + σ2
N .g2 − σ2

α.µ2
N

2.σ2
α.σ2

N

)

(10)

and completing the square

= exp

(

−
(σ2

N + σ2
α)(µ2. − µ.2.µK + µ2

K)

−µ2
K .(σ2

N + σ2
α) + σ2

N .g2 − σ2
α.µ2

N

2.σ2
α.σ2

N

)

; (11)

whereµK = (σ2
α.µN . + g.σ2

N )/(σ2
N + σ2

α) so that:

= exp

(

−
(µ − µK)2

2.σ2
α.σ2

N /(σ2
N + σ2

α)

)

× exp

(

−
−µ2

K .(σ2
N + σ2

α) + σ2
N .g2 − σ2

α.µ2
N

2.σ2
α.σ2

N

)

.(12)

Thus

p(µ|g, µN ) =

exp

(

−
(µ − µK)2

2.σ2
α.σ2

N /(σ2
N + σ2

α)

)

/

∫

µ

exp

(

−
(µ − µK)2

2.σ2
α.σ2

N /(σ2
N + σ2

α)

)

.dµ (13)

=
1

√

2.π.σ2
α.σ2

N
/(σ2

N
+ σ2

α)

× exp

(

−
(µ − µK)2

2.σ2
α.σ2

N
/(σ2

N
+ σ2

α)

)

. (14)

So the posterior density ofµ is Gaussian with mean,µK =
(σ2

α.µN .+ g.σ2
N )/(σ2

N +σ2
α) and varianceσ2

α.σ2
N /(σ2

N +σ2
α).

This result is particularly useful as an analytical optimalpoint
estimate ofµ is now possible due to the familiar properties of
the Gaussian density. The expected value ofµ which is equal
to µK for this Gaussian density minimizes the squared error
loss,(µ − µest)

2. Therefore,

µest= E [µ|g, µN ] =
σ2

α.µN . + g.σ2
N

σ2
N + σ2

α

. (15)



So that an optimal point estimate for the composite activity
concentration,µ, is given by a combination of the mean of
its neighboring values,µN , and the intensity of the voxel in
question,g. The weighting of these values are the variances
of the mixture, σ2

α and the variance in the neighborhood,
σ2
N . If there is a large variance for the neighboring values,

(signifying that the voxel is close to a class boundary) then
more information would be inferred from the voxel’s intensity.
Similarly if there is large mixture variance for a particular
voxel (in relation to the neighborhood variance) then more
information would be inferred from the neighboring voxel
values.

This result is intuitively appealing, simple to implement and
quick to calculate.

C. Activity Inference with Optimal Composite Estimates

The expected composite value in equation 15 provides a route
to inference of the estimated true intensity, but not the more
interesting underlying mixture combinations,α. Nevertheless,
the preceding framework could be used in isolation for a
noise reduction strategy for image data. Therefore a further
stage is required using the same statistical framework to infer
the actual mixture combinations, given the optimal composite
value, (lettingµest= E [µ|g, µN ]):

p(α|µest) =
p(µest|α).p(α)

p(µest)
. (16)

Comparison can be made between equation 16 and equation 2.
Both equations contain a global mixture prior and a likelihood
governed by a Gaussian density, although the parameters for
p(µest|α) have to be calculated in a different manner.

Due to the normal distribution of the posterior of the com-
posite value in equation 14, the optimal composite value is also
normally distributed. Therefore the optimal composite value
estimate is distributed according to

p(µest|α) =
1

√

2.π.σ2
K

. exp

(

−
(µest− µα)2

2.σ2
K

)

, (17)

where it is assumedµα = α
T .µ and from equation 14,

σ2
K =

{
∑

α2
i .σ

2
i

}

.σ2
N

∑

α2
i .σ

2
i + σ2

N

. (18)

The prior mixing distribution,p(α) can be given the same
form as for work found in [12].

D. Implementation

1) Posterior simulation:The activity inference with opti-
mal composite value estimates results in a difficult to realize
posterior distribution (equation 16). Simulation of equation 16
is, however, possible via Markov Chain Monte Carlo where
a Markov Chain of samples is generated with samples in
the Markov Chain converging to samples from a stationary
distribution, in this case equation 16. Markov Chain Monte
Carlo simulation is therefore used here to generate samples

from this posterior distribution. A type of Markov Chain Monte
Carlo approach known as the Independent Metropolis-Hastings
is particularly useful as the prior distribution,p(α) may be
used as the proposal distribution from which proposed random
samples are drawn as possible candidates of the actual posterior
distribution.

A global two class mixture prior probability was found in
[14] to be well modeled by

pGauss(αj,k) = C. exp
(

erf−1 (2.αj,k − 1)
2
)

, (19)

where C is a normalizing constant and the mixing variable
completely specifies the mixing for the two classes,j and k
becauseαj,k = αj = 1 − αk. Equation 19 can not be easily
used as a sampling density directly, therefore an alternative but
similar density is used, known as the Beta density (for two
classes,n = 2) or for n > 2 a Dirichlet density which is the
Beta density generalized forn > 2. This is because the Beta
density for particular parameter values can provide a reasonable
fit to equation 19, as has been previously found by other authors
for mixture distributions in non-medical images [16], [17], [18].
But more importantly, computationally efficient methods exist
that enable sampling from the Beta and Dirichlet densities.Thus
the global mixture prior,p(α) is given by a Dirichlet density
with the form

p(α) =
Γ(λ0)

n
∏

i=1

Γ(λi)

.
n

∏

i=1

αλi−1
i (20)

whereλi ∀ i are parameters of the Dirichlet density, values of
which were selected based on the goodness of fit with equation
19.

2) Iterative classification: Initial values of α(ω) have to
be estimated for allω, therefore an initial step, prior to noise
reduction, is to provide an initial classification ofα(ω). The
initial classification is determined by calculating the expectation
of:

p(α(ω)|g(ω)) =
p(g(ω)|α(ω)).p(α(ω))

p(g(ω))
(21)

for all ω similar to the technique described in [12]. A number
of iterations then follow, iteratively reducing the noise by calcu-
lating µest(ω) using equation 15. After every noise reduction
step updates of the mixture content for each voxel,α(ω) is
required. This is done via simulation of the mixture posterior
distribution, p(α(ω)|µest(ω)), (equation 17) using the Inde-
pendent Metropolis-Hastings algorithm, in conjunction with
the calculation of the expectation of this simulated posterior
distribution.

The noise reduction and activity inference steps are illus-
trated in figure 3.

III. CLASSIFICATION OF SIMULATED PARTIAL VOLUME

DATA

A. Methods

Simulated partial volume data, illustrated in figure 4 consist-
ing of a series of concentric spheroids were generated by the
following:
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Fig. 3. Illustration of steps involved in the noise reduction and classification
(activity inference) process. The iterative process of re-applying the noise
reduction prior to activity inference is undertaken for B iterations or until some
convergence criteria is met, such as very few changes in estimated estimated
activity levels. Dotted line betweenInitial ClassificationandActivity Inference
steps signifies input for initial activity inference stage but not for any further
iterations.

1) Generate high resolution data volume consisting of con-
centric spheroids with alternating composite value inten-
sities;

2) Generate Gaussian distributed noise samples;
3) Add noise samples to voxels in high resolution data

volume;
4) Convolve noisy high resolution data volume with simu-

lated point spread function - simulating partial volume
voxels;

5) Sub-sample high resolution data volume to produce a low
resolution data volume with voxel dimensions equal to
the full-width at half-maximum of the simulated point
spread function.

The result of these steps is a data volume consisting of
voxels that can be considered to contain pure and partial
volume voxels, where voxels located on the boundary of each
concentric spheroid will be partial volume voxels. An exemplar
data slice from a simulated data volume is illustrated in figure
4.

A series of these simulations were performed with different
noise parameters to simulate contrast to noise ratios of 2, 3, 4,
5, 6, 7, 8, 9, 10 and 20. These are plausible contrast to noise
ratios that may be found in real imaging data.

The principal advantage of simulating the partial volume
effect in this way is due to the availability ofground truth
that can be generated by omitting the noise addition step and
any other acquisition and or reconstruction related artifact.
The result of which is a data volume with voxels that can
be considered to be representative of the composite noiseless
activity concentration parameter,µ, described by the prior
probability density of equation 5. Similarly, the noisy data
volume is described by the intensity likelihood of equation6.

(a) Ground Truth Slice (b) Noisy Slice

(c) Cropped Ground Truth Slice (d) Cropped Noisy Slice

Fig. 4. Exemplar simulated partial volume data slices and cropped slices
from a ground truth data volume (a) and (c) and from the corresponding
noisy data volume (b) and (d) respectively. (c) and (d) illustrate the effect
of the convolution of the simulated Gaussian point spread function resulting in
simulated partial volume voxels. Notice the difficulty in which even a human
observer might have in identifying partial volume voxels inthe presence of
noise in (d) when compared with (c). The contrast to noise ratio for this
simulated partial volume data is 6.

The simulated partial volume data was then classified with
the noise reduction step, as described in this work and also
without the noise reduction step, similar to techniques such
as [12], [17], [19]. The results of these classifications were
then compared with the ground truth data using a root mean
square error measure between the output of the classifiers and
the ground truth data:

ERMS =
1

‖µ1 − µ2‖

√

1

N

∑

∀ω

(µest(ω) − µα(ω))
2
, (22)

whereN is the number of voxels in the imaging data andµ1

and µ2 are the ground truth mean parameters of the imaging
data, knowna priori from the partial volume data simulation
process.

B. Results

The exceptional benefit of including the noise reduction step
in the classification can be seen in the result of classifyingthe
lowest contrast simulated partial volume data in figure 5.

The classification performance difference between the clas-
sifier that utilized noise reduction and the classifier without
noise reduction becomes less prominent for higher contrastto



(a) (b)

(c) (d)

Fig. 5. Illustrative enlarged exemplar image slices for (a)ideal classified
output i.e. ground truth; (b)CNR=2 unclassified noisy simulated partial volume
data (means=980,1020 and standard deviations=20); (c)partial volume estimates
classified without noise reduction; and (d) partial volume estimates classified
with noise reduction. For display purposes window center=1000 and width=40
used in each image.

noise ratios, as illustrated with the voxel root mean squareerror
classification results in figure 6.

These results help to illustrate that controlled noise reduction
prior to classification can help to improve the classification
rate. This simulated partial volume data, as with any type
of simulation are simplifications of actual imaging problems.
Therefore the noise reduction is now applied to real PET
imaging data.

IV. CLASSIFICATION OF PET IMAGING DATA

A. Methods

A Phillips Gemini PET/CT scanner was used to scan an
imaging phantom consisting of a series of varied diameter
inserts with internal diameters of 4.09cm, 2.99cm, 2.02cm,
1.00cm and 0.465cm. The phantom was filled with 220MBq
F-18 and the data acquired over a 15 minute acquisition time.
The Row-Action Maximum Likelihood iterative reconstruction
Algorithm [20], was used to reconstruct the imaging data in
conjunction with CT based attenuation correction, together with
corrections for randoms and scatter.

One iteration of the noise reduction and activity inference
classification scheme was applied.
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Fig. 6. Voxel root mean square error classification results for the noise reduced
and non-noise reduced classifier outputs.

B. Results

The results of applying one iteration of the noise reduction
scheme can be seen with an exemplar image slice from the
noisy PET imaging data compared with an exemplar slice from
the noise reduced PET imaging data in figure 7. The warm
backgrounds in this figure (7) clearly illustrates a reduction in
the noise. Similarly, the histograms of the data sets illustrated
in figure 7 can be seen in figure 8. The warm background
and hot inserts have the characteristic peaks, but the peaksare
accentuated for the noise reduced data histogram. This helps to
illustrate a reduction in the variability of image intensities for
these image regions. The partial volume components between
the peaks are still present, but the quantity of a particular
activity concentration for any voxel is more easily identified
due to the reduction in the amount of noise.

V. D ISCUSSION

A noise reduction technique that is consistent with an un-
derlying model of the partial volume effect has been described,
implemented and tested on simulated and real PET imaging
data. The work is a development of the work described in [11],
[12], [13] and the results of classifying the simulated partial
volume data in conjunction with noise reduction produces
improved classification performance of the partial volume data.
The subsequent partial volume classification is, however, depen-
dent on simulation rather than on an analytic result (in contrast
to the convenient analytic noise reduction step). Simulation is
computationally expensive, however, if subsets of the imaging
data are used (such as with region of interest analysis), then
this computational expense will be small.

The benefits of noise reduction are most apparent for low
contrast to noise ratio imaging data (contrast to noise ratio <
10). This is a logical conclusion as one might expect a noise
reduction step to be most effective for data with greater amounts
of noise.

Further work might include investigation of the necessity for
the iterative nature of the noise reduction and partial volume



(a) Noisy PET Data

(b) De-noised PET Data

Fig. 7. Exemplar image slices from (a) PET phantom imaging data and
(b) noise reduced PET phantom imaging data. The noise reduction appears to
reduce the heterogeneity of the imaging data.

estimation steps. This iterative schema increases the compu-
tation time, especially when one considers that a simulation
has to be undertaken for every voxel in every iteration. Thisis
necessary as, particularly for low contrast to noise ratio data,
the initial partial volume estimates, without noise reduction, are
not accurate; see for example the non-noise reduction results
presented in figure 6.

Other noise reduction techniques may also be of interest,
such as simple linear filtering or perhaps rank order filters
(see e.g. [21] and the references therein). These generic image
processing techniques, however, may alter the image statis-
tics in either a non-optimal or non-predictable manner. The
application of the noise reduction step, (equation 15), is in
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Fig. 8. Histograms for image data illustrated in figure 7. Theeffect of the
noise reduction process appears to accentuate the peaks of the pure components
whilst retaining the overall characteristics of the imaging data.

effect a type of filter, taking a proportion of the mean of the
neighboring composite noiseless values and the actual voxel
intensity value, in a controlled and predictable manner. This
allows for the iterative nature of the noise reduction and partial
volume estimation steps to remain theoretically consistent and
to converge to a stable result after a number of iterations.

The formulation described in this work is similar to a
continuous Markov random field for partial volume data. Some
aspects of the formulations described here have also been
used for partial volume data, albeit for magnetic resonance
imaging data [13], [22], [23]. These formulations incorporate a
Markov random field, conditioned on the underlying mixing
components, described here by the mixture vector,α. This
can be compared to the approach taken here which estimates
optimal values of the underlying composite noiseless intensi-
ties, µ which is a function ofα. This is considered here as a
noise reduction step, which takes the mean of the neighboring
composite values and it can be shown to be equivalent to
a homogeneous Markov random field, where the action of
p(µ|µN ) performs an adaptive spatial regularizing action in
combination with the intensity likelihood,p(g|µ) (see equation
2). The principal advantage of the work described here is
that the posterior distribution,p(µ|g, µN ) is fully available
along with the expectation. The availability of the posterior
distribution therefore provides a computationally efficient route
to obtaining the optimal composite value, in contrast to alter-
native approaches that have to perform simulation, [13], [23]
or arbitrary function minimization, [22].

VI. CONCLUSIONS

The work described here has provided a noise reduction
scheme, specifically created to be consistent with an underlying
model of the partial volume effect that does not require any
high resolution imaging data. The solution to this noise reduc-
tion scheme is available analytically. The result of iteratively
applying the noise reduction step in combination with a partial



volume estimation step is improved classification of simulated
partial volume imaging data in comparison to partial volume
estimation in the absence of the noise reduction step. The noise
reduction step has also been seen to reduce the variability of
the image intensities for real PET imaging data.
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