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The Dirichlet problem for the time-fractional heat conduction equation in a half-line domain is studied with the boundary value
of temperature varying harmonically in time. The Caputo fractional derivative is employed. The Laplace transform with respect
to time and the sin-Fourier transform with respect to the spatial coordinate are used. Different formulations of the considered
problem for the classical heat conduction equation and for the wave equation describing ballistic heat conduction are discussed.

1. Introduction

In the paper [1] and later on in the book [2] Nowacki studied
the classical parabolic heat conduction equation with a heat
source term varying harmonically as a function of time

𝜕𝑇 (𝑥, 𝑡)
𝜕𝑡 = 𝑎𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑥2 + 𝑞0𝛿 (𝑥) 𝑒𝑖𝜔𝑡 (1)

in the domain −∞ < 𝑥 < ∞. Here 𝑎 > 0 is the thermal
diffusivity coefficient, 𝛿(𝑥) is the Dirac delta function, and𝜔 > 0 denotes the frequency.

Nowacki’s solution of (1) is based on the assumption that
temperature can be expressed as a product of the auxiliary
function 𝑈(𝑥) and the time harmonic term

𝑇 (𝑥, 𝑡) = 𝑈 (𝑥) 𝑒𝑖𝜔𝑡. (2)

In this case, there are no initial and boundary conditions
(excepting the zero condition at 𝑥 → ±∞), and the problem
is reduced to solving the corresponding equation for the
auxiliary function 𝑈(𝑥).The final result reads

𝑇 (𝑥, 𝑡) = 𝑞0
2𝑎√𝑖𝜔/𝑎𝑒

−|𝑥|√𝑖𝜔/𝑎+𝑖𝜔𝑡. (3)

The square root of the imaginary unit is defined as√𝑖 = 𝑒𝑖𝜋/4.

If the heat conduction equation

𝜕𝑇 (𝑥, 𝑡)
𝜕𝑡 = 𝑎𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑥2 (4)

is considered in a half-line domain 0 < 𝑥 < ∞, then
the boundary condition at 𝑥 = 0 should be imposed. For
example, we can assume the Dirichlet boundary condition
varying harmonically in time:

𝑇 (𝑥, 𝑡) = 𝑇0𝑒𝑖𝜔𝑡 𝑥 = 0. (5)

Similar analysis can be also carried out in the case of
the boundary value of heat flux varying harmonically in
time (the physical Neumann boundary condition). Boundary
conditions varying harmonically in time describe various
situations, in particular, thermal processing ofmaterials using
pulsed lasers or collection of solar energy [3].

Under Nowacki’s assumption (2), there is no initial
condition, and for the auxiliary function 𝑈(𝑥) we obtain

𝑖𝜔𝑈 (𝑥) = 𝑎𝑑2𝑈 (𝑥)
𝑑𝑥2 , 0 < 𝑥 < ∞, (6)

𝑈 (𝑥) = 𝑇0 𝑥 = 0, (7)

lim
𝑥→∞

𝑈 (𝑥) = 0. (8)

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 8605056, 7 pages
http://dx.doi.org/10.1155/2016/8605056
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To compare with the subsequent results it is worthwhile to
solve (6) under boundary conditions (7) and (8) using the
sin-Fourier transform with respect to the spatial coordinate𝑥. The solution has a form

𝑈 (𝑥) = 𝑇0𝑒−𝑥√𝑖𝜔/𝑎. (9)

Hence,

𝑇 (𝑥, 𝑡) = 𝑇0𝑒−𝑥√𝑖𝜔/𝑎+𝑖𝜔𝑡. (10)

If the surface temperature is described by the dependence

𝑇 (𝑥, 𝑡) = 𝑇0 sin (𝜔𝑡) 𝑥 = 0, (11)

then the solution becomes [3]

𝑇 (𝑥, 𝑡) = 𝑇0 exp(−𝑥√ 𝜔
2𝑎) sin(𝜔𝑡 − 𝑥√ 𝜔

2𝑎) . (12)

Many experimental and theoretical investigations testify
that in media with complex internal structure the standard
heat conduction equation is no longer sufficiently accurate.
This results in formulation of nonclassical theories, in which
the parabolic heat conduction equation is replaced by more
general one (see [4–12] and the references therein).

For example, Green and Naghdi [7] proposed the theory
of thermoelasticity without energy dissipation based on the
wave equation for temperature. In the framework of this
theory, the following boundary value problem can be studied:

𝜕2𝑇 (𝑥, 𝑡)
𝜕𝑡2 = 𝑎𝜕2𝑇 (𝑥, 𝑡)

𝜕𝑥2 ,
𝑇 (𝑥, 𝑡) = 𝑇0𝑒𝑖𝜔𝑡 𝑥 = 0.

(13)

Under the assumption (2), using the sin-Fourier transform,
we get the solution (see (A.3) from appendix)

𝑇 (𝑥, 𝑡) = 𝑇0 cos(𝜔𝑥
√𝑎) 𝑒𝑖𝜔𝑡. (14)

2. Time-Fractional Heat Conduction

The time-nonlocal generalization of the Fourier law with
the “long-tail” power kernel [11, 13–15] can be interpreted
in terms of fractional calculus (theory of integrals and
derivatives of noninteger order) and results in the time-
fractional heat conduction equation

𝐶𝐷𝛼0+𝑇 = 𝑎Δ𝑇, 0 < 𝛼 ≤ 2, (15)

with the Caputo fractional derivative of order 𝛼 defined as
[16–18]

𝐶𝐷𝛼0+𝑓 (𝑡) = 1
Γ (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑑𝑛𝑓 (𝜏)

𝑑𝜏𝑛 𝑑𝜏,
𝑛 − 1 < 𝛼 < 𝑛,

(16)

and having the following Laplace transform rule:

𝐿 {𝐶𝐷𝛼0+𝑓 (𝑡)} = 𝑠𝛼𝑓∗ (𝑠) − 𝑛−1∑
𝑘=0

𝑓(𝑘) (0+) 𝑠𝛼−1−𝑘,
𝑛 − 1 < 𝛼 < 𝑛,

(17)

where the asterisk denotes the transform, 𝑠 is the transform
variable, and Γ(𝑥) is the gamma function. The Caputo frac-
tional derivative is a regularization in the time origin for the
Riemann-Liouville fractional derivative by incorporating the
relevant initial conditions [19].Themajor utility of theCaputo
fractional derivative is caused by the treatment of differential
equations of fractional order for physical applications, where
the initial conditions are usually expressed in terms of a
given function and its derivatives of integer (not fractional)
order, even if the governing equation is of fractional order
[17, 20]. Additional discussion on the use of the Caputo and
Riemann-Liouville fractional derivatives can be found in [21]
(see Section 3.4 “Which type of fractional derivative? Caputo
or Riemann-Liouville?” in this book).

Equations with fractional derivatives describe many
important physical phenomena in amorphous, colloid, glassy,
and porous materials, in fractals, comb structures, polymers,
and random and disordered materials, in viscoelasticity
and hereditary mechanics of solids, in biological systems,
and in geophysical and geological processes (see, e.g., [22–
30] and the references therein). Important applications of
fractional calculus can be found in such fields as fractional
dynamics [31–35], fractional kinetics [36–38], and fractional
thermoelasticity [11, 12, 39–41].

Equation (15) describes the whole spectrum from local-
ized heat conduction (the Helmholtz equation for 𝛼 → 0)
through the standard heat conduction (𝛼 = 1) to the ballistic
heat conduction (the wave equation when 𝛼 = 2).

The interested reader is referred to the book [15], which
systematically presents solutions to different initial and
boundary value problems for the time-fractional diffusion-
wave equation (15) in Cartesian, cylindrical, and spherical
coordinates. In [42, 43], this equation was considered in
unbounded domains with the source term varying harmoni-
cally in time.

In the present paper, we study the Dirichlet problem
for the time-fractional heat conduction equation in a half-
line domain with the surface value of temperature varying
harmonically in time. The integral transform technique is
used. Different formulations of the considered problem for
the classical heat conduction equation (𝛼 = 1) and for the
wave equation describing ballistic heat conduction (𝛼 = 2)
are discussed.

3. Formulation of the Problem

We consider the time-fractional heat conduction equation in
a half-line:

𝐶𝐷𝛼0+𝑇 = 𝑎𝜕2𝑇 (𝑥, 𝑡)
𝜕𝑥2 ,

0 < 𝑥 < ∞, 0 < 𝑡 < ∞, 0 < 𝛼 ≤ 2,
(18)



Mathematical Problems in Engineering 3

under the harmonic boundary condition

𝑇 (𝑥, 𝑡) = 𝑇0𝑒𝑖𝜔𝑡 𝑥 = 0, (19)

and zero condition at infinity

lim
𝑥→∞

𝑇 (𝑥, 𝑡) = 0. (20)

For the Caputo derivative of the exponential function we
have

𝐶𝐷𝛼0+𝑒𝜆𝑡 = 1
Γ (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑑𝑛𝑒𝜆𝑡𝑑𝜏𝑛 𝑑𝜏

= 1
Γ (𝑛 − 𝛼)𝜆𝑛 ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑒𝜆𝑡𝑑𝜏,

𝑛 − 1 < 𝛼 < 𝑛.

(21)

Substituting 𝑡 − 𝜏 = 𝜆−1𝑢 (with 𝜆 > 0) gives the final result
𝐶𝐷𝛼0+𝑒𝜆𝑡 = 𝜆𝛼𝑒𝜆𝑡 𝛾 (𝑛 − 𝛼, 𝜆𝑡)

Γ (𝑛 − 𝛼) , 𝑛 − 1 < 𝛼 < 𝑛, (22)

where 𝛾(𝑎, 𝑥) is the incomplete gamma function [44]:

𝛾 (𝑎, 𝑥) = ∫𝑥
0
𝑒−𝑡𝑡𝑎−1𝑑𝑡. (23)

Hence, for fractional (noninteger) values of the order 𝛼 of
derivative,

𝐶𝐷𝛼0+𝑒𝜆𝑡 ̸= 𝜆𝛼𝑒𝜆𝑡. (24)

Therefore, the Nowacki assumption (2) cannot be used
for the time-fractional heat conduction equation and the
corresponding initial conditions should be imposed (see
also [42, 43]). In the present paper we assume zero initial
conditions:

0 < 𝛼 ≤ 2 𝑡 = 0, 𝑇 = 0,
1 < 𝛼 ≤ 2 𝑡 = 0, 𝜕𝑇

𝜕𝑡 = 0. (25)

4. Solution to the Problem

Application of the Laplace transform with respect to time𝑡 and the sin-Fourier transform with respect to the spatial
coordinate 𝑥 to (18) under the initial conditions (25) and the
boundary conditions (19), (20) gives

𝑇̃∗ (𝜉, 𝑠) = 𝑎𝑇0 𝜉
𝑠𝛼 + 𝑎𝜉2

1
𝑠 − 𝑖𝜔 , (26)

where the tilde denotes the sin-Fourier transform and 𝜉 is the
transform variable.

At first, we analyze the standard heat conduction equation
corresponding to 𝛼 = 1:

𝑇̃∗ (𝜉, 𝑠) = 𝑎𝑇0 𝜉
𝑠 + 𝑎𝜉2

1
𝑠 − 𝑖𝜔 . (27)

The inverse Laplace transform gives (see (A.6) from
appendix):

𝑇̃ (𝜉, 𝑡) = 𝑎𝑇0 𝜉
𝑎𝜉2 + 𝑖𝜔 (𝑒𝑖𝜔𝑡 − 𝑒−𝑎𝜉2𝑡) . (28)

Integrals (A.2) and (A.4) allow us to invert the sin-Fourier
transform and to obtain the solution

𝑇 (𝑥, 𝑡) = 𝑇0𝑒−𝑥√𝑖𝜔/𝑎+𝑖𝜔𝑡
− 𝑇02 𝑒−𝑥√𝑖𝜔/𝑎+𝑖𝜔𝑡 erfc(√𝑖𝜔𝑡 − 𝑥

2√𝑎𝑡)

+ 𝑇02 𝑒𝑥√𝑖𝜔/𝑎+𝑖𝜔𝑡erfc(√𝑖𝜔𝑡 + 𝑥
2√𝑎𝑡) .

(29)

The first term in (29) coincides with solution (10) and
describes the quasi-steady-state oscillations; the second and
third ones describe the transient process.

Starting in (27) from the inversion of the sin-Fourier
transform, we get

𝑇∗ (𝑥, 𝑠) = 𝑇0 1
𝑠 − 𝑖𝜔exp(− 𝑥

√𝑎√𝑠) . (30)

Taking into account (A.10) and using the convolution
theorem for the Laplace transform allow us to obtain an alter-
native form of the solution to the standard heat conduction
equation:

𝑇 (𝑥, 𝑡) = 𝑇0𝑥2√𝜋𝑎 ∫𝑡
0

1
𝜏3/2 exp(− 𝑥2

4𝑎𝜏) 𝑒𝑖𝜔(𝑡−𝜏). (31)

Another particular case of solution (26) in the transform
domain corresponds to the ballistic heat conduction (𝛼 = 2):

𝑇̃∗ (𝜉, 𝑠) = 𝑎𝑇0 𝜉
𝑠2 + 𝑎𝜉2

1
𝑠 − 𝑖𝜔 . (32)

Inversion of the sin-Fourier transform (see (A.2)) results in

𝑇∗ (𝑥, 𝑠) = 𝑇0 1
𝑠 − 𝑖𝜔 exp(− 𝑥

√𝑎𝑠) . (33)

Taking into account (A.9), we obtain

𝑇 (𝑥, 𝑡) = {{{
𝑇0𝑒𝑖𝜔(𝑡−𝑥/√𝑎), 0 ≤ 𝑥 < √𝑎𝑡,
0, √𝑎𝑡 < 𝑥 < ∞. (34)

It should be noted that solution (34) describes the wavefront
at 𝑥 = √𝑎𝑡.

In applications there often appears the value 𝛼 = 1/2
(see investigations of diffusion on fractals [45] and comb
structures [46, 47]). Using (A.7), we get

𝑇 (𝑥, 𝑡) = 2𝑎𝑇0𝜋 ∫∞
0

𝜉 sin (𝑥𝜉)
𝑎2𝜉4 − 𝑖𝜔 [𝑎𝜉2𝑒𝑖𝜔𝑡

+ √−𝑖𝜔𝑒𝑖𝜔𝑡erfi (√−𝑖𝜔𝑡)
− 𝑎𝜉2𝑒𝑎2𝜉4𝑡 erfc (𝑎𝜉2√𝑡)] 𝑑𝜉.

(35)
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Now we return to the analysis of the time-fractional
heat conduction equation and its solution in the transform
domain (26). The inverse sin-Fourier transform gives

𝑇∗ (𝑥, 𝑠) = 𝑇0 1
𝑠 − 𝑖𝜔 exp(− 𝑥

√𝑎𝑠𝛼/2) . (36)

The inverse Laplace transform of exp(−𝜆𝑠𝛼) is expressed in
terms of the Mainardi function 𝑀(𝛼; 𝑧) (see (A.11) from
appendix). The solution has the form

𝑇 (𝑥, 𝑡) = 𝛼𝑇0𝑥2√𝑎 ∫𝑡
0

1
𝜏𝛼/2+1𝑀(𝛼

2 ;
𝑥

√𝑎𝜏𝛼/2) 𝑒𝑖𝜔(𝑡−𝜏),
0 < 𝛼 < 2.

(37)

The particular case of the Mainardi function𝑀(1/2; 𝑧) is
reduced to the exponential function (see [48, 49]):

𝑀(1
2 ; 𝑧) = 1

√𝜋 exp(−𝑧2
4 ) , (38)

and solution (37) for 𝛼 = 1 coincides with solution (31).
Starting from the inverse Laplace transform of (26), we

have

𝑇̃ (𝜉, 𝑡) = 𝑎𝑇0𝜉∫
𝑡

0
𝜏𝛼−1𝐸𝛼,𝛼 (−𝑎𝜉2𝜏𝛼) 𝑒𝑖𝜔(𝑡−𝜏)𝑑𝜏, (39)

where 𝐸𝛼,𝛼(𝑧) is the Mittag-Leffler function in two param-
eters 𝛼 and 𝛽 (see appendix). In parallel with (37), the
inverse Fourier transform of (39) leads to another form of the
solution

𝑇 (𝑥, 𝑡) = 2𝑎𝑇0𝜋
⋅ ∫𝑡
0
∫∞
0

𝜏𝛼−1𝐸𝛼,𝛼 (−𝑎𝜉2𝜏𝛼) 𝑒𝑖𝜔(𝑡−𝜏)𝜉 sin (𝑥𝜉) 𝑑𝜉 𝑑𝜏.
(40)

Comparison of (37) and (40) allows us to establish the
relation between the Mainardi function and the Mittag-
Leffler function in the form of sin-Fourier transform (see also
[15, 50], where the similar relations were obtained in terms of
the cos-Fourier transform).

Figures 1 and 2 present the dependence of solution on
distance in the case of the boundary condition

𝑇 (𝑥, 𝑡) = 𝑇0 cos (𝜔𝑡) 𝑥 = 0 (41)

for different values of the order 𝛼 of fractional derivative and
different values of time. In numerical calculations we have
used the following nondimensional quantities:

𝑇 = 𝑇
𝑇0 ,

𝑥 = 𝑥
√𝑎𝑡𝛼/2 ,

𝑡 = 𝜔𝑡.
(42)

To evaluate theMittag-Leffler function𝐸𝛼,𝛼(𝑧), the algorithm
suggested in the paper [51] has been used.
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Figure 1: Dependence of temperature on distance (𝑡 = 𝜋).
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Figure 2: Dependence of temperature on distance (𝑡 = 2𝜋).

5. Concluding Remarks

We have considered the Dirichlet problem for the time-
fractional heat conduction equation in a half-line with the
Caputo fractional derivative and with the boundary value of
temperature varying harmonically in time. The solution has
been obtained using the integral transform technique.
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The Caputo fractional derivative of the exponential func-
tion has more complicated form than the corresponding
derivative of the integer order. Hence, the Nowacki approach
based on the representation of temperature as the product of
a function of the spatial coordinate 𝑈(𝑥) and a function har-
monic in time 𝑒𝑖𝜔𝑡 cannot be used, and the initial conditions
should be taken into account.

In such a statement of the problem, the particular cases
of the general solution for integer values of the order of
derivative (𝛼 = 1 and 𝛼 = 2) describe both the quasi-
steady-state oscillations and the transient process. It should
be emphasized that in the case of the ballistic heat conduction
equation (𝛼 = 2) the obtained solution presents thewavefront
at 𝑥 = √𝑎𝑡 (𝑥 = 1 in Figures 1 and 2), which does not appear
in the Nowacki-type solution.

The obtained solution may also be used in constructing
solutions for boundary functions varying periodically in an
arbitrary manner. Expanding the boundary function in the
time-Fourier series, the solution can be obtained as a result
of superposition of successive harmonic terms.

Appendix

We present integrals [52, 53] used in the paper:

∫∞
0

1
𝑥2 + 𝑐2 cos (𝑏𝑥) 𝑑𝑥 = 𝜋

2𝑐𝑒−𝑏𝑐,
𝑏 > 0, Re 𝑐 > 0,

(A.1)

∫∞
0

𝑥
𝑥2 + 𝑐2 sin (𝑏𝑥) 𝑑𝑥 = 𝜋

2 𝑒−𝑏𝑐, 𝑏 > 0, Re 𝑐 > 0, (A.2)

∫∞
0

1
𝑥2 − 𝑐2 sin (𝑏𝑥) 𝑑𝑥 = 𝜋

2 cos (𝑏𝑐) , 𝑏 > 0, 𝑐 > 0, (A.3)

∫∞
0

𝑥
𝑥2 + 𝑐2 𝑒−𝑎

2𝑥2sin (𝑏𝑥) 𝑑𝑥 = 𝜋
4

⋅ 𝑒𝑎2𝑥2 [𝑒−𝑏𝑐 erfc(𝑎𝑐 − 𝑏
2𝑎)

− 𝑒𝑏𝑐 erfc(𝑎𝑐 + 𝑏
2𝑎)] ,

𝑏 > 0, Re 𝑎 > 0, Re 𝑐 > 0,

(A.4)

where erfc (𝑥) is the complementary error function

erfc (𝑥) = 2
√𝜋 ∫∞
𝑥

𝑒−𝑡2𝑑𝑡. (A.5)

Formulae for inverse Laplace transform (equations
(A.6)–(A.10)) are borrowed from [54, 55]:

𝐿−1 { 1
(𝑠 + 𝑎) (𝑠 + 𝑏)} = 𝑒−𝑏𝑡 − 𝑒−𝑎𝑡

𝑎 − 𝑏 , (A.6)

𝐿−1 { 1
(𝑠 + 𝑎) (√𝑠 + 𝑏)}

= 1
𝑎 + 𝑏2 [𝑏𝑒−𝑎𝑡 + √𝑎𝑒−𝑎𝑡erfi (√𝑎𝑡)
− 𝑏𝑒𝑏2𝑡 erfc (𝑏√𝑡)] ,

(A.7)

where erfi(𝑧) is the error function of an imaginary argument:

erfi (𝑧) = 2
√𝜋 ∫𝑧
0
𝑒𝑡2𝑑𝑡, (A.8)

𝐿−1 { 𝑒−𝑐𝑠
𝑠 + 𝑏} = {{{

𝑒−𝑏(𝑡−𝑐), 0 < 𝑐 < 𝑡,
0, 0 < 𝑡 < 𝑐, (A.9)

𝐿−1 {𝑒−𝜆√𝑠} = 𝜆
2√𝜋𝑡3/2 exp(−𝜆2

4𝑡 ) . (A.10)

Equation (A.11) can be found in [15, 48, 49]

𝐿−1 {𝑒−𝜆𝑠𝛼} = 𝛼𝜆
𝑡𝛼+1𝑀(𝛼; 𝜆𝑡−𝛼) , 0 < 𝛼 < 1, 𝜆 > 0. (A.11)

Here 𝑀(𝛼; 𝑧) is the Mainardi function [17, 48, 49], being the
particular case of the Wright function:

𝑀(𝛼; 𝑧) = ∞∑
𝑘=0

(−1)𝑘 𝑧𝑘
𝑘!Γ [−𝛼𝑘 + (1 − 𝛼)] ,

0 < 𝛼 < 1, 𝑧 ∈ 𝐶.
(A.12)

Equation (A.13) is taken from [16, 17]

𝐿−1 { 𝑠𝛼−𝛽
𝑠𝛼 + 𝑏} = 𝑡𝛽−1𝐸𝛼,𝛽 (−𝑏𝑡𝛼) , (A.13)

where 𝐸𝛼,𝛽(𝑧) is the Mittag-Leffler function in two param-
eters 𝛼 and 𝛽 [16, 17, 56] described by the following series
representation:

𝐸𝛼,𝛽 (𝑧) =
∞∑
𝑘=0

𝑧𝑘
Γ (𝛼𝑘 + 𝛽) , 𝛼 > 0, 𝛽 > 0, 𝑧 ∈ 𝐶. (A.14)
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Fractional Calculus with Applications in Mechanics: Vibrations
and Diffusion Processes, JohnWiley & Sons, Hoboken, NJ, USA,
2014.

[36] V. Uchaikin and R. Sibatov, Fractional Kinetics in Solids:
Anomalous Charge Transport in Semiconductors, Dielectrics and
Nanosystems, World Scientific, New Jersey, NJ, USA, 2013.

[37] R. Herrmann, Fractional Calculus: An Introduction for Physi-
cists, World Scientific, Singapore, 2nd edition, 2014.

[38] R. Abi Zeid Daou and X. Moreau, Eds., Fractional Calculus:
Applications, NOVA Science Publishers, New York, NY, USA,
2015.

[39] Y. Z. Povstenko, “Fractional Cattaneo-type equations and gen-
eralized thermoelasticity,” Journal of Thermal Stresses, vol. 34,
no. 2, pp. 97–114, 2011.

[40] A. S. El-Karamany andM. A. Ezzat, “On fractional thermoelas-
ticity,” Mathematics and Mechanics of Solids, vol. 16, no. 3, pp.
334–346, 2011.

[41] M. A. Ezzat and M. A. Fayik, “Fractional order theory of
thermoelastic diffusion,” Journal ofThermal Stresses, vol. 34, no.
8, pp. 851–872, 2011.

[42] Y. Povstenko, “Harmonic impact in the plane problem of frac-
tional thermoelasticity,” in Proceedings of the 11th International
Congress on Thermal Stresses, pp. 227–230, Salerno, Italy, June
2016.

[43] Y. Povstenko, “Fractional heat conduction in a space with a
source varying harmonically in time and associated thermal
stresses,” Journal of Thermal Stresses, vol. 39, no. 11, pp. 1442–
1450, 2016.

[44] M. Abramowitz and I. A. Stegun, Eds.,Handbook of Mathemat-
ical Functions with Formulas, Graphs and Mathematical Tables,
New York, NY, USA, Dover, 1972.



Mathematical Problems in Engineering 7

[45] R. R. Nigmatullin, “The realization of the general transfer
equation in a medium with fractal geometry,” Physica Status
Solidi B, vol. 133, no. 1, pp. 425–430, 1986.

[46] V. E. Arkhincheev, “Anomalous diffusion and charge relaxation
on combmodel: Exact solutions,” Physica A: Statistical Mechan-
ics and its Applications, vol. 280, no. 3-4, pp. 304–314, 2000.

[47] V. E. Arkhincheev, “Diffusion on random comb structure: effec-
tive medium approximation,” Physica A: Statistical Mechanics
and Its Applications, vol. 307, no. 1-2, pp. 131–141, 2002.

[48] F. Mainardi, “The fundamental solutions for the fractional
diffusion-wave equation,” Applied Mathematics Letters, vol. 9,
no. 6, pp. 23–28, 1996.

[49] F. Mainardi, “Fractional relaxation-oscillation and fractional
diffusion-wave phenomena,” Chaos, Solitons and Fractals, vol.
7, no. 9, pp. 1461–1477, 1996.

[50] Y. Povstenko, “Generalized theory of diffusive stresses associ-
ated with the time-fractional diffusion equation and nonlocal
constitutive equations for the stress tensor,” Computers &
Mathematics with Applications, 2016.

[51] R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the
Mittag-Leffler function and its derivatives,” Fractional Calculus
and Applied Analysis, vol. 5, no. 4, pp. 491–518, 2002.

[52] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals
and Series, Vol. 1: Elementary Functions, Gordon and Breach
Science, Amsterdam, The Netherlands, 1986.
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