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Abstract

We study the evolutionary robustness of strategies in in�nitely repeated prisoners' dilemma

games in which players make mistakes with a small probability and are patient. The evolutionary

process we consider is given by the replicator dynamics. We show that there are strategies with

a uniformly large basin of attraction independently of the size of the population. Moreover,

we show that those strategies forgive defections and, assuming that they are symmetric, they

cooperate.

1 Introduction

The theory of in�nitely repeated games has been very in�uential in the social sciences showing
how repeated interaction can provide agents with incentives to overcome opportunistic behavior.
However, a usual criticism of this theory is that there may be a multiplicity of equilibria. While
cooperation can be supported in equilibrium when agents are su�ciently patient, there are also
equilibria with no cooperation. Moreover, a variety of di�erent punishment can be used to support
cooperation.

To solve this multiplicity problem, we study what types of strategies will have a large basin of
attraction regardless of what other strategies are considered in the evolutionary dynamic. More
precisely, we study the replicator dynamic over arbitrary �nite set of in�nitely repeated strategies
in which in every round of the game the strategy makes a mistake with a small probability 1 − p.
We study which strategies have a non vanishing basin of attraction with a uniform size regardless of
the set of strategies being consider in the population. We say that that a strategy has a uniformly
large basin of attraction if it repeals invasions of a given size for arbitrarily patient players and
small probability of errors and for any possible combination of alternative strategies (see de�nition
3 for details).

We �nd that two well known strategies, always defect and grim, do not have uniformly large
basins of attraction. Moreover, any strategy that does not forgive cannot have a uniformly large
basin either. The reason is that, as players become arbitrarily patient and the probability of errors
becomes small, unforgiving strategies lose in payo�s relative to strategies that forgive and the size
of the basins of attraction between these two strategies will favor the forgiving one. This is the case
even when the ine�ciencies happen o� the equilibrium path (as it is the case for grim).

Moreover, we show that symmetric strategies leading to ine�cient payo�s even when players
are arbitrarily patient and the probability of errors is su�ciently small cannot have uniformly large
basins of attractions.

However, it could be the case that ine�cient and unforgiving strategies do not have uniformly
large basins since actually there may be no strategies with that property! We prove that that is not
the case by showing that the strategy win-stay-loose-shift has a uniformly large basin of attraction,
provided a su�ciently small probability of mistakes. As this strategy is e�cient (and symmetric),
we show that the concept of uniformly large basins of attraction provides a (partial) solution to the
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long studied problem of equilibrium selection in in�nitely repeated games: only e�cient equilibria
survive for patient players if we focus on symmetric strategies. We suspect that the e�ciency result
can be extended to non-symmetric strategies in which case the concept of uniformly large basin of
attraction would provide a complete solution to the problem of equilibrium selection in in�nitely
repeated games.

Note that we not only provide equilibrium selection at the level of payo�s but also at the level of
the type of strategies used to support those payo�s: the payo�s from mutual cooperation can only
be supported by strategies that do not involve asymptotically ine�cient punishments. This provides
theoretical support to Axelrod's claims ([Ax]) that successful strategies should be cooperative and
forgiving.

In addition, in our study of the replicator dynamics we develop technologies that can be used
to analyze the basins of attractions outside of the particular case of in�nitely repeated games. In
fact the results are based in a series of theorems about general replicator dynamics which can be
used to study the robustness of steady states for games in general. In addition, we prove that our
results are robust to perturbation of the replicator dynamic provided that it is still the case that
the only growing strategies are those that perform better than the average.

An extensive previous literature has addressed the multiplicity problem in in�nitely repeated
games. Part of this literature focuses on strategies of �nite complexity with costs of complexity to
select a subset of equilibria (see Rubinstein [R], Abreu and Rubinstein [AR], Binmore and Samuelson
[BiS], Cooper [C] and Volij [V]). This literature �nds that the selection varies with the equilibrium
concept being used and the type of cost of complexity. Another literature appealed to ideas of
evolutionary stability as a way to select equilibria and found that no strategy is evolutionary stable
in the in�nitely repeated prisoners' dilemma (Boyd and Lorberbaum [BL]). The reason is that for
any strategy there exist another strategy that di�ers only after events that are not reached by this
pair of strategies. As such, the payo� from both strategies is equal when playing with each other
and the original strategy cannot be an attractor of an evolutionary dynamic. Bendor and Swistak
([BeS]) circumvent the problem of ties by weakening the stability concept and show that cooperative
and retaliatory strategies are the most robust to invasions.

In a di�erent approach to deal with the problem of ties, Boyd ([B]) introduced the idea of errors
in decision making. If there is a small probability of errors in every round, then all events in a
game occur with positive probability destroying the certainty of ties allowing for some strategies to
be evolutionary stable. However, as shown by Boyd ([B]) and Kim ([Ki]), many strategies that are
sub-game perfect for a given level of patience and errors can also be evolutionary stable.

Fudenberg and Maskin ([FM2]) (see also Fudenberg and Maskin [FM]) show that evolutionary
stability can have equilibrium selection implications if we ask that the size of invasions that the strat-
egy can repel to be uniformly large with respect to any alternative strategy and for large discount
factors and small probabilities of mistakes. They show that the only strategies with characteristic
must be cooperative. There are two main di�erences with our contributions. First, Fudenberg and
Maskin ([FM2]) focus on strategies of �nite complexity while our e�ciency result does not have
that restriction, it applies only to symmetric strategies. Second, our robustness concept not only
consider the robustness to invasion by a single alternative strategy but also robustness to invasion
by any arbitrary combination of alternative strategies. In other words, we also look at the size of
the basin of attraction inside the simplex.

Finally, Johnson, Levine and Pesendorfer ([JLP]), Volij ([V]) and Levine and Pesendorfer ([LP])
use the idea of stochastic stability (Kandori, Mailath and Rob [KMR] and Young [YP]) to select
equilibria in in�nitely repeated games.

We wonder if the present result could be useful to formulate experiment that could help to
understand if individuals, when playing the repeated prisoner's dilemma, behave in the way that
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replicator equation assumes. In particular, if win-stay-loose-shift is highly present in a designed
experiment, is it going to become prevalent?

The paper is organized as follows: In section 2 we introduce the in�nite repeated prisoner's
dilemma with trembles. In section 3 we start recalling the de�nition of replicator dynamics in any
dimension and in theorem 1 we give su�cient conditions to be satis�ed by a payo� matrix for a vertex
to have a large local basin of attraction independent of the dimension of the matrix. Moreover, in
subsection 3.4 we show that the conditions of theorem 1 are also necessary. In section 4 we recast
the replicator dynamics in the context of in�nite repeated prisoner's dilemma with trembles. In this
section we de�ne the notion of strategy having a uniformly large basin of attraction (see de�nition
3). In section 5 we show that grim does not have a uniformly large basin. In section 6 we prove that
for any history, the frequency of cooperation converges to one for symmetric strategies that have
a uniform large basin of attraction. In section 7 we show how to adapt theorem 1 to the context
of the set of all the strategies. In particular, in subsection 7.1 it is provided su�cient condition
to guarantee that a strategy has a uniform large basin of attraction. These conditions basically
consist in analyzing all the possible set of three strategies; moreover, in subsection 7.2 we show
that weaker conditions that consists in comparing sets of two strategies is not enough to have a
uniformly large basin of attraction. In section 8 we develop a technique to calculate the payo�
with trembles for certain type of strategies (see de�nition 10) provided certain restriction on the
probability of mistakes (see lemma 15). In section 9 we apply this techniques for the particular case
of win-stay-loose-shift, proving that it has a uniformly large basin of attraction. We also consider
in subsection 9.1 a generalization of win-stay-loose-shift. In subsection 10 we show that theorem 1
can be reproved for a general type of equation that resembles the replicator dynamics.

2 In�nitely repeated prisoner's dilemma with trembles

In the present section, we state the de�nitions of the game �rst without trembles and later with
trembles. We also explain and how the payo� is calculated whit and without trembles.

In each period t = 0, 1, 2, ... the 2 agents play a symmetric stage game with action space A =
{C,D}. At each period t player one choose action at ∈ A and second player choose action bt ∈ A. We
denote the vector of actions until time t as at = (a0, a1, . . . , at) for player one and bt = (b0, b1, . . . , bt)
for player two. The payo� from the stage game at time t is given by utility function u(at, bt) :
A × A → < for player one and u(bt, at) : A × A → < for player two such that u(D,C) = T ,
u(C,C) = R, u(D,D) = P , u(C,D) = S, with T > R > P > S and 2R > T + S.

Agents observe previous actions and this knowledge is summarized by histories. When the game
begins we have the null history h0 = (a0, b0), afterwards ht = (at−1, bt−1) = ((a0, b0), . . . (at−1, bt−1))
and Ht is the space of all possible t histories. Let H∞ be the set of all possible histories. A pure
strategy is a function s : H∞ → A. In other words, a pure strategy s is a functions s : Ht → A for
all t.

It is important to remark, that given two strategies s1, s2 and a �nite path ht = (at−1, bt−1), if
s1 encounter s2 then

ht = (s1(ht), s2(ĥt)),

where

ĥt := (bt−1, at−1). (1)

Given a pair of strategies (s1, s2) we call the history they generate as their equilibrium path and
denote it as hs1,s2 . In other words, denoting with hs1,s2 t the path up to period t then equilibrium
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path hs1,s2 , is the path that veri�es

s1(hs1,s2 t) = at, s2(ĥs1,s2 t) = bt.

Given a pair of strategies s1, s2 the utility of the agent s1 is

U(s1, s2) = (1− δ)

∞∑
t=0

δtu(s1(hs1,s2 t), s2(ĥs1,s2 t)),

where the common and constant discount factor δ < 1.
Given a �nite path ht, with hs1,s2/ht

we denote the equilibrium path between s1 and s2 with
seed ht Given the recursivity of the discounted utility function we can write the utility starting from

history ht as U(s1, s2|ht) = (1− δ)
∞∑
k=t

δt−ku(s1(hs1,s2/htk
), s2( ̂hs1,s2/htk

)).

For the case of trembles, we have the probability of making a mistake, more precisely, with a
positive p < 1 we denote the probability that a strategy perform what intends. Now, given two
strategies s1, s2 (they can be the same strategy) we de�ne

Uδ,p(s1, s2) = (1− δ)
∑

t>0,at,bt

δtps1,s2(at, bt)u(a
t, bt)

where u(at, bt) denotes the usual payo� of the pair (at, bt) and ps1,s2(at, bt) denote the probability
that the strategies s1 and s2 go through the path ht = (at, bt) when they are playing one to each
other. To de�ne ps1,s2(at, bt) we proceed inductively:

ps1,s2(at, bt) = ps1,s2(at−1, bt−1)p
it+jt(1− p)1−it+1−jt (2)

where

(i) it = 1 if at = s1(ht), it = 0 otherwise,

(ii) jt = 1 if bt = s2(ĥt−1), jt = 0 otherwise.

Therefore,
ps1,s2(at, bt) = pmt+nt(1− p)2t+2−mt−nt

where
mt = Cardinal{0 6 i 6 t : s1(hi) = ai}
nt = Cardinal{0 6 i 6 t : s2(ĥi) = bi}.

Observe that if ht ∈ hs1,s2 (meaning that ht = hs1,s2 t) then

ps1,s2(ht) = p2t+2. (3)

With
Uδ,p,hs1,s2

(s1, s2)

we denote the utility only along the equilibrium path. With Uδ,p,hc
s1,s2

(s1, s2) we denote the di�er-

ence, i.e., Uδ,p(s1, s2)− Uδ,p,hs1,s2
(s1, s2). Now, given a �nite string ht with

Uδ,p(s1, s2/ht)

we denote the utility with seed ht and with

Uδ,p(hs1,s2/ht
)

we denote the utility only along the equilibrium path with seed ht for the pair s1, s2. In the same
way, with Uδ,p(h

c
s1,s2/ht

) we denote Uδ,p(s1, s2/ht) − Uδ,p(hs1,s2/ht
). Also, with NE we denote the

set of path which are not equilibrium paths; usually those paths are called second order paths.
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De�nition 1. We say that s is a subgame perfect strategy if for any s′di�erent than s it follows
that if s(ht) 6= s′(ht) then

Uδ,p(s, s/ht)− Uδ,p(s
′, s/ht) > 0.

Let us consider two strategies s1 and s2 and let

Rs1,s2 := {h ∈ H0 : ∃ k > 0, s1(ht) = s2(ht) ∀ t < k; s1(hk) 6= s2(hk)}.

Observe that if s1(h0) 6= s2(h0) then any path h ∈ H0 belongs to Rs1,s2 . On the other hand, if
s1(0) = s2(0) then for any h ∈ Rs1,s2 there is not restriction on the values that h0 can take. In
other words, we consider all the paths where s1 and s2 di�er at some moment, including the �rst
move. Observe that k depends on h, and it is de�ned as the �rst time that s1 di�ers with s2 along
h, i.e.

kh(s1, s2) = min{t > 0 : s1(ht) 6= s2(ht)}.

From now on, to avoid notation we drop the dependence on the path. Observe that for h ∈ Rs1,s2 ,
the fact that s1(ht) = s2(ht) for any t < k does not imply that ht+1 = s1(ht). Moreover, observe
also that if s1 6= s2 then

Rs1,s2 6= ∅.

From now on, given h ∈ Rs1,s2 with hk we denote the �nite path contained in h such that s1(ht) =
s2(ht) for any t < k and s1(hk) 6= s2(hk)

Lemma 1. It follows that

Uδ,p(s1, s1)− Uδ,p(s2, s1) =
∑

hk,h∈Rs1,s2

δkps1,s1(hk)(Uδ,p(s1, s1/hk)− Uδ,p(s2, s1/hk)).

Proof. If s1(h0) 6= s2(h0) then Rs1,s2 = H0, hk = h0 and in this case there is nothing to prove. If
s1(0) = s2(0), the result follows from the next claim that states that given a history path h then

ps1,s1(ht) =

{
ps2,s1(ht) if t 6 k
ps2,s1(hk)ps2,s1/hk

(σk(h)t−k) = ps1,s1(hk)ps2,s1/hk
(σk(h)t−k) if t > k

(recall that σk(h) is a history path that veri�es σk(h)j = hj+k). To prove the claim in the case that
t 6 k we proceed by induction: recalling (2)follows that

ps1,s1(at, bt) = ps1,s1(at−1, bt−1)p
i1t+j1t (1− p)2−i1t−j1t (4)

where

(i) i1t = 1 if at = s1(ht−1) = s1(at−1, bt−1), i
1
t = 0 otherwise,

(ii) j1t = 1 if bt = s1(ĥt−1) = s1(bt−1, at−1), j
1
t = 0 otherwise

and

ps2,s1(at, bt) = ps2,s1(at−1, bt−1)p
i2t+j2t (1− p)2−i2t−j2t (5)

where

(i) i2t = 1 if at = s2(ht−1) = s2(at−1, bt−1), i
2
t = 0 otherwise,

(ii) j2t = 1 if bt = s1(ĥt−1) = s1(bt−1, at−1), j
2
t = 0 otherwise.
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Now, by induction follows that ps1,s1(at−1, bt−1) = ps2,s1(at−1, bt−1) and from s1(ht−1) = s2(ht−1)
follows that i1t = i2t , j

1
t = j2t .

Remark 1. It follows that h ∈ Rs1,s2 if and only if h ∈ Rs2,s1 and

Uδ,p(s2, s2)− Uδ,p(s1, s2) =
∑

hk,h∈Rs1,s2

δkps2,s2(hk)(Uδ,p(s2, s2/hk)− Uδ,p(s1, s2/hk)). (6)

Lemma 2. Given any pair of strategies s1, s2 it follows that

|Uδ,p(h
c
s2,s1/ht

)| < 1− p2

p2(1− δ)
M

where M = max{T, |S|}.

Proof. Observe that �xed t then ∑
ht∈Ht

ps1,s2(ht) = 1,

since in the equilibrium path at time t the probability is p2t+2 it follows that∑
ht /∈Ht∩NE

ps1,s2(ht) = 1− p2t+2.

Therefore, and recalling that u(ht) 6 M,

|Uδ,p(h
c
s2,s1/ht

)| = |1− p2δ

p2

∑
t>0,ht /∈NE

δtps1,s2(ht)u(h
t)|

6 (1− δ)
∑
t>0

δt
∑

ht /∈NE

ps1,s2(ht)|u(ht)|

6 (1− δ)M
∑
t>0

δt(1− p2t+2)

= M [(1− δ)
∑
t>0

δt − (1− δ)
∑
t>0

δtp2t+2]

= M [1− p2
1− δ

1− p2δ
]

=
1− p2

(1− p2δ)
M.

From previous lemma, we can conclude the next two lemmas:

Lemma 3. Given two strategies s1 and s2

lim
p→1

∑
ht∈NE

Uδ,p(s1, s2/ht) = 0.

Lemma 4. given s1s2 then

limp→1Uδ,p(s2, s2)− Uδ,p(s1, s2) =
∑

hk,h∈Rs1,s2

δk[Uδ(hs2,s2/hk
)− Uδ(hs1,s2/hk

)].
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Now, we are going to rewrite the equation (6) considering at the same time the paths h and ĥ.
The reason to do that it will become more clear in subsection 7.1.

Remark 2. Observe that given a strategy s if ĥt 6= ht it could hold that s(ĥt) 6= s(ht). Also,
given two strategies s1, s2 it also could hold that kh(s1, s2) 6= kĥ(s1, s2). However, it follows that if
kh(s1, s2) 6 kĥ(s1, s2) then

ps1,s1(hk) = ps1,s1(ĥk) = ps1,s2(hk) = ps1,s2(ĥk) =

ps2,s1(hk) = ps2,s1(ĥk) = ps2,s2(hk) = ps2,s2(ĥk)

Using previous remark, we de�ne the set R∗
s1,s2 as the set

R∗
s1,s2 = {h ∈ Rs1,s2 : kh(s1, s2) 6 kĥ(s1, s2)}

and therefore the di�erences Uδ,p(s2, s2)−Uδ,p(s1, s2) can be written in the following way (denoting
k as kh(s1, s2))

Uδ,p(s2, s2)− Uδ,p(s1, s2) =∑
hk,h∈R∗

s1,s2

δkps1,s1(hk)[Uδ,p(s1, s1/hk)− Uδ,p(s2, s1/hk) + Uδ,p(s1, s1/ĥk)− Uδ,p(s2, s1/ĥk)].

Now we are going to give a series of lemmas that relates equilibrium paths with seeds ht and ĥt;
later, we also relate the payo� along those paths. The proofs of the �rst two next lemmas are
obvious and left to the reader.

Lemma 5. Given two strategies s, s∗ and a path ht follows that

ĥs∗,s/ht
= hs,s∗/ĥt

(7)

Now, we try to relates the payo�s. Given two strategies s, s∗ and a path hk, we take

b1 = (1− δ)
∑

j:uj(s∗,s/hk)=R

δj , b2 = (1− δ)
∑

j:uj(s∗,s/hk)=S

δj ,

b3 = (1− δ)
∑

j:uj(s∗,s/hk)=T

δj , b4 = (1− δ)
∑

j:uj(s∗,s/hk)=P

δj .

Observe that b1 + b2 + b3 + b4 = 1 and

U(s∗, s) = b1R+ b2S + b3T + b4P.

In the same way, for ĥk we de�ne b̂1, b̂2, b̂3, b̂4

b1 = (1− δ)
∑

j:uj(s∗,s/ĥk)=R

δj , b2 = (1− δ)
∑

j:uj(s∗,s/ĥk)=S

δj ,

b3 = (1− δ)
∑

j:uj(s∗,s/ĥk)=T

δj , b4 = (1− δ)
∑

j:uj(s∗,s/ĥk)=P

δj .

Observe that b̂1 + b̂2 + b̂3 + b̂4 = 1. Now we de�ne

B1 = b1 + b̂1, B2 = b2 + b̂2, B3 = b3 + b̂3, B4 = b4 + b̂4.
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Remark 3. The above numbers bj depend on δ and the in�nite sums converge �xed δ. However,
they could not converge as δ goes to 1.

Lemma 6. Given two strategies s, s∗ and a path hk, if

Uδ(hs∗,s/hk
) = b1R+ b2S + b3T + b4PS

then
Uδ(hs,s∗/ĥk

) = b1R+ b2T + b3S + b4P.

Moreover, if
Uδ(hs∗,s/hk

) + Uδ(hs∗,s/ĥk
) = B1R+B2T +B3S +B4P,

then
Uδ(hs,s∗/hk

) + Uδ(hs,s∗/ĥk
) = B1R+B2S +B3T +B4P.

Lemma 7. Given two strategies s, s∗ and a path hk, follows that

Uδ(hs,s∗/hk
) + Uδ(hs∗,s/ĥk

) 6 2R.

Lemma 8. For any λ0 < 1 follows that there exists λ̂0 < 1 such that if Uδ(hs,s/ht
) = λ0R then

Uδ(hs,s/ht
) + Uδ(hs,s/ĥt

) 6 2λ̂0R.

Moreover, if λ′
0 < λ0 then λ̂′

0 < λ̂0. In particular,

Uδ(hs,s/ht
) + Uδ(hs,s/ĥt

) < 2R.

Proof. If Uδ(hs,s/ht
) = b1R+ b2S + b3T + b4P = λ0R then it follows that

max{b2, b3, b4} >
1− λ0

3
. (8)

In fact, if it is not the case,

b1R+ b2S + b3T + b4P > b1R = (1− (b2 + b3 + b4)) > [1− (1− λ0)]R = λ0R,

a contradiction. From equality (7) follows U(hs,s/ĥt
) = b1R+ b2T + b3S + b4P so

Uδ(hs,s/ht
) + Uδ(hs,s/ĥt

) = 2b1R+ (b2 + b3)(T + S) + 2b4P

and from the fact that b1 + b2 + b3 + b4 = 1 follows that is equal to

2R− [2b2(R− P ) + (b3 + b4)(2R− (T + S))]

So taking

R̂ = min{R− P,
R− (T + S)

2
}

which is positive, follows from inequality (8) that

Uδ(hs,s/ht
) + Uδ(hs,s/ĥt

) < 2R− 2
1− λ0

3
R̂,

and taking

λ̂0 = 1− 1− λ0

3

R̂

R

the result follows.

8



3 Replicator dynamics

In this section we introduce the notion of replicator dynamics and we analyze the attractors.
Given the payo� matrix

A =


a11 . . . a1i . . . a1n
. . . . . . . . . . . . . . .
ai1 . . . aii . . . ain
. . . . . . . . . . . . . . .
an1 . . . ani . . . ann


Let ∆ be the n−dimensional simplex

∆ = {(x1 . . . xn) ∈ Rn : x1 + · · ·+ xn = 1, xj > 0,∀j}.

We consider the replicator dynamics X associated to the payo� matrix A on the n dimensional
simplex given by the equations:

ẋj = Xj(x) := xjFj(x) = xj(fj − f̄)(x) (9)

where

fj(x) = (Ax)j , f̄(x) =
n∑

l=1

xlfl(x),

where (AX)j denotes the j−th coordinate of the vector Ax. In other words, provided a payo�
matrix A, the replicator equation is given by

ẋj = xj [(Ax)j − xtAx], j = 1, . . . , n

where xt denotes the transpose vector.
Using that 1 = x1 + x2 + · · ·+ xn we can write

Fj = fj(x)(x1 + x2 + · · ·+ xn)− f̄(x) = fj(x)(x1 + x2 + · · ·+ xn)−
∑

xlfl(x) =
∑
l 6=j

xl(fj − fl)(x).

We denote with ϕ the associated �ow:

ϕ : R×∆ → ∆.

Giving t ∈ R with ϕt : ∆ → ∆ we denote the t− time di�eomorphism. Observe that any vertex is
a singularity of the replicator equation, therefore, any vertex is a �xed point of the �ow.

3.1 A�ne coordinates for the replicator equation

We consider an a�ne change of coordinates to de�ne the dynamics in the positive quadrant of Rn−1

instead of the simplex ∆. The a�ne change of coordinates is given by

x̄1 = 1−
∑
j>2

xj , x̄j = xj ∀ j > 2

and so, the replicator equation is de�ned as

ẋj = Fj(x̄)xj , j = 2, . . . , n
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where x̄ = (x̄1, x̄2 . . . , x̄n) with xi > 0, x2 + · · ·+ xn 6 1 and

Fj(x̄) = (fj − f̄)(1−
∑
i>2

xi, x2, . . . , xn).

Observe that in these coordinates the point e1 = (1, 0, . . . , 0) corresponds to (0, . . . , 0) and in the
new coordinates the simplex ∆ is replaced by {(x2, . . . , xn) : xi > 0,

∑n
i=2 xi 6 1}.

We also can rewrite Fj in the following way:

Fj(x̄) =
∑

l 6=j,l>1

(fj − fl)(x̄)x̄l

= (fj − f1)(x̄)(1−
∑
l>2

xl) +
∑

l 6=j,l>2

(fj − fl)(x̄)x̄l

= (fj − f1)(x̄)(1−
∑
l>2

xl) +
∑

l 6=j,l>2

(fj − fl)(x̄)xl

= (fj − f1)(x̄)−
∑
l>2

(fj − f1)(x̄)xl +
∑

l 6=j,l>2

(fj − fl)(x̄)xl

= (fj − f1)(x̄)− (fj − f1)(x̄)xj +
∑

l 6=j,l>2

[(fj − fl)(x̄)− (fj − f1)(x̄)]xl

= (fj − f1)(x̄)− (fj − f1)(x̄)xj +
∑

l 6=j,l>2

(f1 − fl)(x̄)xl

= (fj − f1)(x̄) + (f1 − fj)(x̄)xj +
∑

l 6=j,l>2

(f1 − fl)(x̄)xl

= (fj − f1)(x̄) +
∑
l>2

(f1 − fl)(x̄)xl.

Denoting

R(x̄) :=
∑
l>2

(f1 − fl)(x̄)xl, (10)

it follows that

Fj(x̄) = (fj − f1)(x̄) +R(x̄) (11)

where

(fj − fl)(x̄) =
∑
k>1

(ajk − alk)x̄k = (aj1 − al1)x̄1 +
∑
k>2

(ajk − alk)x̄k

= (aj1 − al1)(1−
∑
l>2

xl) +
∑
k>2

(ajk − alk)xk

= aj1 − al1 +
∑
k>2

(ajk − alk − aj1 + al1)xk.

Observe that if we take the matrix M ∈ R(n−1)×(n−1) and the vector N ∈ R(n− 1) such that

Mjk = ajk − a1k + a11 − aj1

and
Nj = aj1 − a11

10
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then the replicator equation o a�ne coordintaes is given by

ẋj = xj [(v +Mx)j − xt(v +Mx)], j = 2, . . . , n; (12)

where (v +Mx)j is the j − th coordinate of v +Mx.

3.2 Attracting �xed points

Given a point e and a positive constant ε, Bε(e) denotes the ball of radius ε and center e.

De�nition 2. Attracting �xed point and local basin of attraction. Let e be a singular point
of X (i.e.: X(e) = 0). It is said that e is an attractor if there exists an open neighborhood U of
e such that for any x ∈ U follows that ϕt(x) → e. The global basin of attraction Bs(e) is the set
of points that its forward trajectories converges to e. Moreover, given ε > 0 we say that Bε(e) is
contained in the local basin of attraction of e if Bε(e) is contained in global basin of attraction and
any forward trajectory starting in Bε(e) remains inside Bε(e). This is denoted with Bε(e) ⊂ Bs

loc(e).

For the sake of completeness, we give a folklore's su�cient condition for the vertex e1 to be an
attractor. Before that, we need to calculate the derivativeDX of the functionX = (X1 . . . Xn) given
by the replicator equation (see equation 9). For that, for any l, we compute DXl = (∂Xl

∂x1
. . . ∂Xl

∂xn
)

and observe that for k 6= l then ∂Xl
∂xk

= (∂xk
fl − ∂xk

f̄)xk, and for k = l follows that ∂Xl
∂xl

=

(∂xl
fl − ∂xl

f̄)xl + fl − f̄ .

Lemma 9. If e1 is a strict Nash equilibrium (i.e. a11 − aj1 > 0 for any j 6= 1) then e1 is an
attractor. Moreover, the eigenvalues of DX at e1 are given by {a11 − aj1}j>1.

Proof. To prove the result, observe �rst that 0̄ (the point e1 in the simplex) is a �xed point. To
�nish, observe that D0X is a diagonal matrix with {aj1 − a11}j 6=1 in the diagonal. Therefore,
{aj1 − a11}j 6=1 are the eigenvalues which by hypothesis they are all negative.

11



3.3 Large Basin of attractions for �xed points

The goal of the following theorem is to give su�cient conditions for a vertex to have a �large
local basin of attraction�, independent of the dimension of the space. In other words, provided a
vertex e and a positive number K, the goal is to �nd su�cient condition for any payo� matrix A,
independently of the dimension, the neighborhood BR(e) is contained in the local basin of attraction
of e.

A natural condition is to assume that the eigenvalues are �uniformly negative�. But this criterion
is not appropriate for the context of games, since the quantities aj1− a11 even when negative could
be arbitrary close to zero. However, we take advantage that the replicator equations are given by
a special type of cubic polynomials, and we provide a su�cient condition for �large local basin of
attraction� even for the case that the eigenvalues are close to zero. To do that, we need to introduce
some other quantities. From now on we use the L1−norm

||x|| =
∑
i>1

|xi|.

Now, let us go back to the replicator equations and let us assume from now on that e is a strict
Nash equilibrium, i.e.

a11 − aj1 > 0

for any j 6= 1. Recall as we de�ne in the previous subsection the matrix M and N given by

Nj1 = aj1 − a11 (13)

Mij = aji − a1i + a11 − aj1 (14)

. Mji = aij − a1j + a11 − ai1. (15)

Moreover, we assume that the vertex {e2 . . . en} are ordered in such a way that

a11 − ai1 > a11 − aj1, ∀ 2 6 i < j.

Theorem 1. Let A ∈ Rn×n (n arbitrary) such that aj1 < a11. Let

M0 = max
i,j>i

{Mij +Mji

−Ni
, 0}. (16)

Then,

∆ 1
M0

= {x̄ :
∑
i>2

xi 6
1

M0
} ⊂ Bs

loc(e1).

The proof of the theorem is based on a crucial lemma about quadratic polynomials (see lemma
10). So, �rst we recall a series of de�nitions and results involving quadric, we state the lemma,
provide its proof and latter we prove theorem 1.

First recall that a quadratic polynomial Q is a function from Rn to R of the form Q(x) =
Nx+xtMx (where N is a vector, M is a square matrix and xt means the transpose of x). It is said
that Q is positive de�ned if xtMx > 0 for any x. It is said that Q is negative-de�nite if xtMx 6 0
for any x. Now, associated to a quadratic polynomial Q we consider the set

{x ∈ Rn : Q(x) = 0}

which is smooth submanifold of codimension one. Observe that Q(0) = 0. If Q is either positive-
de�nite or negative-de�nite then {Q(x) = 0} is an ellipsoid, in particular, it is a connected compact

12
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Figure 2: Q positive-de�nite, negative-de�nite and neither.

set and {x ∈ Rn : Q(x) 6 0} is a convex set (see �rst two cases in �gure 2). If Q is neither
positive-de�nite nor negative-de�nite then {Q(x) = 0} is a hyperboloid, and in particular, it is not
a bounded set. However, it could be connected or not (see third case of �gure 2).

Lemma 10. Let Q : Rn → R given by

Q(x) = Nx+ xtMx

with x ∈ Rn, N ∈ Rn and M ∈ Rn×n. Let us assume that Ni < 0 for any i and for any j > i,
|Ni| > |Nj |. Let

M0 = max
i, j>i

{Mij +Mji

−Ni
, 0}.

Then, the set ∆ 1
M0

= {x ∈ Rn : xi > 0,
∑n

i=1 xi <
1

M0
} is contained in {x : Q(x) < 0}. In particular,

if M0 = 0 then 1
M0

is treated as ∞ and this means that {x ∈ Rn : xi > 0} ⊂ {x : Q(x) 6 0}.

Proof. For any v ∈ Rn such that vi > 0 and
∑

i vi = 1, we consider the following one dimensional
quadratic polynomial, Qv : R → R given by

Qv(s) := Q(sv) = sNv + s2vtMv.

To prove the thesis of the lemma, we claim that is enough to show that

�for any positive vector v with norm equal to 1, if 0 < s <
1

M0
thenQv(s) < 0�; (17)

in fact, to prove that claim, we can argue by contradiction: if there is a point x0 ∈ ∆ 1
M0

di�erent

than zero (i.e.: 0 < |x0| < 1
M0

) such that Q(x0) = 0, then taking v = x0
|x0| and s = |x0| follows that

Qv(s) = Nx0 + xt0Mx0 = 0, but |v| = 1, s < 1
M0

, a contradiction.
Now we proceed to show (17). Observe that the roots of Qv(s) are given by s = 0 and

s =
−Nv

vtMv
.

Observe that
−Nv =

∑
(−Ni)vi > 0.

If vtMv < 0 then it follows that Qv is a one dimensional quadratic polynomial with negative
quadratic term and two non-positive roots, so for any s > 0 holds that Qv(s) < 0 and therefore

13



proving the claim in this case. So, it remains to consider the case that vtMv > 0. In this case,
since Qv is a one dimensional quadratic polynomial with positive quadratic term (vtMv), therefore
for any s between both roots (0, −Nv

vtMv ) follows that Q < 0 so to �nish we have to prove that

−Nv

vtMv
> 1

M0
. (18)

Using that
∑

j>i vj 6 1 observe

vtMv =
∑
ij

vivjMij

=
∑
i

[v2iMii +
∑
j>i

vivj(Mij +Mji)]

6
∑
i

[v2i (−Ni)M0 +
∑
j>i

vivj(−Ni)M0] =

= M0

∑
i

(−Ni)vi[
∑
j>i

vj ]

6 M0

∑
i

(−Ni)vi

= M0(−Nv).

Therefore, (18) holds and so proving (17).

Now we provide the proof of theorem 1.
Proof of theorem 1: We consider the a�ne change of coordinates: x̄1 = 1 −

∑
j>2 xj , x̄j = xj , j =

2, . . . , n introduced before. Let X = (X2, . . . , Xn) the vector �eld in these coordinates, where
Xj = x̄jFj(x̄). For any k < 1 we denote

∆k := {x̄ :
∑
i>2

xi 6 k}, ∂∆k = {x̄ :
∑
i>2

xi = k}.

We want to show that for any initial condition x̄ in the region ∆ 1
M0

follows that the map

t → x̄(t) =
∑
i>2

x̄k(t)

is a strict decreasing function and so the trajectories remains inside ∆ 1
M0

and since it can not escape

∆ it follows that x̄(t) → 0 and therefore the trajectory converge to (0, . . . , 0). To do that, we prove

˙̄x < 0.

Therefore, we have to show

Q(x̄) := ˙̄x =
∑
j>2

Xj =
∑
j>2

xjFj(x̄) < 0. (19)

Recall that Fj = (fj − f1)(x̄) + R(x̄) where R(x̄) =
∑

l>2 (f1 − fl)(x̄)xl (see equations (10) and
(11)). Therefore,

Q(x̄) =
∑
j>2

(fj − f1)(x̄)xj +
∑
j>2

R(x̄)xj

=
∑
j>2

(fj − f1)(x̄)xj +R(x̄)
∑
j>2

xj .

14



Since
∑

j>2 xj = k (with k < 1) follows that

Q(x̄) =
∑
j>2

(fj − f1)(x̄)xj +R(x̄)k.

Recalling the expression of R we get that

Q(x̄) = (1− k)
∑
j>2

(fj − f1)(x̄)xj .

So, to prove inequality (19) is enough to show that

Q(x̄) = (1− k)
∑
j

xj(fj − f1)(x̄) < 0 ∀ x̄ ∈ ∆k, k <
1

M0
.

First we rewrite Q. Observe that

(fj − f1)(x̄) =
∑
i

(aji − a1i)x̄i =

= aj1 − a11 +
∑
i>2

(aji − a1i + a11 − aj1)xi.

If we note the vector
N := (aj1 − a11)j

and the matrix
M := (Mij) = aji − a1i + a11 − aj1.

Therefore,
Q(x̄) = Nx̄+ x̄tMx̄.

So we have to �nd the region given by {x̄ : Q(x̄) = 0}. To deal with it, we apply lemma 10 and we
use equation (16) and the theorem is concluded.

Remark 4. Observe that in the theorem 10 it only matters to compare a11 − ai1 with the entries
Mij +Mji that are positive.

Remark 5. If we apply the proof of lemma 10 to the particular case that v = ej, we are considering
the map

Qv(s) = s[aj1 − a11 + (ajj − a1j + a11 − aj1) s]

and Q(s) = 0 if and only if s = 0 or

s =
a11 − aj1

a11 − aj1 + ajj − a1j
=

1

1 +
ajj−a1j
a11−aj1

= p1j (20)

and so
Q(s) < 0, ∀ 0 < s < p1j .

In particular, if we apply this to theorem 10, it follows that the whole segment [0, p1j) is in the basin
of attraction of e1. In particular, observe that p̂1j = (1 − p1j , . . . , p1j . . . ), is the �xed point of the
replicator dynamics di�erent than e1, ej inside the one dimensional simplex that contains e1, ej.

Remark 6. Observe that the basin of attraction could be much larger than the region given by the
previous theorem. It may be the case that better linear upper bounds for the quadratics map Fj could
provide better estimates for the size of the basin of attraction.
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3.4 Comparing strategies by pairs is not enough

It is natural to wonder if conditions of theorem 10 are necessary? More precisely, is it true that if
M0 is small then the basin of attraction is small? Related to this question, we provide the following
theorem that shows that is not enough to bound by below the basin of attraction only considering
populatios of two strategies. In other words, it is possible to show examples of strategies such that
the basin of attraction of e1 restricted to the axis are large but the whole basin is not large.

We consider a replicator dynamics in dimension two and we write the equation in a�ne coor-
dinates. Given λ > 0 and close to zero, we consider the almost horizontal and vertical lines given
by

Hλ(x1) = (x1, λ(1− x1), Vλ(x2) = (λ(1− x2), x2).

Theorem 2. Given λ > 0 close to zero, a > 0 there exist A ∈ R3×3 such that 0 < aij < a, satisfying
that

(i) (0, 0) is an attractor and the horizontal line (x1, 0), 0 6 x1 < 1 and vertical line (0, x2), 0 6
x2 < 1 are contained in the basin of attraction of (0, 0);

(ii) (1, 0) and (0, 1) are repellers;

(iii) there is a point p = (p1, p2) with p1 + p2 = 1 which is an attractor;

(iv) the region bounded by Hλ, Vλ and x1 + x2 = 1 is contained in the basin of attraction of p.

Proof. To prove the result, we are going to choose A ∈ R3×3 in a proper way such that for any
(x2, x3) ∈ Hλ and (x2, x3) ∈ Vλ follows that X(x2, x3) points towards the region bounded by Hλ, Vλ

and x1 + x2 = 1. For that, it is enough to show that

λ(1− x2)F3(H(x2))

|x2F2(H(x2))|
>

1

4
, F3(H(x2)) > 0 for

λ

1− λ
< x2 < 1, (21)

and

λ(1− x3)F2(V (x3))

|x3F3(V (x3))|
>

1

4
, F2(V (x3)) > 0 for

λ

1− λ
< x3 < 1, (22)

where ( λ
1−λ ,

λ
1−λ) is the intersection point of Hλ and Vλ. Recall the de�nition of N ∈ R2,M ∈ R2×2

that induce the replicator dynamics in a�ne coordinates. Given λ we assume that

(i) N2 = N3,

(ii) m32
N3

= m23
N3

= 1
λ ,

(iii) m22
N2

= m33
N2

= 2.

To get that, and recalling the relation between the coordinates of M and A, we choose the matrix
A such that

(i) a33−a13
N3

= −1, a22−a12
N2

= −1;

(ii) a32 > a22, a23 > a33 and a32−a22
N2

= a23−a33
N2

= 1
λ − 2.
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With this assumption, now we prove that inequality (21) is satis�ed: Let us denote x := x2 and we
�rst calculate F3(x, λ(x− 1)) and F2(x, λ(x− 1)),

F3(x, λ(1− x)) = N3 +m32x+m33λ(1− x)−
[x(N2 +m22x+m23λ(1− x)) + λ(1− x)(N3 +m32x+m33λ(1− x))]

so,

F3(x, λ(1− x))

N3
= 1 +

m32

N3
x+

m33

N3
λ(1− x)−

[x(
N2

N3
+

m22

N3
x+

m23

N3
λ(1− x)) + λ(1− x)(1 +

m32

N3
x+

m33

N3
λ(1− x))]

= 1 +
1

λ
x+ 2λ(1− x)−

[x(1 + 2x+
1

λ
λ(1− x)) + λ(1− x)(1 +

1

λ
x+ 2λ(1− x))]

= 1 + 2λ+ (
1

λ
− 2λ)x− [2λ2 + λ+ (3− λ− 4λ2)x+ 2λ2x2]

= 1 + λ− 2λ2 + (
1

λ
− λ+ 4λ2 − 3)x− 2λ2x2,

F2(x, λ(1− x)) = N2 +m22x+m23λ(1− x)−
[x(N2 +m22x+m23λ(1− x)) + λ(1− x)(N3 +m32x+m33λ(1− x))]

so,

F2(x, λ(1− x))

N2
= 1 +

m22

N2
x+

m23

N2
λ(1− x)−

[x(1 +
m22

N2
x+

m23

N2
λ(1− x)) + λ(1− x)(1 +

m32

N2
x+

m33

N2
λ(1− x))]

= 1 + 2x+
1

λ
λ(1− x)−

[x(1 + 2x+
1

λ
λ(1− x)) + λ(1− x)(1 +

1

λ
x+ 2λ(1− x))]

= 2 + x− [x+ 2x2 + (1− x)[1 + λ+ 2λ2 + (1− 2λ2)x]]

= (1− x)[2(1 + x)− [1 + λ+ 2λ2 + (1− 2λ2)x]]

= (1− x)[1− λ− 2λ2 + (1 + 2λ2)x].

Therefore, on one hand observe that 1 + λ − 2λ2 + ( 1λ − λ + 4λ2 − 3)x − 2λ2x2 is a quadratic

polynomial with negative leading term that is positive at 1 and λ
1−λ (provided that |λ| is small) so

is positive for λ
λ−1 < x < 1, on the other hand (1 − x)[1 − λ − 2λ2 + (1 + 2λ2)x] is positive in the

same range, so

λ(x− 1)F3(x, λ(x− 1))

|xF2(x, λ(x− 1))|
=

λ[1 + λ− 2λ2 + ( 1λ − λ+ 4λ2 − 3)x− 2λ2x2]

x[1− λ− 2λ2 + (1 + 2λ2)x]
;

since the minimum of the numerator is attained at λ
1−λ getting a value close to 1 and the maximum

of the denominator is attained at 1 getting a value close to 2, follows that in the range λ
λ−1 < x < 1

holds
λ(x− 1)F3(x, λ(x− 1))

|xF2(x, λ(x− 1))|
> 1

3
,
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and therefore the inequality (21) is proved. The proof of inequality (22) is similar and left for the
reader.

4 Replicator dynamics and In�nitely Repeated Prisoner's dilemma

with trembles. Strategies having a uniformly large basin of at-

traction

In the rest of the paper we study the replicator dynamics when the matrix of payo�s is given by a
�nite set of strategies S = {s1, . . . , sn} from an in�nitely repeated prisoners' dilemma game with
discount factor δ and error probability 1 − p. It is well known, that any strict sgp is an attractor
in any population containing it. In this case, with Bloc(s, δ, p,S) we denote the local basin of
attraction of s in any set of strategies S and identifying s with s1. Related to that we give the
following de�nition:

De�nition 3. We say that a strategy s has a uniformly large basin if there is K0 verifying that for
any �nite set of strategies S containing s and any δ and p close to one, it holds that

{(x1, . . . , xn) : x2 + · · ·+ xn 6 K0} ⊂ Bloc(s, p, δ,S)

where n = cardinal(S).

One particular case of previous de�nition is when S has only one strategy di�erent than s. In
this case, and based on remark 5 we can obtain the following remark:

Lemma 11. If s has a uniformly large basin then there exists C0 such that for any strategy s∗ and
for any p, δ large (independently of s∗) follows that

Uδ,p(s
∗, s∗)− Uδ,p(s, s

∗)

Uδ,p(s, s)− Uδ,p(s∗, s)
< C0.

In particular,

lim
δ→1

lim
p→1

Uδ,p(s
∗, s∗)− Uδ,p(s, s

∗)

Uδ,p(s, s)− Uδ,p(s∗, s)
< C0.
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The goal of this paper is to understand which characteristics of strategies lead them to have
uniformly large basin of attraction. We show �rst that a strategy that is commonly used in the
literature, grim, does not have a uniformly large basin of attraction. Then, we show that is due
to the fact that grim never forgives a defection. As a positive results we show that another well
known strategy, win-stay-loose-shift, does have a uniformly large basin of attraction under certain
conditions.

5 Grim does not have a uniformly large basin of attraction

In this section, we prove that the strategy Grim (g from now on), which cooperates in the �rst
period and then cooperates if there has been no defection before, does not have a uniformly large
basin. To prove it, we are going to �nd a strategy s such that the basin of attraction of g when it
is considered the population formed by s and g is arbitrary small provided that δ and p are close
to 1. In fact, we use the equation (20) to determine the boundary point pg,s =

1

1+
Uδ,p(s,s)−Uδ,p(g,s)

Uδ,p(g,g)−Uδ,p(s,g)

of

the basin of attraction of g (the smaller pg,s is, the smaller the basin of attraction of g is).

Theorem 3. Grim does not have a uniformly large basin of attraction. More precisely, there exists
a strategy s such that for any population S = {s, g} and ε > 0 small, there exist p0, δ0 such that for
any p > p0, δ > δ0, the size of the basin of attraction of grim is smaller than ε.

Proof. We consider the strategy s that behaves like g but forgives defections in the �rst period
(t = 0). We need to show that for any ε > 0 small, there exist p0, δ0 such that for any p > p0, δ > δ0,
follows that

1

1 +
Uδ,p(s,s)−Uδ,p(g,s)
Uδ,p(g,g)−Uδ,p(s,g)

< ε.

From the de�nition of s, for any h verifying that h0 6= (D,D) and any t it follows that

pg,g(ht) = ps,g(ht) = pg,s(ht) = ps,s(ht).

Therefore,

Uδ,p(s, s/(C,C)) = Uδ,p(s, g/(C,C)) = Uδ,p(g, g/(C,C)) = Uδ,p(g, s/(C,C)),

Uδ,p(s, s/(D,C)) = Uδ,p(s, g/(D,C)) = Uδ,p(g, g/(D,C)) = Uδ,p(g, s/(D,C)),

Uδ,p(s, s/(C,D)) = Uδ,p(s, g/(C,D)) = Uδ,p(g, g/(C,D)) = Uδ,p(g, s/(C,D)),

so
Uδ,p(s, s)− Uδ,p(g, s) = Uδ,p(s, s/(D,D))ps,s(D,D)− Uδ,p(g, s/(D,D))pg,s(D,D),

Uδ,p(g, g)− Uδ,p(s, g) = Uδ,p(g, g/(D,D))pg,g(D,D)− Uδ,p(s, g/(D,D))ps,g(D,D).

Recalling that s after (D,D) behaves as g and g after (D,D) behaves as the strategy always defect
(denoted as a) and ps,s(D,D) = ps,g(D,D) = pg,s(D,D) = pg,g(D,D) = (1− p)2, then

Uδ,p(s, s)− Uδ,p(g, s) = (1− p)2δ[Uδ,p(g, g)− Uδ,p(a, g)],

Uδ,p(g, g)− Uδ,p(s, g) = (1− p)2δ[Uδ,p(a, a)− Uδ,p(g, a)].

Therefore, it remains to calculate the payo�s involving a and g. Also observe that for any path h
if we take k as the �rst non-negative integer such that hk 6= (C,C) then for any t > k ps1,s2(ht) =
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ps1,s2(hk)pa,a(σ
k(h)t−k) where s1 and s2 is either g or a and σk(h) is a history path that veri�es

σk(h)j = hj+k.
Therefore

Uδ,p(g, g/hk) = Uδ,p/hk
(a, g) = Uδ,p(g, a/hk) = Uδ,p/hk

(a, a).

So, noting with (C,C)t a path of t consecutive simultaneous cooperation and

L =
∑

t>0,ht

δtpa,a(ht)u(ht) =
1

1− δ
[(1− p)2R+ (S + T )(1− p)p+ p2P ],

follows that

Uδ,p(g, g)− Uδ,p(a, g) =

(1− δ){
∑
t>0

δtu(C,C)[pg,g((C,C)t)− pa,g((C,C)t)] +∑
t>0

δt[u(C,D) + δL][pg,g((C,C)t(C,D)− pa,g((C,C)t(C,D))] +∑
t>0

δt[u(D,C) + δL][pg,g((C,C)t(D,C))− pa,g((C,C)t(D,C))] +∑
t>0

δt[u(D,D) + δL][pg,g((C,C)t(D,D))− pa,g((C,C)t(D,D))]} =

(1− δ){
∑
t>1

δt−1R[p2t − pt(1− p)t] +
∑
t>0

δt[S + δL][p2tp(1− p)− pt(1− p)t(1− p)2] +∑
t>0

δt[T + δL][p2t(1− p)p− pt(1− p)tp2] +
∑
t>0

δt[P + δL][p2t(1− p)2 − pt(1− p)t(1− p)p]}.

Therefore

Uδ,p(g, g)− Uδ,p(a, g) = (1− δ)GA(δ, p)

where

GA(δ, p) = R[
p2

1− p2δ
− p(1− p)

1− p(1− p)δ
] + [S + δL][

p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

[T + δL][
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + [P + δL][

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
].

and we write
GA(δ, p) = GA0(δ, p) +GA1(δ, p)

where

GA0(δ, p) = R[
p2

1− p2δ
− p(1− p)

1− p(1− p)δ
] + S[

p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

T [
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + P [

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
] =

[Rp2 + (S + T )p(1− p) + P (1− p)2][
1

1− p2δ
− 1

1− p(1− p)δ
],
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GA1(δ, p) = δL[
p(1− p)

1− p2δ
− (1− p)2

1− p(1− p)δ
] +

δL[
(1− p)p

1− p2δ
− p2

1− p(1− p)δ
] + δL[

(1− p)2

1− p2δ
− (1− p)p

1− p(1− p)δ
] =

δL[
1− p2

1− p2δ
− 1− (1− p)p

1− p(1− p)δ
].

Observe that when p, δ → 1 then

Rp2 + (S + T )p(1− p) + P (1− p)2 → R,
1

1− p(1− p)δ
→ 1,

1− (1− p)p

1− p(1− p)δ
→ 1

and recalling that (1− δ)L = P̂ = (1− p)2R+(S+T )(1− p)p+ p2P then for δ, p large follows that

(1− δ)GA0(δ, p) > R

2

1− δ

(1− p2δ)
(23)

(1− δ)GA1(δ, p) > P̂

2

1− p2

(1− p2δ)
. (24)

In the same way

Uδ,p(a, a)− Uδ,p(g, a) =

(1− δ){
∑
t>0

δtu(C,C)[pa,a((C,C)t)− pg,a((C,C)t)] +∑
t>0

δt[u(C,D) + δL][pa,a((C,C)t(C,D)− pg,a((C,C)t(C,D))] +∑
t>0

δt[u(D,C) + δL][pa,a((C,C)t(D,C))− pg,a((C,C)t(D,C))] +∑
t>0

δt[u(D,D) + δL][pa,a((C,C)t(D,D))− pg,a((C,C)t(D,D))]} =

(1− δ){
∑
t>1

δt−1R[(1− p)2t − pt(1− p)t] +
∑
t>0

δt[S + δL][(1− p)2tp(1− p)− pt(1− p)tp2] +∑
t>0

δt[T + δL][(1− p)2t(1− p)p− pt(1− p)t(1− p)2] +∑
t>0

δt[P + δL][(1− p)2tp2 − pt(1− p)t(1− p)p]}.

Therefore

Uδ,p(a, a)− Uδ,p(g, a) = (1− δ)AG(δ, p)

where

AG(δ, p) = R[
(1− p)2

1− (1− p)2δ
− p(1− p)

1− p(1− p)δ
] + [S + δL][

p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

[T + δL][
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] + [P + δL][

p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
]
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and we write
AG(δ, p) = AG0(δ, p) +AG1(δ, p)

where

AG0(δ, p) = R[
(1− p)2

1− (1− p)2δ
− p(1− p)

1− p(1− p)δ
] + S[

p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

T [
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] + P [

p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
]

AG1(δ, p) = δL[
p(1− p)

1− (1− p)2δ
− p2

1− p(1− p)δ
] +

δL[
(1− p)p

1− (1− p)2δ
− (1− p)2

1− p(1− p)δ
] + δL[

p2

1− (1− p)2δ
− (1− p)p

1− p(1− p)δ
] =

δL[
2p(1− p)

1− (1− p)2δ
− 1− p

1− p(1− p)δ
] + δL[

p2

1− (1− p)2δ
− p2

1− p(1− p)δ
] =

δL[
2p(1− p)

1− (1− p)2δ
− 1− p

1− p(1− p)δ
] + δL[

p2(1− p)

(1− (1− p)2δ)(1− p(1− p)δ)
] =

δL(1− p)[
2p

1− (1− p)2δ
− 1− p

1− p(1− p)δ
+

p2δ

(1− (1− p)2δ)(1− p(1− p)δ)
]

Observe that when p, δ → 1 then

AG0(δ, p) → AG0(1, 1) = P − S,

2p

1− (1− p)2δ
− 1− p

1− p(1− p)δ
+

p2δ

(1− (1− p)2δ)(1− p(1− p)δ)
→ 3

and recalling that (1− δ)L = P̂ = (1− p)2R+(S+T )(1− p)p+ p2P then for δ, p large follows that

(1− δ)AG0(δ, p) 6 2(1− δ)(P − S) (25)

(1− δ)AG1(δ, p) 6 4(1− p)P̂ . (26)

Recall now that the size of the basin of attraction of a is given by

E(δ, p) :=
1

1 + (1−δ)GA(δ,p)
(1−δ)AG(δ,p)

.

Observe that for any ε > 0 for p, δ large then from inequalities (23) and (25)

(1− δ)AG0(δ, p) 6 ε(1− δ)GA0(δ, p)

and from inequalities (24) and (26)

(1− δ)AG1(δ, p) 6 ε(1− δ)GA1(δ, p),

therefore, for p, δ large

E(δ, p) 6 1

1 + 1
ε

=
ε

1 + ε

and so the theorem is concluded.
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Theorem 3 shows that the well known strategy grim does not have a uniformly large basin of
attraction given that after a defection it behaves like always defect. In an world with trembles
unforgivingness is evolutionary costly. We formalize next the idea of unforgivingness and and
provide a general results regarding the basin of attraction of unforgiving strategies.

De�nition 4. We say that a strategy s is unforgiving if there exists a history ht such that for all
ht+τ with τ = 0, 1, 2... follows s(ht+τ/ht) = D.

Theorem 4. Unforgiving strategies do not have a uniformly large basin of attraction.

The proof is similar to the proof of theorem 3 with the di�erence that the �rst point of divergence
may not be t = 1.

It remains to be shown that there exists strategies with uniformly large basins of attraction.
To do that we must �rst develop some simple way of calculating payo�s under the presence of
trembles. This calculations will help us prove that there exist strategies with uniformly large basins
of attractions.

6 E�ciency and size of basin of attraction; the symmetric case

In the present section we study the relationship between e�ciency of a strategy and the size of its
basin of attraction. Roughly speaking, full e�ciency means that strategies cooperate with itself.
We prove, that this is the case for any strategy that hs a uniformly large basin of attraction.

Given a �nite path ht, and a pair of strategies s, s∗ it is de�ned

U(s, s/ht) = lim
δ→1

lim
p→1

Uδ,p(s, s/ht).

De�nition 5. It is said that a strategy s is e�cient if for any �nite path ht follows that

U(s, s/ht) = R.

Question 1. Which is the relation between e�ciency and being a uniform large basin strategy?

We provide a positive answer to previous question for symmetric strategues:

De�nition 6. we say that a strategy s is symmetric if for any �nite path ht it follows that

s(ht) = s(ĥt).

Theorem 5. If s has a uniform large basin of attraction and is symmetric, then is e�cient.

Previous result establish e�ciency if the probability of mistake is much smaller than 1− δ. An
easy corollary is the following:

Corollary 1. If s has uniform large basin of attraction and is symmetric, then for any R0 < R
there exists δ0 := δ0(s) such that for any δ > δ0 there exists p0(δ) verifying that if δ > δ0, p > p0(δ)
then for any path ht follows that

Uδ,p(s, s/ht) > R0.

Here it is important to compare the statement of theorem 3 wit theorem 5 and corollary 1. On
one hand, observe that the conclusion of theorem 3 is obtained for any δ > δ0 and any p > p0;
instead, in corollary 1 is for d > δ0 but p > p(δ)with p(δ) strongly depending of δ. On the other
hand, a weake version of theorem 3 can be concluded from corollary 1.
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Lemma 12. If s has a uniformly large basin of attraction, then there exists C0 such that for any
s∗ and ht follows that

lim
δ→1

lim
p→1

Uδ,p(s
∗, s∗/ht)− Uδ,p(s, s

∗/ht) + Uδ,p(s
∗, s∗/ĥt)− Uδ,p(s, s

∗/ĥt)

Uδ,p(s, s/ht)− Uδ,p(s∗, s/ht) + Uδ,p(s, s/ĥt)− Uδ,p(s∗, s/ĥt)
< C0.

Proof. It follows immediately from lemma 11 considering a strategy s∗ such that the �rst deviation
from s occurs at ht (and obviously at also at ĥt).

Proof of theorem 5: Let us assume that there exists a path ht and λ0 < 1 such that

U(s, s/ht) = λ0R

and s is a Sub Game Perfect. We start assuming that h is no symmetric. Then we show how to
deal with the symmetric case using the asymmetric one.

From the fact that s is symmetric, then follows that

U(s, s/ht) = U(s, s/ĥt)

and therefore
U(s, s/ht) + U(s, s/ĥt) = 2λ0R.

Moreover, we can assume that s(ht) = D. We are going to get a strategy s∗ such that

(i) U(s∗, s∗/ht) = U(s∗, s∗/ĥt) = R,

(ii) s∗ acts like s after the sequel of ht and ĥt.

To build that strategy s∗, �rst we take s∗ such that s∗(ht) = s∗(ĥt) = C and then we consider all
the equilibriums that follows after ht, ĥt for the pairs s, s; s

∗, s; s, s∗; s∗, s∗:

(i) ht(D,D), ĥt(D,D) for s, s

(ii) ht(C,D), ĥt(C,D) for s∗, s

(iii) ht(D,C), ĥt(D,C) for s, s∗

(iv) ht(C,C), ĥt(C,C) for s∗, s∗.

Observe that the paths involving ht are all di�erents and the same holds for the paths involving ĥt.
Now we request that s∗ after ht(C,C) and ĥt(C,C) plays C so

hs∗,s∗/ht
= (C,C) . . . (C,C) . . . , hs∗,s∗/ĥt

= (C,C) . . . (C,C) . . . ,

and so
U(s∗, s∗/ht) = U(s∗, s∗/ĥt) = R.

We also request that

s∗(ht(C,D)) = s(ht(C,D)), s∗(ĥt(C,D)) = s(ĥt(C,D)),

and observe that both requirement can be satis�ed simultaneously and inductively we get that

hs∗,s/ht(C,D) = hs,s/ht(C,D), hs∗,s/ĥt(C,D) = hs,s/ĥt(C,D).
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From the fact that s is symmetric, it follows that each entry of hs∗,s/ht(C,D) = hs,s/ht(C,D) and
hs∗,s/ĥt(C,D) = hs,s/ĥt(C,D) is (C,C) or (D,D) and recalling equality 7 follows that

U(s∗, s/h) + U(s∗, s/ĥ) = U(s, s∗/h) + U(s, s∗/ĥ).

Since, s is a Sub Game Perfect then U(s∗, s/ht) + U(s∗, s/ĥt) < 2λ0R and therefore U(s, s∗/ht) +
U(s, s∗/ht) < 2λ0R; by remark (12) follows that if we denote U(s∗, s/ht) + U(s∗, s/ĥt) = 2λ1R,
then

1− λ1

λ0 − λ1
< C0, (27)

and taking a positive constant C1 < 1− λ0 < 1− λ1 it follows that λ1 satis�es inequality

C1

λ0 − λ1
< C0. (28)

Therefore, it follows that there exists γ > 0 such that

λ1 < λ0 − γ.

Now, we consider the path ht(C,D) and we denote it as ht2 and as before we construct a new
strategy s∗2 that satis�es the same type of properties as the one satis�ed by s∗ respect to s but on
the path ht2 instead on the path ht. Inductively, we construct a sequences of paths hti , strategies
s∗i and constants λi such that

U(s∗i , s/hti) = λiR (29)

and they satisfy the following equation equivalent to (27)

1− λi+1

λi − λi+1
< C0, (30)

and since λi+1 < λi then also satisfy an equation equivalent to (28)

C1

λi − λi+1
< C0. (31)

and therefore
λi+1 < λi − iγ

but this implies that λi → −∞ and so U(s∗, s/hti) → −∞, a contradiction because utilities along
equilibrium are bounded by P.

To �nish, we have to deal with the case that ht is symmetric. For that, let us consider the sequel
path ht(C,D). We claim that if U(s, s/ht) < R then

U(s, s/ht(C,D)) < R.

In fact, we can consider the strategy s∗ such that only di�ers on ht and after that plays the same
as s plays. Since s is a Sub Game Perfect, it follows that Uδ,p(s, s/ht) > Uδ,p(s

∗, s/ht) therefore,
U(s, s/ht) = limδ→1 limp→1 Uδ,p(s, s/ht) > limδ→1 limp→1 Uδ,p(s

∗, s/ht), but since

lim
δ→1

lim
p→1

Uδ,p(s
∗, s/ht) = lim

δ→1
lim
p→1

Uδ,p(s, s/ht(C,D)) = U(s, s/ht(C,D))

the result follows.
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7 Revisiting the su�cient conditions to have a uniformly large

basin

In the present section we provide general su�cient conditions to guarantee that a strategy has a
uniformly large basin (see de�nition 3), i.e., conditions that implies that a strategy has a uniform
large basin of attraction independent of the initial population, for large discount factor and small
trembles. This is based in theorem 1. In subsection 7.1 we introduce another type of condition
easier to calculate than the previous one, which also implies that a given strategy satisfying it is
a uniform large basin strategy. From now on, we are going to take p > p(δ) where p(δ) is the one
given by remark 46.

Given two strategies s1, s2 to avoid notation, we write

Nδ,p(s1, s2) := Uδ,p(s1, s1)− Uδ,p(s2, s1).

Let s be a subgame perfect. Given s′ and s∗ with Nδ,p(s, s
∗) > Nδ,p(s, s

′) we consider the following
number

Mδ,p(s, s
∗, s′) :=

Nδ,p(s, s
∗) +Nδ,p(s, s

′) + Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′),

Nδ,p(s, s∗)
.

Mδ,p(s) := sup
Nδ,p(s,s∗)>Nδ,p(s,s′)

{Mδ,p(s, s
∗, s′), 0}.

Remark 7. If we take the payo� matrix associated to a set of strategies that includes s, s∗, s′ and
s = e1, s

∗ = ei, s
′ = ej it follows that Mδ,p(s, s

∗, s′) =
Mij+Mji

−Ni
as in lemma 1 and theorem 10.

Remark 8. Observe that in the case that s∗ = s′, the quantity Mδ,p(s, s
∗, s′) is equal to

2[Nδ,p(s, s
∗) +Nδ,p(s, s

∗)]

Nδ,p(s∗, s)
= 2Mδ,p(s, s

∗).

So, for the purpose of bounding Mδ,p(s) from +∞ it is enough to take the supreme over Mδ,p(s, s
∗, s′).

Observe also that if we only considere the population {s, s∗} then the segment [0, 1
Mδ(s,s∗)

) is in the

basin of attraction of s (provided that s is identi�ed with e1).

De�nition 7. We say that a strategy s satis�es the �Large Basin strategy condition" if it is a
subgame perfect strategy and if there exist δ0 and M0 such that for any δ > δ0 and p > p(δ) there
exists M0(δ) verifying

Mδ,p(s) < M0(δ) < ∞.

We can also de�ne
M(s) := lim sup

δ,p→1
Mδ,p(δ)(s)

and observe that in this case, if M(s) < ∞ then s has a large basin of attraction (but the size could
depend on δ and p).

Remark 9. It is important to remark that it could hold that lim supδ→1 sups∗{Mδ,p(δ)(s, s
∗)} < +∞

but M(s) = +∞. This means that to guarantee a uniform L1−size basin in any population, it is not
enough that a strategy has uniform size of basin against any other strategy.
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De�nition 8. We say that a strategy s satis�es the � uniformly Large Basin condition" if it is a
strict subgame perfect strategy and

M(s) < ∞.

Theorem 6. If s satis�es the �uniformly Large Basin condition�, then s has a uniformly large basin.
More precisely, let β be small. Then, there exists δ0 such that for any δ > δ0 (p > p(δ)) and any
�nite set of strategies S containing s, follows that s is an attracting point such that

B(s) ⊂ Bs
loc(s)

where

B(s) = {(x1, . . . , xn) : x2 + · · ·+ xn 6 1

M(s)
− β}

and n = cardinal(S).
Proof. The proof follows immediately from theorem 1 and the de�nition of M(s). In fact, ordering
the strategies in such a way that s corresponds to the �rst one and N(s, si) > N(s, sj) if j > i then

it follows that for δ large, then the constant M0 = sup{Mij+Mji

−Nii
, 0} < M(s)−β and therefore B(s)

is contained in the basin of attraction of e1.

Remark 10. Observe that to guarantee a uniform size of the basin of the attraction independent of
the population, it is enough to bound a condition that only involves another two strategies.

Remark 11. Given a subgame perfect strategy s and a population S, the lower bound of the size of
the basin of attraction of s can be improved taking

Mδ,p(s,S) := sup
Nδ,p(s,s∗)>Nδ,p(s,s′),s′,s∗∈S

{Mδ,p(s, s
∗, s′), 0}.

To check that Mδ,p(s) < +∞ observe that

Mδ,p(s, s
∗, s′)

=
Nδ,p(s, s

∗) +Nδ,p(s, s
′) + Uδ,p(s

′, s∗)− Uδ,p(s, s
∗) + Uδ,p(s

∗, s′)− Uδ,p(s, s
′)

Nδ,p(s, s∗)

= 1 +
Nδ,p(s, s

′)

Nδ,p(s, s∗)
+

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
.

Then if

Zδ,p(s, s
∗, s′) :=

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
,

de�ning

Zδ,p(s) := sup
Nδ,p(s,s∗)>Nδ,p(s,s′)

{Zδ,p(s, s
∗, s′)}

and using that
Nδ,p(s,s

′)
Nδ,p(s,s∗)

6 1 then follows that Mδ,p(s) < +∞ if and only if Zδ,p(s) < +∞.

In other words, s is a �Large Basin strategy� if and only if Zδ,p(s) < +∞. Similarly, de�ning

Z(s) := lim sup
δ,p(δ)→1

Zδ,p(s),

s is a �uniform Large Basin strategy� if and only if

Z(s) < +∞.

Question 2. Is the uniformly large basin condition (recall de�nition 8) a necessary condition for
a strategy to have a uniformly large basin strategy? In other words, does s satisfy the large basin
condition?
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7.1 Asymptotic bounded condition

We provide now a condition that implies that s is has a uniformly Large Basin of attraction. This
new conditions are based on the conditions de�ned before but are easier to calculate. Moreover, if
a strategy satis�es them it follows that has a uniformly large basin of attraction.

De�nition 9. We say that a subgame perfect strategy s satis�es the asymptotic bounded condition
if

� there exists R0 such that for any s∗ holds

lim sup
δ→1,p→1,p>p(δ)

sup
s∗:Nδ,p(s,s∗)>0

Uδ,p(s, s)− Uδ(s, s
∗)

Nδ,p(s, s∗)
< R0, (32)

� there exists R1 such that for any s∗, s′ that Nδ,p(s, s
∗) > Nδ,p(s, s

∗) holds

lim sup
δ→1,p→1,p>p(δ)

sup
s∗:Nδ(s,s∗)>0

Uδ,p(s
′, s∗) + Uδ,p(s

∗, s′)− 2Uδ,p(s, s)

Nδ,p(s, s∗)
< R1. (33)

Theorem 7. Let s be subgame perfect strategy satisfying the asymptotic bounded condition. Then,
s has a uniformly large basin of attraction.

Proof. Recalling that Nδ,p(s, s
′) 6 Nδ,p(s, s

∗) we need to bound by above the following expression

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
.

So,

Uδ,p(s
′, s∗)− Uδ,p(s, s

∗) + Uδ,p(s
∗, s′)− Uδ,p(s, s

′)

Nδ,p(s, s∗)
=

=
Uδ,p(s

′, s∗) + Uδ,p(s
∗, s′)− 2Uδ,p(s, s)

Nδ,p(s, s∗)
+

+
Uδ,p(s, s)− Uδ,p(s, s

∗)

Nδ,p(s, s∗)
+

Uδ,p(s, s)− Uδ,p(s, s
′)

Nδ,p(s, s∗)
6

6 R1 +
Uδ,p(s, s)− Uδ,p(s, s

∗)

Nδ,p(s, s∗)
+

Uδ,p(s, s)− Uδ,p(s, s
′)

Nδ,p(s, s′)

Nδ,p(s, s
′)

Nδ,p(s, s∗)

6 R1 + 2R0.

From now on, we denoted

Nδ,p(s, s
∗) := Uδ,p(s, s)− Uδ,p(s

∗, s) (34)

N̄δ,p(s, s
∗) := Uδ,p(s, s)− Uδ,p(s, s

∗) (35)

Bδ,p(s, s
∗, s′) := Uδ,p(s

′, s∗) + Uδ,p(s
∗, s′)− 2Uδ,p(s, s) (36)

Remark 12. From the proof of theorem 7 follows that M(s) 6 2 + 2R0 +R1.

Remark 13. Observe that if it is assumed that (32) holds, then s satis�es the asymptotic bounded
condition if and only if s satis�es the uniformly large basin condition.
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7.2 Having uniform large basin for population of two strategies is not enough

In this section we give an example that shows that when a population of three strategies are
considered it can happen that one of them has a uniform large basin when it is taken the subset of
two strategies but it has not a large basin when the three strategies are considered simultaneously.
In other words, next theorem shows that the example given in theorem 2 can be obtained as the
replicator equation associated to three strategies. In what follows, given a population of three
strategies S = {s, s∗, s′} and its replicator equation (in a�ne coordinates), the �rst strategy is
identi�ed with the point (0, 0). In the theorem below it is considered the repeated prisoner's
dilemma without tremble and the proof in trivially adapted for the cae of trembles provided small
erros of mistake.

Theorem 8. For any λ small, there exists a population of three strategies S = {s, s∗, s′} such that

(i) s is an attractor in S;

(ii) s always cooperate with itself;

(iii) in the population {s, s∗}, s is a global attractor (in the terminology of the replicator equation,
the interior of the simplex associated to {s, s∗} is in the basin of attraction of s);

(iv) in the population {s, s′} s is a global attractor;

(v) the region bounded by Hλ, V + λ and x2 + x3 = 1 does not intersect the basin of attraction of
s.

Proof. Given any small λ > 0, we build three strategies such that identifying s with (0, 0), s∗ with
(1, 0) and s′ with (0, 1) satisfy the hypothesis of theorem 2. We also assume that the strategies s′ and
s∗ deviate from s at the 0−history, s plays always cooperate with itself and so s′(0) = s∗(0) = D.
We �xed γ > 0 and, and we take ε small. Observe that provided any ε > 0 small, taking δ large,
follows that there exist di�erent b′1, b

′
2, b

′
3, b

′
4 and b∗1, b

∗
2, b

∗
3, b

∗
4 such that

0 < R− (b′1R+ b′2T + b′3S + b′4P ) = R− (b∗1R+ b∗2T + b∗3S + b∗4P ) = ε

but
R− (b′1R+ b′2S + b′3T + b′4P ) = R− (b∗1R+ b∗2S + b∗3T + b∗4P ) > γ.

Now, from (C,D) we choose s, s′, s∗ such that

Uδ(s, s
∗) = Uδ(s, s

′) = b′1R+ b′2T + b′3S + b′4P

but in such a way that s′ 6= s∗. To show that it is possible to choose s′ independently of s∗ against
s is enough to take s′(C,D) 6= s∗(C,D). Now, we take s∗ and s′ from (D,D) such that

s∗(D,D) 6= s′(D,D)

and
Uδ(s

∗, s∗)− Uδ(s, s
∗) = Uδ(s

∗, s∗)− (b∗1R+ b∗2S + b∗3T + b∗4P ) = −ε,

Uδ(s
′, s′)− Uδ(s, s

′) = Uδ(s
′, s′)− (b′1R+ b′2S + b′3T + b′4P ) = −ε.

Moreover, we can take s′, s∗ such that

Uδ(s
′, s∗) = Uδ(s

′, s∗) = R
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therefore,
Uδ(s

′, s∗)− Uδ(s
∗, s∗) = Uδ(s

′, s∗)− Uδ(s
′, s′) > γ.

So,
Uδ(s

′, s∗)− Uδ(s
∗, s∗)

Uδ(s, s)− Uδ(s∗, s)
>

γ

ε

and so choosing ε properly we can assume that the quotient is equal to 1
λ .

8 Recalculating payo� with trembles

Now, we are developing a criterion to calculate the payo� for certain strategies which roughly
speaking consists in approximating the payo� using equilibrium paths, provided that the probability
of mistake is small. This �rst order approximation allows to prove the asymptotic bounded condition
(see inequalities (32), (33), (39), (41) and lemma 16) for certain types of stratgies (namely strict
subgame perfect strategies, see de�nition 10). In few words, the di�erence in utility between two
strategies can be estimated in the following way (provided that p is su�ciently close to 1):

• �rst, we consider all the paths (on and o� equilibrium) up to its �rst node of divergence
between the two strategies, namely hk, ĥk (see equalities (37, 38, 40)),

• from the node of divergence we only consider equilibrium payo�s (see lemma 15 ).

In particular, if s(h0) 6= s∗(h0) then Uδ,p(s, s) − Uδ,p(s
∗, s) is approximated by Uδ,p,hs,s(s, s) −

Uδ,p,hs∗,s(s
∗, s).

More precissely, recalling that

Nδ,p(s, s
∗) =

∑
hk,h∈R∗

s,s∗

δkps,s(hk)[Uδ,p(s, s/hkĥk)− Uδ,p(s
∗, s/hkĥk)]. (37)

N̄δ,p(s, s
∗) =

∑
hk,h∈R∗

s,s∗

δkps,s(hk)[Uδ,p(s, s/hkĥk)− Uδ,p(s, s
∗/hkĥk)]. (38)

we de�ne

N e
δ,p(s, s

∗) :=
∑

hk,h∈R∗
s,s∗

δkps,s(hk)[Uδ,p(hs,s/hkĥk
)− Uδ,p(hs∗,s/hkĥk

)].

N̄ e
δ,p(s, s

∗) :=
∑

hk,h∈R∗
s,s∗

δkps,s(hk)[Uδ,p(hs,s/hkĥk
)− Uδ,p(hs,s∗/hkĥk

)]

where given strategies s1, s2

Uδ,p(hs1,s2/hkĥk
) := Uδ,p(hs1,s2/hk

) + Uδ,p(hs1,s2/hk
).

We look for conditions such that there exists a uniform constant C

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)
+ C. (39)
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A similar approach we develop for Bδ,p(s, s
′, s∗) that consists in comparing di�erent paths for three

strategies s, s∗, s′. Given any pair of paths h, ĥ where s, s′, s∗ di�er (meaning that at least two of
the strategies di�er at some �nite paths contained either in h or ĥ), there exist k′ = k(s, s′, h), k̂′ =

k̂(s, s′, )̂, k∗ = k(s, s∗, h), k̂∗ = k̂(s, s∗, ĥ), such that s(hk′) 6= s′(hk′), s(ĥk′) 6= s′(ĥk′) and s(ĥk∗) 6=
s∗(ĥk∗). Observe that some of them could be in�nity.

We take
k(s, s′, s∗) := min{k′, k̂′, k∗, k̂∗}

which is �nite and observe that

pss(hk) = ps′s∗(hk) = ps∗s′(hk) = ps∗s(hk) = ps′s(hk)

pss(ĥk) = ps′s∗(ĥk) = ps∗s′(ĥk) = ps∗s(ĥk) = ps′s(ĥk).

so

Bδ,p(s, s
∗, s′) =

∑
h:k(s,s′,s∗)

δkpss(hk)[Uδ,p(s
′, s∗/hkĥk) + Uδ,p(s

∗, s′/hkĥk)− 2Uδ,p(s, s/hkĥk)]. (40)

Now we de�ne

Be
δ,p(s, s

∗, s′) =
∑

h:k(s,s′,s∗)

δkpss(hk)[Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hs,s/hkĥk
)].

So, in a similar way we look for conditions such that there exists a uniform constant C

Bδ,p(s, s
∗, s′)

Nδ,p(s, s∗)
6

Be
δ,p(s, s

∗, s′)

N e
δ,p(s, s

∗)
+ C. (41)

We are going to restrict a relation between p and δ. From now on we assume that

p >
√
δ. (42)

Moreover, and to simplify calculations we change the usual renormalization factor 1−δ by 1−p2δ
p2

and so we calculate the payo� as following:

Uδ,p(s1, s2) =
1− p2δ

p2

∑
t>0,at,bt

δtps1,s2(at, bt)u(a
t, bt).

Both ways calculating the payo� (either with renormalization 1− δ or 1−p2δ
p2

) are equivalent as they
rank histories in the same way.

In addition it holds that:
1

2
<

1− δ

1− δp2
< 1.

Observe that if s1 = s2 along the equilibrium it follows that

Uδ,p(hs,s) =
1− δp2

p2

∑
t>0

p2t+2δtu(at, at) 6 R.

Lemma 13. Given any pair of strategies s1, s2 it follows that

|Uδ,p(h
c
s2,s1/ht

)| < 1− p2

p2(1− δ)
M

where M = max{T, |S|}.
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Proof. Observe that �xed t then ∑
ht

ps1,s2(ht) = 1,

since in the equilibrium path at time t the probability is p2t+2 it follows that∑
ht /∈NE

ps1,s2(ht) = 1− p2t+2.

Therefore, and recalling that u(ht) 6 M,

|Uδ,p(h
c
s2,s1/ht

)| = |1− p2δ

p2

∑
t>0,ht /∈NE

δtps1,s2(ht)u(h
t)|

6 1− p2δ

p2

∑
t>0

δt
∑

ht /∈NE

ps1,s2(ht)|u(ht)|

6 1− p2δ

p2
M

∑
t>0

δt(1− p2t+2)

= M [
1− p2δ

p2

∑
t>0

δt − 1− p2δ

p2

∑
t>0

δtp2t+2]

= M [
1− p2δ

p2(1− δ)
− 1]

=
1− p2

p2(1− δ)
M.

Lemma 14. It follows that

Nδ,p(s, s
∗) 6 N e

δ,p(s, s
∗) + 2

1− p2

p2(1− δ)
M ;

N̄δ,p(s, s
∗) 6 N̄ e

δ,p(s, s
∗) + 2

1− p2

p2(1− δ)
M ;

Bδ,p(s, s
∗, s′) 6 Be

δ,p(s, s
∗, s′) + 3

1− p2

p2(1− δ)
M.

The next de�nition is an extension of the de�nition of subgame perfect strategies.

De�nition 10. We say that s is a uniformly strict sub game perfect if for any s∗ follows that given
h ∈ Rs,s∗ then

(1− p2δ)C0 < Uδ,p(hs,s/hk
)− Uδ,p(hs∗,s/hk

), (43)

for p > p0, δ > δ0 where C0, δ0, p0 are positive constants that only depend on T,R, P, S.

Given δ we take p such that it is veri�ed,

3
1− p2

p2(1− δ)

M

C0(1− p2δ)
< 1. (44)
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Since p < 1 follows that 1− p2δ < 1− δ and taking p > 1
2 then to satis�es (44) we require that

3

4

1− p2

(1− δ)2
M

C0
< 1. (45)

Therefore, we take So, we take

p1(δ) =

√
1− 4

3

C0

M
(1− δ)2

and bbserve that is a function smaller than 1 for δ < 1. Then, we de�ne

p(δ) = max{1
2
, p1(δ),

√
δ} (46)

Lemma 15. If s∗ is strict subgame perfect and p > p(δ) (giving by equality 46) then

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)
+ 1;

Bδ,p(s, s
∗, s′)

Nδ,p(s, s∗)
6

Be
δ,p(s, s

∗, s′)

N e
δ,p(s, s

∗)
+ 1.

Proof. It follows from lemma 14, s is a subgame perfect and that inequality (44) is satis�ed

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
6

N̄ e
δ,p(s, s

∗) + 2 1−p2

p2(1−δ)
M

N e
δ,p(s, s

∗)(1 + 2 1−p2

p2(1−δ)
M 1

Ne
δp(s,s

∗))
6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)(1 + 2M 1−p2

(1−δ)p2C0(1−p2δ)
)
+ 2M

1− p2

(1− δ)p2C0(1− p2δ)
) 6

N̄ e
δ,p(s, s

∗)

N e
δ,p(s, s

∗)
+ 1.

In a similar way it is done the estimate for
Bδ,p(s,s

∗,s′)
Nδ,p(s,s∗)

.

Now we will try to estimate
Uδ,p(s,s)−Uδ,p(s,s

∗)
Uδ,p(s,s)−Uδ,p(s∗,s)

based on lemma 15.

Lemma 16. If p > p(δ) (giving by equality 46) and s is a uniform strict and there exists D such
that for any h ∈ R∗

s,s∗ holds

Uδ,p(hs,s/hkĥk
)− Uδ,p(hs,s∗/hkĥk

)

Uδ,p(hs,s/hkĥk
)− Uδ,p(hs∗,s/hkĥk

)
< D

then
Uδ,p(s, s)− Uδ,p(s, s

∗)

Uδ,p(s, s)− Uδ,p(s∗, s)
< D + 1.
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Proof. It is enough to estimate
N̄δ,p(s,s

∗)
Nδ,p(s,s∗)

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
=∑

h∈Rs,s∗δ,p
δkps,s(hk)(Uδ,p(hs,s/hkĥk

)− Uδ,p(hs,s∗/hkĥk
))∑

h∈Rs,s∗ ,δ,p
δkps,s(hk)(Uδ,p(hs,s/hkĥk

)− Uδ,p(hs∗,s/hkĥk
))

=

∑
k,hk

δkps,s(hk)
Uδ,p(hs,s/hkĥk

)−Uδ,p(hs,s∗/hkĥk
)

Uδ,p(s,s/hkĥk)−Uδ,p(s∗,s/hkĥk)
(Uδ,p(hs,s/hkĥk

)− Uδ,p(hs,s∗/hkĥk
)∑

k,hk
δkps,s(hk)(Uδ,p(hs,s/hkĥk

)− Uδ,p(hs∗,s/hkĥk
)

) 6

D

∑
h∈Rs,s∗δ,p

δkps,s(hk)(Uδ,p(hs,s/hkĥk
)− Uδ,p(hs∗,s/hkĥk

))∑
h∈Rs,s∗ ,δ,p

δkps,s(hk)(Uδ,p(hs,s/hkĥk
)− Uδ,p(hs∗,s/hkĥk

))
= D.

9 win-stay-loose-shift has a uniformly large basin of attraction

In the present section we show that strategies like win-stay-loose-shift satisfy the conditions intro-
duced in subsection 7.1.

De�nition 11. win-stay-loose-shift Let us de�ne the strategy known as Win-stay lose-shift: f it
gets either T or R stays, if not, shifts. To be a subgame perfect strategy it is required that 2R > T+P.
From now on, we denote win-stay lose-shift as w. See [NS] and [RC].

The next lemma is obvious but we state it since is fundamental to do a series of calculations
related to w.

Lemma 17. Given a �nite path ht it follows that w is a symmetric strategy, meaning that

w(ht) = w(ĥt).

Proof. It follows from the fact that

w(C,D) = w(D,C) = D.

Theorem 9. If 2R > T + P then w has a uniformly large basin.

We are going to show that w has a uniformly large basin of attraction strategy. For that, �rst
we prove that w is a uniform strict subgame perfect (this is done in subsection 9.0.1), and later we
show that w satis�es the �Asymptotic bounded condition�. Recall that we need to bound

N̄δ,p(s, s
∗)

Nδ,p(s, s∗)
(47)

and

B̄δ,p(s, s
∗, s′)

Nδ,p(s, s∗)
(48)

this is done in subsection 9.0.2 and 9.0.3, respectively.
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9.0.1 w is a uniformly strict subgame perfect.

Given hk we have to estimate
Uδ,p(hw,w/hk

)− Uδ,p(hs,w/hk
)

where hw,w/hk
is the equilibrium path for w,w starting with hk and hs,w/hk

is the equilibrium path
for s, w starting with hk.

In what follows, to avoid notation, with U(., .) we denote Uδ,p(h.,./hk
). Following that, we take

b1 =
1− p2δ

p2

∑
j:uj(s,w/hk)=R

p2j+2δj , b2 =
1− p2δ

p2

∑
j:uj(s,w/hk)=S

p2j+2δj ,

b3 =
1− p2δ

p2

∑
j:uj(s,w/hk)=T

p2j+2δj , b4 =
1− p2δ

p2

∑
j:uj(s,w/hk)=P

p2j+2δj .

Observe that
b1 + b2 + b3 + b4 = 1

and
U(s, w) = b1R+ b2S + b3T + b4P.

From the property of w, for each T that s can get (s plays D and w plays C) follows that in the
next move s may get either S or P because w plays D, so,

b2 + b4 > p2δb3. (49)

To calculate U(w,w) we have to consider either s(hk) = C, w(hk) = D or s(hk) = D, w(hk) = C.
So, from lemma 17

U(w,w) =

{
R if w(hk) = C
1−p2δ
p2

P + p2δR if w(hk) = D

To calculate U(s, w) in case that s(hk) = D,w(hk) = C, writing R = b1R + b2R + b3R + b4R by
inequality (49) it follows that

U(w,w)− U(s, w) = b2(R− S) + b3(R− T ) + b4(R− P )

> (b2 + b4)(R− P ) + b3(R− T )

> δp2b3(R− P ) + b3(R− T )

> b3[(1 + p2δ)R− (T + P )].

Observing that if s(hk) = D,w(hk) = C, then

b3 > 1− p2δ

and since 2R − (T + P ) > 0 it follows that for δ and p large (meaning that they are close to one),
then [(1 + p2δ)R− (T + P )] > C0 for a positive constant smaller than 2R− (T + P ) and therefore
(provided that δ and p large are large) follows that

U(w,w)− U(s, w) > (1− p2δ)C0,

concluding that w is a uniform strict subgame perfect in this case.
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In the case that s(hk) = C,w(hk) = D, observe that b2 > 1 − δ and calculating again the
quantities b1, b2, b3, b4 but starting from j > 1 then we get that

U(s, w) = (1− p2δ)S + p2δ[b1R+ b2S + b3T + b4P ].

Therefore, writing p2δR = p2δ[b1R+ b2R+ b3R+ b4R] and arguing as before,

U(w,w)− U(s, w) = (1− p2δ)(P − S) + δ[b2(R− S) + b3(R− T ) + b4(R− P )]

> (1− p2δ)(P − S) + δ[(b2 + b4)(R− P ) + b3(R− T )]

> (1− p2δ)(P − S) + δ[δb3(R− P ) + b3(R− T )]

> (1− p2δ)(P − S) + δb3[(1 + δ)R− (T + P )]

since 2R− (T + P ) > 0 it follows that for δ large (b3 now can be zero)

U(w,w)− U(s, w) > (1− p2δ)(P − S),

proving that w is a uniform strict subgame perfect in this case.

Remark 14. Given ε small follows that for δ large then C0 can be estimated as

C0 = min{P − S, 2R− (T + S)− ε}. (50)

Remark 15. To prove that w is a uniform strict sgp, the main two properties of w used are

(i) it cooperates after seeing cooperation and so U(w,w) = R after w(hk) = C,

(ii) after getting P it goes back to cooperate, so U(w,w) = (1− δp2)P + δp2R after w(hk) = D,

(iii) it punishes after getting S,

(iv) 2R > T + P .

Observe, that the previous calculation does not use that w keeps defecting after obtaining T.

9.0.2 Bounding (47).

First we estimate Uδ,p(w,w)− Uδ,p(s, w) and Uδ,p(w,w)− Uδ,p(w, s). Recall that from lemma 16 it
follows that is enough to bound for any h ∈ R∗

w,s.

Uδ,p(hw,w/hkĥk
)− Uδ,p(hw,s/hkĥk

)

Uδ,p(hw,w/hkĥk
)− Uδ,p(hs,w/hkĥk

)
.

Therefore, we have to bound the �rst term.
Calculating numerator and denominator.
For the moment, to avoid notation, we denote

U(s, s′) := Uδ,p(hs,s′/hkĥh
) = Uδ,p(hs,s′/hk

) + U(hs,s′/ĥk
).

Observe that if U(w,w)− U(s, w) = B2(R− S) +B3(R− T ) +B4(R− P ), then

U(w,w)− U(w, s) = B2(R− T ) +B3(R− S) +B4(R− P ).
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To avoid notation, let us denote L = U(w,w)−U(s, w) = B2(R−S) +B3(R− T ) +B4(R−P ) so,
B4(R− P ) = L− [B2(R− S) +B3(R− T )] and therefore

U(w,w)− U(w, s) = B2(R− T ) +B3(R− S) + L− [B2(R− S) +B3(R− T )]

= L+B2(S − T ) +B3(T − S)

= L+ (B3 −B2)(T − S)

6 L+B3(T − S)

recalling that in case that b3 6= 0 then L = U(w,w)− U(s, w) > B3[(1 + δ)R− (T + P )] (if B3 = 0

then U(w,w)−U(w,s)
U(w,w)−U(s,w) 6 1) it follows that

U(w,w)− U(w, s)

U(w,w)− U(s, w)
6 L+B3(T − S)

L

6 1 +
B3(T − S)

B3[(1 + δ)R− (T + P )]

= 1 +
T − S

(1 + δ)R− (T + P )
.

Therefore,

Uδ,p(hw,w/hkĥk
)− Uδ,p(hw,s/hkĥk

)

Uδ,p(hw,w/hkĥk
)− Uδ,p(hs,w/hkĥk

)
6 1 +

T − S

(1 + δ)R− (T + P )
, (51)

so by lemma 16

Uδ,p(w,w)− Uδ,p(w, s)

Uδ,p(w,w)− Uδ,p(s, w)
6 2 +

T − S

(1 + δ)R− (T + P )
.

Remark 16. The main property of w used to bound (47) is that if b3 6= 0 then

U(w,w)− U(s, w) > b3[(1 + δ)R− (T + P )]

and this follows from the properties listed in remark 15.

9.0.3 Bounding (48)

By lemma 15 we need to bound
Be

δ,p(s, s
∗, s′)

N e
δ,p(s, s

∗)
.

Recall that

Be
δ,p(s, s

∗, s′) =
∑

h:k(s,s′,s∗)

δkpss(hk)[Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hs,s/hkĥk
)].

For the particular case of s = w we divide the paths in two types: either w(hk) = C or w(hk) = D.
In the �rst case we claim that

Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hw,w/hkĥk
) 6 0.
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Observe that Uδ,p(hw,w/hkĥk
) = 2R and by lemma 7 follows tha assertion above. Therefore,

Be
δ,p(s, s

∗, s′) 6
∑

h:k(s,s′,s∗),w(hk)=D

Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hw,w/hkĥk
).

In case that w(hk) = D observe that U(hw,w/hkĥk
) = 21−p2δ

p2
P + 2Rδ. To deal with this situation

we consider two cases: i) s′(hk) = C or s′(ĥk) = C, and ii) s∗(hk) = C or s∗(ĥk) = C. So,

Be
δ,p(s, s

∗, s′) 6
∑

h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uhδ,p(w,w/hkĥk
) +

∑
h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hw,w/hkĥk
).

Case i) s′(hk) = C or s′(ĥk) = C: In this situation follows that h ∈ R∗(s′, w). We rewrite∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hkĥk
) + Uδ,p(hs∗,s′/hkĥk

)− 2Uδ,p(hw,w/hkĥk
) =

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/hkĥk
) +

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/hkĥk
).

Using that h ∈ R∗(s′, w), and again lemma 7 then∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/hkĥk
) 6

1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[S + T − 2P ]

and ∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/hkĥk
) 6

1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[S + T − 2P ]

but since

Uδ,p(w,w)− Uδ,p(s
′, w) > 1− p2δ

p2

∑
h:h∈R∗(s′,w)

pws′(hk)δ
k[2P − (S + P )]

follows that ∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs′,s∗/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/hkĥk
) 6 Uδ,p(w,w)− Uδ,p(s

′, w)

∑
h:s′(hk)=C ors′(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/hkĥk
) 6 Uδ,p(w,w)− Uδ,p(s

′, w).
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Case ii) s∗(hk) = C or s∗(ĥk) = C: In this situation follows that h ∈ R∗(s∗, w), and using this
key statement we conclude in a similar way that∑

h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs∗,s′/ĥk

)− Uδ,p(hw,w/hkĥk
) 6

6 Uδ,p(w,w)− Uδ,p(s
∗, w)∑

h:s∗(hk)=C ors∗(ĥk)=C

Uδ,p(hs∗,s′/hk
) + Uδ,p(hs′,s∗/ĥk

)− Uδ,p(hw,w/hkĥk
) 6

6 Uδ,p(w,w)− Uδ,p(s
∗, w).

Therefore, recalling that

Uδ,p(w,w)− Uδ,p(s
∗, w) > Uδ,p(w,w)− Uδ,p(s

′, w)

we conclude that
Bδ,p(s, s

∗, s′)

Uδ,p(w,w)− Uδ,p(s∗, w)

is uniformly bounded and therefore bounding (48).

9.1 Generalized w for any payo� system

Recall that w is a uniform large basin strategy, provided that 2R > S + T . Now, we consider
w−type strategies that are large basin strategy for any payo� system.

De�nition 12. n-win-stay-loose-shift n−win-stay lose-shift. If it gets either T or R stays; if it
gets S, shifts to D and stays for n−period and then acts as w. We denote it whith wn.

Theorem 10. For any payo� set there exists n such that wn is has a uniformly large basin.

Proof. The proof goes following the same steps that we used to prove that w is a uniform Large
Basin strategy when 2R− (T +P ) > 0 but using that for any payo� matrix there exists n such that

nR > T + (n− 1)P.

To show that wn has a uniformly large basin of attraction, we calculate the quantities b1, b2, b3, b4
for u(s, wn) as it was done for w in subsection 9.0.1. In addition, observe that for wn it follows that

b2 + b4 > δp2
1− (δp2)n

1− δp2
b3

and if n is large enough then 1−(δp2)n

1−δp2
> n− 1 and therefore,

b2 + b4 > (n− 1)b3.

Repeating the same calculation done for w, in case wn(hk) = C, s(hk) = D follows that

U(wn, wn)− U(s, wn) > (n− 1)b3(R− P ) + b3(R− T ) > (1− δp2)[nR− T − (n− 1)P ].

In case wn(hk) = D, s(hk) = C, the calculation is similar.
To bound uniformly the quantities (47) and (48) for wn, we proceed in a same way that was

done for w and it is only changed the upper bound 2R− (T + S) by nR− T − (n− 1)P .
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9.2 Examples of strategies with low frequency of cooperation which have large

basin but they do not have uniformly large basin

In what follows, we give examples of strategies with arbitrary low frequency of cooperation which
they have large basin (with size depending on δ and p), however, those strategies do not have
uniformly large basin of attraction (the last assertion follows from theorem 5). In other words,
the lower bounds of their basin shrinks to zero when δ, p → 0. More precisely, they can not have
uniformly large basin due to theorem 5. Those strategies are built combining w with a. Moreover,
we establish some relation between the frequency of cooperation and the lower bounds of the size
of their local basin (but depending on δ and p).

De�nition 13. We take n large and b0 < 1, we de�ne the strategy awn,b0 as the strategy that in
blocks of times I lw = [l(n + m0n), l(n + m0n) + n − 1] behaves as w and in the blocks of times
I la = [l(n +m0n) + n, (l + 1)(n +m0n) − 1] behaves as a, where m0 denotes the integer part of 1

b0
and l is a non-negative integer.

Theorem 11. For any n large, and any positive b0 the strategy awn,b0 is a large basin strategy, but
not a uniform large basin strategy.

Proof. From now on, and to avoid notation, we denote awn,d0 with aw. First we are going to prove
that aw is a uniform strict sgp.

The strategy aw is a uniform strict sgp: The proof is similar to the one performed for w. Let s
be another strategy and given a path h let k be the �rst deviation (s(hh) 6= aw(hk)). Either k ∈ I lw
or k ∈ I la] for some non-negative l. It follows that

Uδ,p(haw,aw/hk) = b0R+ (1− b0)P

where

b0 =
1− p2δ

p2

∑
j>0:uj(aw,aw/hk)=R

=
1− p2δ

p2

∑
j>0,Ilw

. (52)

Observe that provided δ large, then b0 is close to d0. Now we take s and assuming that it di�ers
in hk and aw(hk) = R, s(hk) = D. In what follows, to avoid notation, with U(., .) we denote
Uδ,p,h.,.(., ./hk). Following that, we take

b1 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=R

p2j+2δj , b2 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=S

p2j+2δj ,

b3 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=T

p2j+2δj , b4 =
1− p2δ

p2

∑
j:uj(s,aw/hk)=P

p2j+2δj .

Observe that
b1 + b2 + b3 + b4 = 1

and
U(s, w) = b1R+ b2S + b3T + b4P.

Moreover, since in blocks I la aw behaves as a then

b4 > 1− b0 (53)
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From the property that aw behaves as w in blocks of the form [l(n+m0n), (l + 1)(n+m0n) + n],
for each T that s can get on those blocks (s plays D and w plays C) follows that in the next move
s may get either S or P because w plays D, so, noting

bw4 =
1− p2δ

p2

∑
j∈Ilw:uj(s,w/hk)=P

p2j+2δj

then

b4 > 1− b0 + bwu (54)

b2 + bw4 > p2δb3. (55)

Writing

U(aw, aw) = b0R+ (1− b0)P = [b0 − (1− b4)]R+ b1R+ b2R+ b3R+ (1− b0)R

by inequalities (53, 54, 55) it follows that

U(aw, aw)− U(s, aw) = [b0 − (1− b4)]R+ b2(R− S) + b3(R− T ) + (1− b0 − b4)(R− P )

> (b0 + b4 − 1 + b2)(R− P ) + b3(R− T )

> (bw4 + b2)(R− P ) + b3(R− T )

> δp2b3(R− P ) + b3(R− T )

> b3[(1 + p2δ)R− (T + P )].

Observing that if s(hk) = D, aw(hk) = C, then

b3 > 1− p2δ

and since 2R − (T + P ) > 0 it follows that for δ and p large (meaning that they are close to one),
then [(1 + p2δ)R− (T + P )] > C0 for a positive constant smaller than 2R− (T + P ) and therefore
(provided that δ and p large are large) follows that

U(aw, aw)− U(s, aw) > (1− p2δ)C0,

concluding that w is a uniform strict subgame perfect in the case aw(hk) = C, s(hk) = D.
In the case that s(hk) = C, aw(hk) = D so we know that

U(aw, aw) =
1− p2δ

p2
P + p2δ[b0R+ (1− b0)P ]

where b0 is calculated as in (52), but starting from j = 1. Calculating again the quantities b1, b2, b3, b4
but starting from j > 1 then we get that

U(s, aw) = (1− p2δ)S + p2δ[b1R+ b2S + b3T + b4P ].

Therefore, Writing

p2δ[b0R+ (1− b0)P ] = p2δ[b0 − (1− b4)]R+ b1R+ b2R+ b3R+ (1− b0)R]
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and observing that also holds inequalities (53, 54, 55) and arguing as before it follows that

U(aw, aw)− U(s, aw) > (1− p2δ)(P − S) + δb3[(1 + δ)R− (T + P )]

since 2R− (T + P ) > 0 it follows that for δ large (b3 now can be zero)

U(aw, aw)− U(s, aw) > (1− p2δ)(P − S),

proving that aw is a uniform strict subgame perfect in the case aw(hk) = D, s(hk) = C.

The strategy aw veri�es the asymptotic bounded condition, but depending on δp2: Bounding (47)
and (48) for aw: To bound Uδ,p(s, s)−Uδ,p(s, aw) we repeat the argument done for w and observe
that the key point is that U(aw, aw/hk) − U(s, aw/hk) > b3((1 + δ)R − (T + S)) which has been
proved when is proved that aw is a uniform strict sgp.

To bound (48) we perform the same approach for w, however the estimates changes depending
on d0. More precisely, given s′ and s∗ follows that

B(s′, s∗, aw) 6 2(1− d0)(R− P ),

therefore, arguing as in the case of w follows that

Bδ,p(s
′, s∗, aw)

Nδ,p(aw, s∗)
6 2(1− d0)(R− P )

(1− p2δ)(P − S)
.

The strategy aw is not a uniform large basin strategy: It follows from the fact that aw is symmetic
but no e�cient.

10 Perturbed Replicator Dynamics

We consider more general equation than the replicator dynamics with the solely restrictions that
individual with low scores dies o� and the ones with high ones �ourish. More precisely, given a
payo� matrix A we consider equations de�ned in the usual n−dimensional simplex

∑
, of the form

ẋi = xiGi(x)

such that
Gi(x) > 0, if and only if (Ax)i − xtAx > 0

Gi(x) < 0, if and only if (Ax)i − xtAx < 0.

In this case, it follows that

Gi(x) = [(Ax)i − xtAx]Hi(x) (56)

where Hi :
∑

→ R. Moreover, form previous assumption it holds that Hi is always positive in the
simplex

∑
. We require a slightly strong condition: C+ = max{Hi(x), x ∈

∑
, i = 1 . . .m} < +∞,

and C− = min{Hi(x), x ∈
∑

, i = 1 . . .m} > 0.
Then

0 < C− 6 Hi < C+. (57)
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The goal is to show that a version of theorem 1 can be obtained in the present case. More precisely,
provided the hypothesis of theorem 1 and assuming equations as above, it is shown that

∆ 1
M0

∩∆ C−
2C+

is contained in the local basin of attraction of e1. The proof, goes through the same strategy: we
shows that for any k 6 min{ 1

M0
, C−

2C+ }, re-writing the equations in a�ne coordinates follows that∑
i>2

xiGi =
∑
i>2

xiFiHi < 0

where Fi is (Ax)i − xtAx in a�ne coordinates. From inequalities (57) it follows that

xiFi(x)Hi(x) < C+xiFi(x), if Fi(x) > 0; xiFi(x)Hi(x) < C−xiFi(x), if Fi(x) < 0.

Recalling that Fj(x) = (fj − f1)(x) +R(x) with R(x) =
∑

l(f1 − fl)(x)xl (the variable x is already
assumed in a�ne coordinates) follows that∑

i

xiFi(x)Hi(x) 6
∑

{i:Fi(x)>0}

C+xiFi(x) +
∑

{i:Fi(x)<0}

C−xiFi(x)

=
∑

{i:Fi(x)>0}

xiC
+(fi − f1)(x) +

∑
{i:Fi(x)<0}

xiC
−(fi − f1)(x)

+ R(x)[
∑

{i:Fi(x)>0}

C+xi +
∑

{i:Fi(x)<0}

C−xi].

If x ∈ ∆k with k < C−

2C+ it follows that
∑

{i:Fi(x)>0} C+xi +
∑

{i:Fi(x)<0} C−xi] 6 C−

2 and recalling
the de�nition of R0 follows that∑

{i:Fi(x)>0}

xiC
+(fi − f1)(x) +

∑
{i:Fi(x)<0}

xiC
−(fi − f1) +R(x)[

∑
C+xi +

∑
C−xi] 6∑

{i:Fi(x)>0}

xiĈ
+(fi − f1)(x) +

∑
{i:Fi(x)<0}

xiĈ
−(fi − f1)

where Ĉ+ = C+ − C−

2 , Ĉ− = C−

2 . Therefore, rewriting the equation as it was done in the proof of
theorem 1 to �nish we have to prove that

N(cx) + xtM(cx) < 0 (58)

where cx = (c1x1, c2x2, . . . , cnxn) and ci is either Ĉ
+ or Ĉ− and N,M are the vector and matrix

induce by A and so. To prove (58), we need a more general version of lemma 10. The proofs are
similar.

Lemma 18. Let c = (c1, . . . , cm) ∈ Rm such that each coordinate is positive. Let Qc : Rm → R
given by

Q(x) = N(cx) + xtM(cx)

with x ∈ Rm, N ∈ Rm, M ∈ Rm×m and cx := (c1x1, . . . , cmxm). Let us assume that Ni < 0 for any
i and for any j > i, |Ni| > |Nj |. Let

M0 = max
i, j>i

{Mij +Mji

−Ni
,

Mii

−Ni
, 0}.

Then, the set ∆ 1
M0

= {x ∈ Rm : xi > 0,
∑m

i=1 xi < 1
M0

}, is contained in {x : Qc(x) < 0}. In

particular, if M0 = 0 then 1
M0

is treated as ∞ and this means that {x ∈ Rm : xi > 0} ⊂ {x :
Qc(x) 6 0}.
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