View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CiteSeerX

A Combined Noise Reduction and Partial Volume
Estimation Method for Image Quantitation

John ChivertonStudent Member, IEEEevin Wells, and Mike Partridge

Abstract— The partial volume effect is a corrupting artifact
that affects nuclear imaging data such as PET and SPECT data,
manifest as a blurring action on the resultant image data. Tl
artifact is a result of the image acquisition process, wherezoxels
in the PET or SPECT images are typically composed of a mixture
of activity concentrations. This prevents accurate localiation and
guantitation of the target region activity. A further well- known
image artifact found in most types of signal and image data is
additive noise which is caused by limited photon count stastics
for PET or SPECT imaging data. This work presents a novel
methodology for statistically combining image noise redution
and partial volume estimation with particular application to low
contrast to noise ratio image data, e.g. image data with podiarget
localization.

Each possible partial volume mixture is modeled as a Gaussia Fig. 1. lllustration of the effect of the image acquisitionogess and the
distribution and neighborhood statistical information is also in- esulting noise reduction on the acquired noisy imaging.dat
corporated in the form of the voxel neighborhood intensity nean,
which has previously been shown to also be Gaussian distriled.

This leads to an analytical solution of the optimal expectednean Thi K t | thodol f bini
(thus minimizing the mean square loss), providing an equatin IS work presents a novel methodology tor combining

that can iteratively and adaptively reduce the noise in eacimage image noise reduction and partial volume estimation with
voxel. Once the noise is reduced a further step that estimagethe particular application to low contrast to noise ratio imalgea.
partial volume mixtures using an adaptive Markov Chain Monte |n contrast to other approaches, (e.g. [1], [2], [3], [4]). [B].
Carlo method is found to improve the partial volume estimats 71y 5 assumptions are made about the spatial distributfo
in comparison to existing partial volume estimation technjues . . R

the tracer or correspondence with prior anatomical infdroma

without a noise reduction step.
Often partial volume correction methods rely on a high-
resolution anatomical data set which is segmented int@nsgi
|. INTRODUCTION that correspond to assumed contiguous regions of fundtiona
activity in the functional imaging modality. The segmented
HE partial volume effect is a corrupting artifact that atfec anatomical data sets are then convolved with a point spread
nuclear imaging data such as PET and SPECT. Thigction of the functional modality, the result of which isset
artifact is a result of the image acquisition process, whergf mixing templates. These mixing templates in combination
the relatively large voxels in the PET or SPECT images aigith the observed functional image intensities can be used t
typically composed of a mixture of activity concentrationsestimate the amount of physiological activity. Howeves ths-
The partial volume effect manifests as a blurring action osumes a correspondence with the prior anatomical infoonati
the resultant image data. This prevents accurate loc@iizatwhich may not be valid and or good quality (segmented) high
and quantitation of the activity information being imagéd. resolution anatomical imaging data may not be available.

further well-known image artifact found in most types oft&)  other techniques have included the use of extra-vascutar de

and image data is additive noise. The accurate quantitatigf, images for partial volume correction in cardiac imagj8],

of activity is therefore affected by the partial volume effe 19] An extra-vascular density image is created by subimgct

andimage noise. The result of the acquisition process and t&yood pool image from a transmission image. The result of

objective of the methodology described in this paper, ngmelhich quantifies tissue activity rather than the activitjsimg

noise reduction is illustrated in figure 1. from the tissueand vascular components. The methodology
presented in [8], [9] is interesting, particularly becawusehe
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ysis of the functional image intensities to determine redat @ , ( ) . @
quantities of activity concentrations. However, as withy an
methodology, the relative performance of the techniques ar o , ) o .
sensitive to the amount of noise in the imaging data, whete I i, {0 e noieeiess acivy concentatioand he neighboring
contrast to noise ratio imaging data prevents accurat®icti composite noiseless activity concentratiqny .
concentration determination.

Often data samples may have what is often known as
context For spatially located data samples this context is space This formulation is, however, sensitive to the amount ofeoi
Intuitively, if a data sample in a particular location issdified found in the imaging data, especially for imaging data with
with a particular class label then any data samples locatad na low contrast to noise ratio. Nevertheless this formutatio
to that data sample are likely to have a similar class ladsis T can be extended to improve estimation accuracy by including
prior knowledge is often useful in improving the classifioat additional information such as the composite noiselessityct
performance of otherwise ambiguous data samples in imagig@ncentration values of the neighboring voxels, descrier
data with low contrast to noise ratios. with pa (w).

Spatially derived contextual information is one possible Therefore the posterior density can be extended (dropping
source of information that can improve classification perfothe point specific notation):
mance. This work demonstrate_s that the con_textual mfocmat gl )P i)
can be correctly modeled and incorporated into partial vedu p(ulg, ) =
classification and builds on the work presented in [11], [12] P(g, )
[13]. An analytical approximation for the expected partiadNoting the independence gf from s, in the numerator due
volume content of a voxel is derived providing a result thd® the mutual dependence gn (see also figure 2):

is intuitive and simple to calculate. (g, ) = plglr)-p(plpn ) -p(pn)
Il. METHODOLOGY / plglpn)-pluy)
A PET or SPECT image acquisition process produces :W. 2)
imaging data that consists of finite sized voxe{s;} with p(glpn)

noise affected intensitieg,(w). The imaging data can also be This result is particularly convenient as will be seen slyort
considered to consist of individual activity concentrations The locally defined prior mixing distributionp(z|pa-) en-
represented by a mean activity concentration vector,= capsulates the probabilistic information describing thege
{m1 p2 ... pn} for the entire imaging data. Each voxel carf probable composite activity concentrations, given the
then be considered to be composed of a linear combinatiggighboring composite activity concentratiops,.

of each of these mean activity concentrations, the proporti
of which is controlled by elements from mixing vector,
a(w) = {o (W) az(w) ... a,(w)} where each mixing element i _ ) _ .
is limited to valuesy, (w) € [0, 1] Vi wherel is representative The neighborhood |nforma.t|on may be succmctly described
of total voxel content and is zero voxel content. So that eactPY the mean of the composite activity concentrationgy ;)
voxel can be described by a single inferred noiseless coitepodhat are neighbors to the voxel of interes;:

A. Form of the Localized Mixing Prior

activity concentrationy(w) = a1 (w).p1 + ag(w).p2 + ... + 1

(W) ptn = a(w)”.u. Thus for a particular voxeko with p(wi) = e | > nlws), )

intensity g(w), the inferred intensity value in the absence of w5 €N,

noise ispu(w). where|N,,,| is the cardinality of the set of neighbors to point
Bayes theorem can be used to determine the probability:

density for a composite noiseless activity concentratialue No, = {wj| |w; —wj|| <Cp}. (4)

iven a particular noisy intensity value: . . . i S
9 P y y i.e. N, is a set of points located within a certain distangs,

w w)). w
p(g(w)) The squared difference between the composite activity con-
where p(g(w)) is the overall marginal probability density forcentration for voxelv; and the mean of the neighboring voxels,
the measured intensity valuegw) and is given byp(g(w)) = w; results in a Gaussian form of the locally defined prior

fﬂ(w)p(g(w)|/L(w)).p(u(w)).du(w). The prior probability for mixing distribution (omittingw):
the noiseless intensity valuegy(w)) may take a form similar 1 _ 2

& ; ST _ (1= p)
to that found for raw activity concentrations as describelp pulpn) = N bl G v a 5)
ously in e.g. [12], [14]. The intensity likelihoog(g(w)|u(w)) TN N
is a description of the range of noisy image intensities #tat whereo?; is a variance measure which determines the amount
likely to occur for any particular composite noiselessatti of information that is drawn from the neighboring voxels. A
concentrationy(w). large value of this spatial variance measure results ite litt



information from being drawn from the neighboring voxelsThe common exponential term in the numerator and denomi-
The amount of spatial regularization, i.e. the valueogf is nator may be manipulated
controlled here by the magnitude of the locally defined image 2 2

exp (7{@—#) (1 — p) })

gradient, in common with [14]. The gradient magnitude is
a well defined measure of change, where gradient kernels,
such as a Sobel gradient kernel incorporate small amounts of o [ o (g — 1) +02.(u— pn)?
smoothing, thus providing useful estimates of image chamge = xp ’
a noisy environment.

2.02 2.0%

2 ;2
2.05.0%

multiplying out the bracket terms results in

B. Analytic Derivation of the Composite Activity Concetitra

2 g% —2.g.0%.u+
= exp <70Ng g-OnN-H
Posterior Distribution

o3r.u? + o2 2.03./L/\/.u+03.uj2\/> ©)
The probability density function of the image intensities, 2.02.0%, )
p(g]w) may also be described by a Gaussian distribution, whi
as will be seen shortly, is a convenient description of therisi-
ties. However, due to the discrete photon counting acticthén p?. (0% +02)
PET or SPECT image data acquisition process the imaging data P (_

are usually said to be governed by a Poisson random process
which ultimately results in Poisson distributed image data
However, other non-Poisson type processes are also irttteren
the image acquisition process, including the filtering@etof and completing the square

C8’rouping the factors of: results in

—p.2.(0% pin -+ 9.03¢) + 0Rrg7 — 05 i (10)
2.02.0%

the point spread function and steps in the image recongiruct (0% + o) (2. — p2.ux + 1)
process, which may reduce the validity of a Poisson desoript = exXp (—
of the imaging data. A Gaussian probabilistic descripticaiym 9 1 9 9 9 9 9 9
therefore be inaccurate, particularly for low count datat, for oy T %);r C;N.g - UQ.MN) ; (11)
the purposes of this work it is deemed to be a sufficiently 2.05-0)
accurate description of the imaging data. whereux = (02.pn. + g.0%) /(03 + 02) so that:
Thus the numerator of equation 2 consists of two Gaussian 9
distributions: the intensity likelihood = exp (7 5 (“2_ M;) 3 )
1 (g — n)? Q.UQ.JAQ/((U/E/ _:0(12)) 2 2 2 2
- — U (O o)+ oN.g° — 0.
plylp) = \/Ti.ag.exp <7w) ) (6) X exp <f Fi-\9n 2(.1031.0%/\[ J e 'LLN) (12)
and the locally defined composite activity concentratioiorpr ~ Thus
p(p|uar) given by equation 5. The variance of the intensity pllgs pon) =
likelihood is given byo2 = a2.0? + a2.0% + ... + a2 .02, due ’ )
to the linear combination of the Gaussian distributed noisy exp (_ _ (142* W;) _ )
activity concentration intensities present in the imagiaia, 2.0%.05 /(05 +023)
see e.g. [15], [12]. //exp (_ (1= px)? ) A
The denominator of equation 2 may also be described by 2.02.0% /(0% +02)) "
a combination of these two distributions via a marginaiaat "
operation: 1
2 ;2 2 2
p(olin) = [ Dol plalin) ™ Vamaray /i + i)
u X exp (f e = <) > . (14)
2.02.0%; /(0% + 02)

Thus, the posterior distribution given by equation 2 may b§0 the posterior density of is Gaussian with meanyx —

%nglcbti(rjs?y (after canceling the common Gaussian normaldéi-u/\/-+g.0j2\/)/(0j2\/+0§) and variancerg.a/?v/(aﬁ/+a§).

This result is particularly useful as an analytical optirpaint
estimate ofu is now possible due to the familiar properties of

p(ulg, ) :1 9 9 the Gaussian density. The expected valug: afhich is equal
exp (__ {(g _2“) + (e _éW) }) to ux for this Gaussian density minimizes the squared error
2 Ta , T , loss, (11 — pest)?. Therefore,
Lflg—mw?®  (b—pw)
//exp (—— { + .dp (8) o2.un. + g.02
2 o2 ox pest= E[ulg, pn] = (1272,/\[ (15)
Iz on toa



So that an optimal point estimate for the composite activifyom this posterior distribution. A type of Markov Chain Mien
concentrationu, is given by a combination of the mean ofCarlo approach known as the Independent Metropolis-Hgstin
its neighboring valuesy -, and the intensity of the voxel inis particularly useful as the prior distributiop(a) may be
question,g. The weighting of these values are the variancesed as the proposal distribution from which proposed remdo
of the mixture, o2 and the variance in the neighborhoodsamples are drawn as possible candidates of the actuatiposte
o%.. If there is a large variance for the neighboring valueslistribution.

(signifying that the voxel is close to a class boundary) then A global two class mixture prior probability was found in
more information would be inferred from the voxel's intemsi [14] to be well modeled by

Similarly if there is large mixture variance for a particula 1 2

voxel (i¥1 relation to thg neighborhood variance) t?len more PGauss(atjk) = C.exp (erf (2.ajk —1) ), (29)
information would be inferred from the neighboring voxelhere C' is a normalizing constant and the mixing variable

values. completely specifies the mixing for the two classgsand &
This result is intuitively appealing, simple to implementla becausev;;, = «; = 1 — a;. Equation 19 can not be easily
quick to calculate. used as a sampling density directly, therefore an alteraiit

similar density is used, known as the Beta density (for two

C. Activity Inference with Optimal Composite Estimates ~ ¢/assesy = 2) or for n > 2 a Dirichlet density which is the
Beta density generalized for > 2. This is because the Beta

The expected composite value in equation 15 provides a roﬁréansity for particular parameter values can provide a reaisie

FO mfer_ence of the_ estlmated true "_“en_s'ty' but not thearn0ﬁt to equation 19, as has been previously found by other asitho
interesting underlying mixture combinations, Nevertheless

h ding f K 4 b d in isolation f ' for mixture distributions in non-medical images [16], [1[18].
the preceding framework cou e used in isolation for But more importantly, computationally efficient methodssex

noise _reductlpndstra_tegyhfor Image d?‘t‘?‘- 'll'?erefore Ef;;]r_thﬁ:lat enable sampling from the Beta and Dirichlet densifiésis
stage Is required using t_ € same s_tat|st|ca ramewor Nthe global mixture priorp(c) is given by a Dirichlet density
the actual mixture combinations, given the optimal COMBOSI ith the form

value, (lettinguest= E [u|g, un]):

T'Ao) 17 a—
pluesia).p(a) 16 ple) = —=—[[a}"" (20)

p(uest 7;1;[1 T =

Comparison can be made between equation 16 and equatiowRere)\; V i are parameters of the Dirichlet density, values of

Both equations contain a global mixture prior and a liketitlo which were selected based on the goodness of fit with equation

governed by a Gaussian density, although the parameters fgr

p(pesfe) have to be calculated in a different manner. 2) lterative classification:Initial values of a(w) have to
Due to the normal distribution of the posterior of the combe estimated for all, therefore an initial step, prior to noise

posite value in equation 14, the optimal composite valuésis areduction, is to provide an initial classification ef(w). The

normally distributed. Therefore the optimal compositeueal initial classification is determined by calculating the egfation

plefuesy =

estimate is distributed according to of: (9(w)]cx(w)) plex(@))
plg(w)|a(w)).pla(w
1 — fia)? pla(w)lg(w)) = (21)
plpesfer) = ———.exp (—(“952172’”‘“)) . an pg(w))
2.m.0% Ik for all w similar to the technique described in [12]. A number
where it is assumegt, = a”.p and from equation 14, of iterations then follow, iteratively reducing the noisgdalcu-
' lating pesfw) using equation 15. After every noise reduction
2 2 2 . .
o2 = {Xai.of} IN (18) step updates of the mixture content for each voxelw) is
K7 S a2o?+ 03 required. This is done via simulation of the mixture posteri

distribution, p(a(w)|resf{w)), (equation 17) using the Inde-

pendent Metropolis-Hastings algorithm, in conjunctionthwi

the calculation of the expectation of this simulated padster

distribution.

D. Implementation The noise reduction and activity inference steps are illus-
1) Posterior simulation: The activity inference with opti- trated in figure 3.

mal composite value estimates results in a difficult to el

posterior distribution (equation 16). Simulation of edoat16

is, however, possible via Markov Chain Monte Carlo where

a Markov Chain of samples is generated with samples fh Methods

the Markov Chain converging to samples from a stationary Simulated partial volume data, illustrated in figure 4 cetisi

distribution, in this case equation 16. Markov Chain Montig of a series of concentric spheroids were generated by the

Carlo simulation is therefore used here to generate sampletowing:

The prior mixing distribution,p(a) can be given the same
form as for work found in [12].

Il1. CLASSIFICATION OF SIMULATED PARTIAL VOLUME
DATA
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Fig. 3. lllustration of steps involved in the noise reduatiand classification
(activity inference) process. The iterative process ofipplying the noise
reduction prior to activity inference is undertaken for Brétions or until some
convergence criteria is met, such as very few changes imatd estimated
activity levels. Dotted line betweenitial Classificationand Activity Inference
steps signifies input for initial activity inference staget mot for any further
iterations.
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1) Generate high resolution data volume consisting of con-
centric spheroids with alternating composite value inteffig. 4.  Exemplar simulated partial volume data slices arapped slices

sities: from a ground truth data volume (a) and (c) and from the cpwading

2) G ’ G . distributed . les: noisy data vol_ume (b) an_d (d) respectiv_ely. (c_) and (d) itate the _effe_ct
) Generate Gaussian distributed noise samples; of the convolution of the simulated Gaussian point spreagtfan resulting in
3) Add noise samples to voxels in high resolution datamulated partial volume voxels. Notice the difficulty in ish even a human
volume: observer might have in identifying partial volume voxelsthe presence of

. . . . . noise in (d) when compared with (c). The contrast to noisé rédr this
4) Convolve noisy high resolution data volume with SimUsimylated partial volume data is 6.

lated point spread function - simulating partial volume
voxels;

5) Sub-sample high resolution data volume to produce a lowThe simulated partial volume data was then classified with
resolution data volume with voxel dimensions equal tthe noise reduction step, as described in this work and also
the full-width at half-maximum of the simulated pointwithout the noise reduction step, similar to techniqueshsuc
spread function. as [12], [17], [19]. The results of these classifications ever

The result of these steps is a data volume consisting en compared with the ground truth data using a root mean

voxels that can be considered to contain pure and partfgluare error measure between the output of the classifiers an
volume voxels, where voxels located on the boundary of ealfte ground truth data:
concentric spheroid will be partial volume voxels. An exdanp 1 1
data slice from a simulated data volume is illustrated infigu  Egps = m\/ﬁ Z (pesfw) — ua(w)){ (22)
4, Vw

A series of these simulations were performed with differefihere v is the number of voxels in the imaging data and
noise parameters to simulate contrast to noise ratios of 2, 3 5 112 are the ground truth mean parameters of the imaging

5,6,7,8,9, 10 and 20. These are plausible contrast to NO}&, knowna priori from the partial volume data simulation
ratios that may be found in real imaging data. process.

The principal advantage of simulating the partial volume
effect in this way is due to the availability ajround truth
that can be generated by omitting the noise addition step dhd Results
any other acquisition and or reconstruction related artifa The exceptional benefit of including the noise reductiop ste
The result of which is a data volume with voxels that caim the classification can be seen in the result of classifyireg
be considered to be representative of the composite nesell®west contrast simulated partial volume data in figure 5.
activity concentration parametey;, described by the prior The classification performance difference between the clas
probability density of equation 5. Similarly, the noisy datsifier that utilized noise reduction and the classifier witho
volume is described by the intensity likelihood of equatén noise reduction becomes less prominent for higher conteast
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Fig. 6. Voxel root mean square error classification reswltgtfe noise reduced
and non-noise reduced classifier outputs.

B. Results

The results of applying one iteration of the noise reduction
scheme can be seen with an exemplar image slice from the
noisy PET imaging data compared with an exemplar slice from

© d) the noise reduced PET imaging data in figure 7. The warm
backgrounds in this figure (7) clearly illustrates a reductin
Fig. 5. lllustrative enlarged exemplar image slices for iggal classified the noise. Similarly, the histograms of the data sets st
output i.e. ground truth; (b)CNR=2 unclassified noisy siated partial volume . fi 7 b ' in fi 8. Th back d
data (means=980,1020 and standard deviations=20); {ejpasiume estimates n 'gure_ can be seen In 'gure_ . € warm backgroun
classified without noise reduction; and (d) partial volunstireates classified and hot inserts have the characteristic peaks, but the raks
with noise reduction. For display purposes window centef@land width=40 gccentuated for the noise reduced data histogram. This help
used in each image. . . . L . . .
illustrate a reduction in the variability of image intensit for
these image regions. The partial volume components between
the peaks are still present, but the quantity of a particular
activity concentration for any voxel is more easily ideetifi
due to the reduction in the amount of noise.

noise ratios, as illustrated with the voxel root mean sqearer
classification results in figure 6.

These results help to illustrate that controlled noise ctida
prior to classification can help to improve the classificatio V. DISCUSSION
rate. This simulated partial volume data, as with any type
of simulation are simplifications of actual imaging probkem
Therefore the noise reduction is now applied to real P
imaging data.

A noise reduction technique that is consistent with an un-
rlying model of the partial volume effect has been desctib
implemented and tested on simulated and real PET imaging
data. The work is a development of the work described in [11],
[12], [13] and the results of classifying the simulated f@art
volume data in conjunction with noise reduction produces
improved classification performance of the partial voluragad
A. Methods The subsequent partial volume classification is, howeegred-
dent on simulation rather than on an analytic result (in @Esit

A Phillips Gemini PET/CT scanner was used to scan ap the convenient analytic noise reduction step). Simoitats
imaging phantom consisting of a series of varied diameteemputationally expensive, however, if subsets of the imgg
inserts with internal diameters of 4.09cm, 2.99cm, 2.02cidata are used (such as with region of interest analysisj the
1.00cm and 0.465cm. The phantom was filled with 220MBgis computational expense will be small.
F-18 and the data acquired over a 15 minute acquisition time.The benefits of noise reduction are most apparent for low
The Row-Action Maximum Likelihood iterative reconstrumti  contrast to noise ratio imaging data (contrast to noise rati
Algorithm [20], was used to reconstruct the imaging data ing). This is a logical conclusion as one might expect a noise
conjunction with CT based attenuation correction, togetith  reduction step to be most effective for data with greaterams
corrections for randoms and scatter. of noise.

One iteration of the noise reduction and activity inference Further work might include investigation of the necessiy f
classification scheme was applied. the iterative nature of the noise reduction and partial rwu

IV. CLASSIFICATION OF PET IMAGING DATA
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Fig. 8. Histograms for image data illustrated in figure 7. Eifect of the
noise reduction process appears to accentuate the pedies mfite components
whilst retaining the overall characteristics of the imagufata.

(a) Noisy PET Data

effect a type of filter, taking a proportion of the mean of the
neighboring composite noiseless values and the actuall voxe
intensity value, in a controlled and predictable manneisTh
allows for the iterative nature of the noise reduction andigla
volume estimation steps to remain theoretically consisae
to converge to a stable result after a number of iterations.
The formulation described in this work is similar to a
continuous Markov random field for partial volume data. Some
aspects of the formulations described here have also been
used for partial volume data, albeit for magnetic resonance
imaging data [13], [22], [23]. These formulations incorpta a
Markov random field, conditioned on the underlying mixing
components, described here by the mixture vectar,This
can be compared to the approach taken here which estimates
optimal values of the underlying composite noiseless Biten
ties, u which is a function ofa.. This is considered here as a
noise reduction step, which takes the mean of the neighgporin
(b) De-noised PET Data composite values and it can be shown to be equivalent to
. ' . o a homogeneous Markov random field, where the action of
5 v it AT s ot The oo s o V(i) performs an adaptive spatial regularizing action in
reduce the heterogeneity of the imaging data. combination with the intensity likelihoogh(g|) (see equation
2). The principal advantage of the work described here is
that the posterior distributionp(u|g, uas) is fully available
long with the expectation. The availability of the posieri
istribution therefore provides a computationally effitieoute
to obtaining the optimal composite value, in contrast teralt
native approaches that have to perform simulation, [133] [2
or arbitrary function minimization, [22].

estimation steps. This iterative schema increases the LmomB
tation time, especially when one considers that a simulati
has to be undertaken for every voxel in every iteration. This
necessary as, particularly for low contrast to noise rattad
the initial partial volume estimates, without noise reduct are
not accurate; see for example the non-noise reductiontsesul
presented in figure 6. VI. CONCLUSIONS

Other noise reduction techniques may also be of interest,The work described here has provided a noise reduction
such as simple linear filtering or perhaps rank order filtescheme, specifically created to be consistent with an uyidgrl
(see e.g. [21] and the references therein). These geneaigemmodel of the partial volume effect that does not require any
processing techniques, however, may alter the image -statiggh resolution imaging data. The solution to this noiseured
tics in either a non-optimal or non-predictable manner. TH®n scheme is available analytically. The result of ity
application of the noise reduction step, (equation 15),nis applying the noise reduction step in combination with aiphrt



volume estimation step is improved classification of sirteda [8]
partial volume imaging data in comparison to partial volume
estimation in the absence of the noise reduction step. Tise no
reduction step has also been seen to reduce the variability ]
the image intensities for real PET imaging data.

[10]
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