-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by CiteSeerX

Mining Positional Data Streams

Jens Haase and Ulf Brefeld

Knowledge Mining & Assessment Group
Technical University of Darmstadt, Germany

Abstract. We study frequent pattern mining from positional data stre-
ams. Existing approaches require discretised data to identify atomic
events and are not applicable in our continuous setting. We propose
an efficient trajectory-based preprocessing to identify similar movements
and a distributed pattern mining algorithm to identify frequent trajec-
tories. We empirically evaluate all parts of the processing pipeline.

1 Introduction

Recent advances in telecommunication, sensing, and recording technologies allow
for storing positions from moving objects at large scales in (near) real time.
Analysing positional data streams is highly important in many applications;
examples range from navigation and routing systems, network traffic, animal
migration/tracking to tactics in team sports.

In this paper, we focus on identifying frequent movement patterns in posi-
tional data streams that consist of a possible infinite sequence of coordinates.
Existing approaches to frequent pattern mining [3,17] use identities of atomic
events to define sequences (episodes) [12]. In positional data, events correspond
to sequences of positions (i.e., trajectories) and due to the continuous domain it
is very unlikely to observe a trajectory twice. Instead, we observe a multitude
of different trajectories that give rise to an exponentially growing set of pos-
sibly frequent sequences. Consequentially, mining positional data can only be
addressed in the context of big data.

Our contribution is threefold: (i) To remedy the absence of matching atomic
events, we propose an efficient preprocessing of the positional data using locality
sensitive hashing and approximate dynamic time warping. (ii) To process the
resulting near-neighbour trajectories we present a frequent pattern mining al-
gorithm that generalises Achar et al. [1] to positional data. (iii) We present a
distributed algorithm for processing positional data at large-scales. Empirically,
we evaluate all stages of our approach on positional data of a real soccer game
where cameras and sensors realise a bird’s eye view of the pitch that allows for
locating the players and the ball several times per second.

2 Related Work

Spatio-temporal data mining aims to extract the behaviour and relation of mov-
ing objects from (positional) data streams and is frequently used in compu-
tational biology for mining animal movements. Trajectory-based patterns are

https://core.ac.uk/display/357234682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

first introduced by [5]. These patterns represent a set of individual trajectories
that share the property of visiting the same sequence of places within similar
travel time. Trajectory-based approaches use a discretisation of the movements
to identify places that are also known beforehand. Our contribution considers
a continuous generalisation: every coordinate on the pitch is a place of interest
and trajectories are relations between coordinates and travel time.

Event sequence mining has been introduced by [3] as a problem of mining
frequent sequential patterns in a set of sequences. Sequential pattern mining
discovers frequent subsequences as patterns in a sequence database. The most
common example is the cart analysis proposed by [3]. Frequent episode discovery
is a technique to describe and find patterns in a stream of events [12]. Achar et
al. [1] propose the first approach to mine unrestricted episodes. Our approach
generalises [1] to mining positional data streams.

The behaviour of individual players is analysed by [6] and [7]. [6] analyse
groups of players and their behaviour using self organising maps on top of the
positional data. Every neuron of the network represents a certain area of the
pitch. Thus, whenever a player moves into such an area, the respective neu-
ron is activated. Similarly, [7] uses positional data to assess player positions in
particular areas of the pitch, such as catchable, safe or competing zones. Prior
work for instance also utilises positional data to identify tactical patterns [13].
However, these approaches usually focus on detecting a priori known patterns
in the data stream. By contrast, we leverage the findings of trajectory pattern
and frequent episode discovery to devise a purely data-driven approach to find
tactical patterns in positional data without making any assumptions on zones,
tasks or movements.

3 Efficiently Finding Similar Movements

3.1 Representation

Given a positional data stream D with ¢ objects o1,...,00. Every object o;
is represented by a sequence of coordinates P; = (zi,x},...) where z; =
(x1,29,...,24)" denotes the position of the object in d-dimensional space at
time ¢. A trajectory or movement of the i-th object is a subset py; ;4 € P; of
the stream, e.g., P 14m] = (T}, Tiyy, .-, Ty ,y,), Where m is the length of the
trajectory. In the remainder, the time index ¢ is omitted and each element of a
trajectory is indexed by offsets 1,...,m.

For generality, we focus on finding similar trajectories where (i) the exact
location of a trajectory does not matter (translation invariance), (ii) the range
of the trajectory is negligible (scale invariance), and where turns such as left or
right are considered identical (rotation invariance). Note that, depending on the
application at hand, one or more of these requirements may be inappropriate
and can be dropped by altering the representation accordingly.

Using the requirements (i)-(iii) gives rise to the so-called angle/arc-length
representation [16] of trajectories that represents movements as a list of tuples

of angles #; and distances v; = x; — x;_1. The difference v; is called the move-
ment vector at time ¢ and the angles are computed with respect to a (randomly
drawn) reference vector v,.; = (1,0)". Transformed trajectories are normalised
by subtracting the average so that 6; € [—m, +nx] for all ¢ and by normalising
the total distance to one. Finally, we discard the difference vectors and represent
trajectories solely by their sequences of angles, p — p = (61,...,0,).

3.2 Approximate Dynamic Time Warping

Recall that pairs of trajectories may contain phase shifts, that is, a movement
may begin slowly and then speeds-up while another starts fast and then slows
down towards the end. Such phase shifts are well captured by alignment-based
similarity measures such as dynamic time warping [14].

Dynamic time warping (DTW) is a non-metric distance function that mea-
sures the distance between two sequences and is often used in speech recognition
problems. Given two sequences s = (s1,...,8,) and ¢ = {(q1,...,qm) and a
cost function cost(s;, q;) detailing the costs of matching s; with g;. The goal of
dynamic time warping is to find an alignment of sequences s and g that has
minimal costs subject to boundary, continuity, and monotonicity constraints [9].
Note that che cost function cost can be arbitrarily defined and the complexity
of DTW is O(]s||q|) which is prohibitive for mining positional data streams.

Efficient approximations of dynamic time warping can be obtained by lower
bounds. The rationale is that lower bound functions can be computed in less time
and are therefore often used as pruning techniques in applications like indexing
or information retrieval. The exact DTW computation only needs to be carried
out if the lower bound value is above a given threshold. We make use of two
lower bound functions, frim [10] and freogn [8], that are defined as follows: frim
focuses on the first, last, greatest and smallest values of two sequences [10] and
can be computed in O(m):

frim(s,q) = max{[s1 = q1;[sm — gm|, | max(s) — max(q)|, | min(s) — min(q)]} .

If the greatest and the smallest entries are normalised to a specific value their
computation can be ignored and the time complexity reduces to O(1). The sec-
ond lower bound fieogn [8] uses minimum ¢; = min(¢;—, . . . , gi+,) and maximum
values u; = max(¢,—r,...,¢i+r) for sub-sequences of the query g where r is a
user defined threshold. Trivially, u; > ¢; > ¢; holds for all ¢ and the lower bound
Freogh 18 given by freogn(q,8) = /312 ¢i where ¢; = (s; — w;)* if s; > w,
ci = (s; — €;)% if s; < £;, and ¢; = 0 otherwise. The function freogn can also
be computed in O(m). The result is a non-metric distance function that only
violates the triangle inequality of a metric distance.

3.3 An N-Best Algorithm

Given a trajectory q € D, the goal is to find the most similar trajectories in D.
Trivially, a straight forward approach is to compute the DTW values of g for all

trajectories in D and sort the outcomes accordingly. However, this requires |D|
DTW computations, each of which is quadratic in the length of the trajectories,
and renders the approach clearly infeasible.

We now sketch how to compute the N most similar trajectories for a given
query q efficiently by making use of the lower bound functions frim and freogh-
The algorithm begins with computing the DTW distances of the first N entries
in the database and stores the entry with the highest distance to q. A loop
over the remaining trajectories in D first applying the lower bound functions
frim and freogn to efficiently filter irrelevant movements before using the exact
DTW distance for the remaining candidates. Every trajectory, realising a smaller
DTW distance than the current maximum, replaces its peer; auxiliary variables
mazdist and mazxind are updated accordingly. Note that the complexity of the
algorithm is linear in the number of trajectories in D. In the worst case, the
sequences are sorted in descending order by the DTW distance, which requires
to compute all DTW distances. In practice much lower run-times are observed.

A crucial factor is the tightness of the lower bound functions. The better the
approximation of the DTW, the better the pruning. For NV = 1, the maximum
value drops faster towards the lowest possible value. By contrast, setting N = |D|
requires to compute the exact DTW distances for all entries in the database.
Hence, in most cases, N < |D| is required to reduce the overall computation
time. The computation can trivially be distributed with Hadoop; computing
distances is performed in the mapper and sorting is done in the reducer.

3.4 Distance-based Hashing

An alternative to the introduced N-Best algorithm provides locality sensitive
hashing (LSH). A general class of LSH functions are called distance-based hash-
ing (DBH) that can be used together with arbitrary spaces and (possibly non-
metric) distances [4]. The hash family is constructed as follows. Let h : X — R be
a function that maps elements = € X to a real number. Choosing two randomly
drawn members x1, x5 € X, the function A is defined as

b (z) = dist(x,21)? + dist(xy, 2)? — dist(z,x)?
21,82\ %) = 2 dist(z1,x2) ’

The binary hash value for = simply verifies whether h(x) lies in an interval [t1, t2],
that is bl 2N (2) = 1if hy, 4, (2) € [t1,t2] and A2 (2) = 0 otherwise. where
the boundaries t; and ty are chosen so that the probability that a randomly
drawn © € X lies with 50% chance within and with 50% chance outside of
the interval. Given the set 7 of admissible intervals and hash function h, the
DBH family is defined as the set of all admissible hash functions hl*1:*2]. Using
random draws from Hppg, new hash families can be constructed using AND-
and OR-concatenation.

We use DBH to further improve the efficiency of an N-Best algorithm by
removing a great deal of trajectories before processing them. Given a query
trajectory q € D, the retrieval process first identifies candidate objects that

Algorithm 1 FSATransition(«, fsa, t, events)

1: if fsa.currentState.Open = @ then

return fsa {FSA is in final state}

3: end if

4: for n € sourceNodes(fsa.currentState.Open) do
5 for e € events do

6: if e ~ nodeMappinga(n) then

7.

8

N

fsa.currentState.Open = fsa.currentState.Open \ n
fsa.currentState.Done = fsa.currentState.Done Un

9: fsa.lastTransition =t

10: if fsa.startTime == undefined then

11: fsa.startTime =t

12: end if

13: break inner loop {Only one possible similarity (injective episode)}
14: end if

15: end for

16: end for

17: return fsa

are hashed to the same bucket for at least one of the hash functions, and then
computes the exact distances of the remaining candidates using the N-Best
algorithm. As distance measure of the DBH hash family we use the lower bound
frim- The computation is again easily distributed with Hadoop.

4 Frequent Episode Mining for Positional Data

The main difference between frequent episode mining and mining frequent tra-
jectories from positional data streams is the definition of events. For positional
data, every trajectory in the stream is considered an event. Thus, events may
overlap and are very unlikely to occur more than just once. We resort to the
previously defined approximate distance functions in the mining step.

An event stream is a time-ordered stream of trajectories. Every event is
represented by a tuple (A,t) where A is an event and ¢ denotes its timestamp.
An episode « is a directed acyclic graph, described by a triplet (V, <, m) where
V is a set of nodes, < is a partial order on V (directed edges between the nodes),
and m : V — FE is a bijective function that maps nodes to events in the event
stream. We focus on transitive closed episodes [15] in the remainder, that is if
node A is ordered before B (A < B) there must be a direct edge between A
and B, that is, VA,B € Vif A < B = edge(A, B). The partial ordering of
nodes upper bounds the number of possible directed acyclic graphs on the event
stream. The ordering makes it impossible to include two identical (or similar)
events in the same episode. Episodes that do not allow duplicate events are called
injective episodes [1].

An episode « is called frequent, if it occurs often enough in the event stream.
The process of counting the episode « consists of finding all episodes that are

Algorithm 2 Map(id, a)

1: eventStream = load EventStreamFormFile()

2: frequency = 0; fsas = {new FSA}

3: for all (¢, events) € eventsStream do

4 for all fsa € fsas do

5: inStartState = inStartState(fsa)

6: hasChanged = F S ATransition(a, fsa,t, events)
7.

8

if inStartState and hasChanged then
: fsas = fsas Unew FSA
9: end if

10: if inFinalState(fsa) then

11: fsas = {new FSA}

12: frequency+ =1

13: else

14: fsas = RemoveAllOlder F'S AsInSameState(fsas)
15: end if

16: end for

17: end for

18: if frequency >= userDefinedT hreashold then
19: EMIT (blockstart — id(a), o)
20: end if

similar to a. A sub-episode § of an episode « can be created by removing exactly
one node n and all its edges from and to n; e.g., for the episode A — B — C the
sub-episodes are A — B, A — C and B — C. The sub-episode of a singleton is
denoted by the empty set <.

Frequent episodes can be found by Apriori-like algorithms [2]. The principles
of dynamic programming are exploited to combine already frequent episodes
to larger ones [12,11]. We differentiate between alternating episode generation
and counting phases. Every newly generated episodes must be unique, transi-
tive closed, and injective. Candidates possessing infrequent sub-episodes are dis-
carded due to the downward closure lemma [1]. We now present novel counting
and episode generation algorithms for processing positional data with Hadoop.

4.1 Counting phase

The frequency of an episode is defined as the maximum number of non-overlapp-
ing occurrences of the episode in the event stream [11].1 Non-overlapping episodes
can be detected and counted with finite state automata (FSAs), where every FSA
is tailored to accept only a particular episode. The idea is as follows. For every
episode that needs to be counted, an FSA is created and the event stream is
processed by each FSA. If an FSA moves out of the initial state, a new FSA is
created for possibly later occurring episodes and once the final state has been

! Two occurrences of an episode are said to be non-overlapping, if no event associated
with one appears in between the events associated with the other.

Algorithm 3 Align(a,)
Require: |nodes(a)| = |nodes()]

1: f = int array of length |nodes()|

2: used = boolean array of length |nodes(c)|
3:n=0

4: for i =1 to |nodes(a)| do

5. event; o = m(a)[i]

6: found = false

7. for j =1 to |nodes(B)| do

8: event; 3 = m(B)[j]

9: if (not used[j]) and event; o ~ event; 3z then
10: flil = §

11: used[j] = true

12: found = true

13: end if

14: end for

15: if found = false then

16: fli] = -1

17: increment(n)

18: end if

19: end for

20: return f,n

reached, the episode counter is incremented and all FSA-instances of the episode
are deleted except for the one still remaining in the initial state.

Algorithm 1 shows the FSA transition function that counts an instance of an
episode. Whenever the FSA reaches its final state its frequency is incremented.
As input, Algorithm 1 gets the fsa instance which contains the current state, the
last transition time and the first transition time. Additionally, the appropriate
episode, the current time stamp and the events starting at that time stamp are
passed to the function. First, in case the FSA is already in the final state, the
function returns without doing anything (line 1). Algorithm 1 iterates over all
source nodes in the current state and all events that had happened at time ¢
(line 4-5). Whenever there is an event e that is similar to the appropriate event
of source node n (line 6), the FSA is traversed to the next state. The algorithm
also keeps track of the start time and the last transition time to check the expiry
time (line 9 and line 11).

The FSA transition function allows the definition of the counting algorithm
shown in Algorithm 2 as a map-function for the Hadoop/MapReduce framework.
The function first loads the event stream? (line 1) and initialises an empty FSA
for every episode. Next, the event stream and the FSAs are traversed and passed
to the FSA transition function. Whenever an FSA leaves the start state a new
FSA must be added to the set of FSAs. This ensures that there is exactly one

2 In practice one would read the event stream block wise instead of loading the whole
data at once into memory. We chose the latter for ease of presentation.

Algorithm 4 Combine(«,5)

1: m,n = Align(a, B)

2: if n # 1 then

3: return —1

4: end if

5: sumq = 0; sumg =0
6: sum = lmIxdrl=1)

7: for i =1 to |r| do

8: if w[i] > —1 then
9: SUMe = SUMa + 1
10: sumg = sumg + 7[i]
11: end if

12: end for

13: return (sum — suma, sum — sumg)

FSA in a start state. In case an FSA reaches its final state, all other FSAs can
be removed and the process starts again with only one FSA in start state. In
case more than one FSA reaches the final state, Algorithm 2 removes all but the
youngest one in final state as this one has higher chances to meet the expiry time
constraints. The test for expiry time is not shown in the pseudo code. Instances
violating the expiry time do not contribute to the frequency count. Neither do
FSAs that associate overlapping events with the same object. Note that the
general idea of the counting algorithm is very similar to [1]. However, due to the
different notions of an event, many optimisation do not apply in our case.

Following [1] we also employ bidirectional evidence as frequencies alone are
necessary but not sufficient for detecting frequent episodes. The entropy-based
bidirectional evidence can be integrated in the counting algorithm, see [1] for
details. We omit the presentation here for lack of space.

4.2 Generation phase

Algorithm 4 is designed to efficiently find the indices of the differentiated
nodes of two episodes « and (3. Therefore, it first tries to find the bijective
mapping 7, that maps each node (and its corresponding event) of episode «
to episode 8 (line 1). In case such a complete mapping can not be found, w
returns only the possible mappings and n contains the number of missing nodes
in the mapping (see Algorithm 3). Episodes a and (8 are combinable, if and
only if n = 1. The remainder of the algorithm finds the missing node indices
by accumulating over the existing indices and by subtracting the accumulated
result from the sum of all indices. This little trick finds the missing indices in
time O(n). The function returns the node indices that differentiate between «
and (.

To prevent the computation of Algorithm 4 on all pairs of episodes, each
episode is associated with its block start identifier [1]. The idea is the following.
All generated episodes from an episode « share the same sub-episode. This sub-

Algorithm 5 Reduce(blockstartld, xs)
1: k=—1;result =9

2: for i =0 to |zs| do

3: a=uzs(i); currentBlockStart = k + 1

4 for j =i+ 1 to |zs| do

5 f=as()

6: if a.blockStart == B.blockStart then
7 candidates = Combine(a, 3)

8 for ¢ € candidates do

9: if transitiveClose(c) then

10: c.blockStart = currentBlockStart
11: result = result U c

12: k=k+1

13: end if

14: end for

15: else

16: break

17: end if

18: end for

19: end for

20: EMIT (id, result)

episode is trivially identical to « as it originates from adding a node to a. The
generation step thus takes only those episodes into account that possess the same
block start identifier.

Given two combinable episodes o and 3 and the differentiated nodes a and
b (found by Algorithm 4), it is now possible to combine these episodes to up to
three new candidates, as described by [1]. The first candidate originates from
adding node b to episode « including all its edges from and to b. The second
candidate is generated from the first candidate by adding an edge from node a
to node b and the third one adds an edge from b to a to the first candidate.
In contrast to [1], we do not test wether all sub-episodes of each candidate are
frequent as this would require an efficient lookup of all episodes which can be
quite complex for positional data. Candidates with infrequent sub-episodes are
allowed at this stage of the algorithm as they will be eliminated in the next
counting step anyway.

The complete episode generation algorithm is shown in Algorithm 5. As in-
put, a list of frequent episodes ordered by their block start identifier is given.
The result of the algorithm is a list of new episodes that are passed on to the
counting algorithm. In line 2 and line 4, all episode pairs are processed as long
as they share the same block start identifier (line 6). Then, three possible candi-
dates are generated (line 7) and kept in case they are transitive closed (line 9).
Before adding it to the result set, the block start identifier of the new episode
is updated (line 10). Analogously to the counting phase, domain specific con-
straints may be added to filter out unwanted episodes (e.g. in terms of expiry
time, overlapping trajectories of the same object, etc.).

T T T
2,500 | |—— Exact
— N-Best
——N-Best (4 CPU)
- LSH
—=— LSH (4 CPU)

1 nH fktm‘ fkeogh‘ LSH‘ X
i 1000 0% 0%11.42%|11.42%

50001| 0.28%]34.00%]16.33%50.61%
10000{| 9.79%141.51%|17.80%160.10%
15000([17.50%46.25%(11.82%|75.57%

2,000 -

S
3

Time(sec)

1,000

e ! , , \ , , ,
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
n

Fig. 1. Left: Run-time. Right: Pruning efficiency.

5 Empirical Evaluation

5.1 Positional Data

We use positional data from the DEBS Grand Challenge 20133. that is recorded
from a soccer game with 8 players per team. We average player data over 100ms
to obtain a single measurement for every player at each point in time. The set
of trajectories is created by introducing sliding windows that begin every 500ms
and last for one second. This procedure gives us 111.041 trajectories in total,
50.212 for team A, 50.245 for team B, and 10.584 for the ball.

5.2 Near Neighbour Search

The first set of experiments evaluates the run-time of the three distance func-
tions Exact, N-Best, and LSH. Since the exact variant needs quadratically many
comparisons in the length of the stream, we focus on only a subset of 15,000
consecutive positions of team A in the experiment and fix N = 1000. Figure 1
(left) shows the run-times in seconds for varying sample sizes.

Unsurprisingly, the computation time of the exact distances grows expo-
nentially in the size of the data. By contrast, the N-Best algorithm performs
slightly super-linear and significantly outperforms its exact counterpart. Pre-
filtering trajectories using LSH results in only a small additional speed-up. The
figure also shows that distributing the computation significantly improves the
run-time of the algorithms and indicates that parallelisation allows for computing
near-neighbours on large data sets very efficiently. The observed improvements
in run-time are the result of a highly efficient pruning strategy (Figure 1, right).

Figure 2 shows the most similar trajectories for three query trajectories.
For common trajectories (top rows), the most similar trajectories are true near
neighbours. It can also be seen that the proposed distance function is rotation
invariant. For uncommon trajectories (bottom row), the found candidates are
very different from the query. In the remainder we focus on the N-Best algorithm
with for a loss-free and exact computation of the top-N matches.

3 http://www.orgs.ttu.edu/debs2013

Query 1st 2nd 3rd

SN
EANAN

NIV
2N/

Fig. 2. Most similar trajectories for a given query

5.3 Episode discovery

The first experiments of the episode discovery algorithm focus on the influ-
ence of the parameters wrt the number of generated and counted episodes. The
algorithm depends on four different parameters, the similarity, frequency, the
bidirectional evidence, and the expiry time. For this set of experiments, we use
the trajectories of team A to find frequent tactical patterns in the game. The
results are shown in Figure 3.

The similarity threshold strongly impacts the number of generated episodes:
small changes may already lead to an exponential growth in the number of tra-
jectories and large values quickly render the problem infeasible even on medium-
sized Hadoop clusters. A similar effect can be observed for the expiry time
threshold. Incrementing the expiry time often requires decreasing the similar-
ity threshold. The number of counted episodes is adjusted by the frequency
threshold. As shown in the figure, the number of generated episodes can often
be reduced by one or more orders of magnitudes. By contrast, the bidirectional
evidence threshold affects the result only marginally.

6 Conclusion

We proposed a novel method to mining frequent patterns in positional data
streams where consecutive coordinates of objects are treated as movements. We
proposed an efficient preprocessing of the positional data using locality sensitive
hashing and approximate dynamic time warping and presented a distributed
frequent pattern mining algorithm that generalised Achar et al. [1] to positional
data at large-scales.

References

1. A. Achar, S. Laxman, R. Viswanathan, and P. S. Sastry. Discovering injective
episodes with general partial orders. Data Min. Knowl. Discov., 25(1):67-108,
2012.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. SIGMOD Rec., 22(2):207-216, 1993.

#generated episodes

F#generated episodes

—-0.15——0.2—-0.25 ‘%ﬂ 1')+[]2+()7) 2 —5-20——30——40 —5-20——30——40
T T 2 _ < T T 98 10t ™
109 1 18 10°F 1 & 100 E-|
Z 5 Z
g 102 = 10*F S
101 4% w0y - < et .
g E 10 -
&= 1 &
102 | ‘ ‘ 1% 10 1 8 102k ‘ ‘ 1% ‘ ‘ ;
2 4 = 1 2 3 4 1 2 3
#nodes #nodes #nodes #nodes
—&-0.0—-—-0.5—-0.9 —&-0.0—-—0.5—-0.9 z —&—5—-—10 ——5——10
1057\ T \7;@ 100 ™ E 106 T T -qc"’ T T
104 12 & Z 0
S 103 12w °
103 b 1s £ g 103
2 1& g2 .o &
10° I | R . I i g 10 I E | I .
1 2 3 4 1 2 3 * 2 4 1 2 3 4
#nodes #nodes #nodes #nodes

Fig. 3. Top row: Varying similarity (first and second columns) and frequency (third
and fourth columns) thresholds. Bottom row: Varying bidirectional evidence (first and
second columns) and expiry time (third and fourth columns) thresholds.

=~ w

®

10.

11.

12.

13.

14.

15.

16.

17.

. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of ICDE, 1995.

V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest neighbor re-
trieval using distance-based hashing. In Proc. of ICDE, 2008.

F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining.
In Proc. of KDD, 2007.

A. Grunz, D. Memmert, and J. Perl. Tactical pattern recognition in soccer games
by means of special self-organizing maps. Human Movement Science, 31(2):334—
343, 2012.

C.-H. Kang, J.-R. Hwang, and K.-J. Li. Trajectory analysis for soccer players. In
Proc. of ICDMW, 2006.

E. Keogh. Exact indexing of dynamic time warping. In Proc. of VLDB, 2002.
Eamonn J. Keogh and Michael J. Pazzani. Derivative dynamic time warping. In
In First SIAM International Conference on Data Mining (SDM2001, 2001.

S.-W. Kim, S. Park, and W. W. Chu. An index-based approach for similarity
search supporting time warping in large sequence databases. In Proc. of ICDE,
2001.

S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. Discovering frequent episodes
and learning hidden markov models: A formal connection. IEEE Trans. on Knowl.
and Data Eng., 17(11):1505-1517, November 2005.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Min. Knowl. Discov., 1(3):259-289, 1997.

M. Perse, M. Kristan, S. Kovaci¢, G. Vuckovi¢, and J. Pers. A trajectory-based
analysis of coordinated team activity in a basketball game. Computer Vision and
Image Understanding, 113(5):612 — 621, 2009.

L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993.

N. Tatti and B. Cule. Mining closed episodes with simultaneous events. In Proc.
of KDD, 2011.

M. Vlachos, D. Gunopulos, and G. Das. Rotation invariant distance measures for
trajectories. In Proc. of KDD, 2004.

M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Mach.
Learn., 42(1-2):31-60, 2001.

