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Università Ca’ Foscari Venezia, Italy
{halder, cortesi}@unive.it

Abstract

Many slicing techniques have been proposed based on the traditional
Program Dependence Graph (PDG) representation. In traditional PDGs,
the notion of dependency between statements is based on syntactic presence
of a variable in the definition of another variable or on a conditional expres-
sion. Mastroeni and Zanardini first introduced the notion of semantics-
based data dependency, both at concrete and abstract domains, that helps
in converting the traditional syntactic PDGs into more refined semantics-
based (abstract) PDGs by disregarding some false dependences from them.
As a result, the slicing techniques based on these semantics-based (abstract)
PDGs result into more precise slices. In this paper, we strictly improve this
approach by (i) introducing the notion of semantic relevancy of statements,
and (ii) combining it with conditional dependency. This allows us to trans-
form syntactic PDGs into semantics-based (abstract) Dependence Condi-
tion Graphs (DCGs) that enable to identify the conditions for dependences
between program points.

Keywords: Dependence Graph, Program Slicing, Abstract Interpretation

1 Introduction

Program slicing is a well-known decomposition technique that extracts from
programs the statements which are relevant to a given behavior. It is a funda-
mental operation for addressing many software-engineering problems, includ-
ing program understanding, debugging, maintenance, testing, parallelization,
integration, software measurement etc. See, for instance, [6, 14, 15, 18, 23, 25,
26, 28, 31, 33, 34]. The notion of program slice was originally introduced by
Mark Weiser [42] who defines a static program slice as any executable subset
of program statements that preserves the behavior of the original program at
a particular program point for a subset of program variables for all program
inputs. Therefore, the static slicing criteria is denoted by 〈p, v〉 where p is the
program point and v is the variable of interest. This is not restrictive, as it can
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easily be extended to slicing with respect to a set of variables V, formed from
the union of the slices on each variable in V. In contrast, in dynamic slicing
[24], programmers are more interested in a slice that preserves the program’s
behavior for a specific program input rather than for all program inputs: the
dependences that occur in a specific execution of the program are taken into
account. Therefore slicing criteria for dynamic slicing is denoted by 〈p, v, i〉,
where i represents the input sequence of interest.

Program slicing can be defined in concrete as well as in abstract domain [29],
where in the former case we consider exact values of the program variables of
interest, while in the latter case we consider some properties instead of their
exact values. These properties are represented as abstract domains of the
variable domains in the context of Abstract Interpretation [10, 16]. The notion
of Abstract Program Slicing was first introduced by Hong, Lee and Sokolsky
[37] where the abstract interpretation is considered in the restricted area of
predicate abstraction. Some recent works on abstract program slicing, although
few, includes property-driven program slicing [3, 7], semantics-based abstract
program slicing [29, 30] etc. Abstract slicing helps in finding all statements
affecting some particular properties of the variables of interest. For instance,
suppose some variables at some point of execution are not resulting the correct
properties (positive value, say) as desired. In such case, abstract slicing is
considered as an effective way to identify the statements that are responsible
for this error.

The original static slicing algorithm by Mark Weiser [42] is expressed as
a sequence of data-flow analysis problems and the influence of predicates on
statement execution, while Korel and Lasky [24] extended it into the dynamic
context and proposed an iterative dynamic slicing algorithm based on dynamic
data flow and control influence. Both Weiser’s and Korel-Laski’s algorithms
produce executable form [41] of slices that are easier to fit into a theoretical
framework by Binkley [4] which is based on projection theory [19] and provides
relationship between different well-known forms of slicing by exploiting the
requirements of syntactic and semantic equivalence between the slice and the
original program. Recently, Mastroeni and Nicolić [29] extended the theoretical
framework of Binkley [4] to the abstract domain in order to define abstract
slicing, and to represent and compare different forms of slicing in abstract
domain. Slicing criteria in an abstract domain, thus, includes the observable
properties of variables of interest as well. For instance, static and dynamic
abstract slicing criteria are denoted by 〈p, v, ρ〉 and 〈p, v, i, ρ〉 respectively, where
ρ is the observable property of v.

All the techniques mentioned so far make use (explicitly or implicitly) of the
notion of Program Dependence Graph (PDG) [13, 27, 33]. However, different
forms of PDG representations have been proposed, depending on the intended
applications [5, 21]. Over the last 25 years, many PDG-based program slicing
techniques have been proposed [1, 17, 22, 32, 34, 36, 38]. In general, a PDG
makes explicit both the data and control dependences for each operation in
a program. Data dependences have been used to represent only the relevant
data flow relationship of a program, while control dependences are derived
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from the actual control flow graph and represent only the essential control
flow relationships of a program. However, PDG-based slicing is somewhat
restricted: a slice must be taken w.r.t. variables that are defined or used at that
program point.

In traditional PDGs, the notion of dependency between statements is based
on syntactic presence of a variable in the definition of another variable or on
a conditional expression. Therefore, the definition of slices at semantic level
creates a gap between slicing and dependences. Mastroeni and Zanardini [30]
introduce semantic data dependency which fills up the existing gap between
syntax and semantics. The semantic data dependency, which is computed for
each expression in the program over the states possibly reaching these program
points, helps in obtaining a more precise semantics-based PDG by removing the
false dependences from the traditional syntactic PDG. For instance, although
the expression “e = x+4w mod 2” syntactically depends on w, but semantically
there is no dependency as the evaluation of “4w mod 2” is always zero. So, we
can remove this dependency from the syntactic PDG, yielding a more precise
semantics-based PDG. The semantic data dependency can also be lifted to an
abstract domain where dependences are computed with respect to some specific
properties of interest rather than concrete values. This is the basis to design
abstract semantics-based slicing algorithms aimed at identifying the part of the
programs which is relevant with respect to a property (not necessarily the exact
values) of the variables at a given program point.

Sukumaran et al. [39] present a refinement of the traditional PDGs of
programs, called Dependence Condition Graph (DCG), based on the notion
of conditional dependency. The DCG is built from a PDG by annotating each
edge e of the PDG with conditional information eb = 〈eR, eA

〉 under which a
particular dependence actually arises in a program execution. The first part eR

is referred to as Reach Sequences which represents the conditions that should be
true for an execution to ensure that the target e.tgt of e must be executed once
the source e.src is executed for a control edge e, and the target e.tgt is reached
from the source e.src for a data edge e. The component eA is referred to as Avoid
Sequences which is only relevant for data edges (it is ∅ for control edges) and
captures the possible conditions under which the assignment at e.src can get
overwritten before it reaches e.tgt. So, the conditions in eA must not hold for an
execution to ensure that the variable defined at e.src must used at e.tgt.

This report provides two main contributions in this area. The first one is the
introduction of the notion of semantic relevancy of statements w.r.t. a property.
It determines whether a statement is relevant w.r.t. a property of interest, and is
computed over all concrete (or abstract) states possibly reaching the statement.
For instance, consider the following code fragment: {(1) x = input; (2) x =
x + 2; (3) print x; }. If we consider an abstract domain of parity represented by
PAR = {>,ODD,EVEN,⊥}, we see that the variable x at program point 1 may
have any parity from the set {ODD,EVEN}, and the execution of the statement at
program point 2 does not change the parity of x at all. Therefore, the statement
at 2 is semantically irrelevant w.r.t. PAR. By disregarding all the nodes that
correspond to irrelevant statements w.r.t. concrete (or abstract) property from
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a syntactic PDG, we obtain a more precise semantics-based (abstract) PDG.
Observe that the combined effort of semantic relevancy of statements with
the expression-level semantic data dependency introduced by Mastroeni and
Zanardini [30] guarantees a more precise semantics-based (abstract) PDG.

The second contribution of the report is the refinement of the semantics-
based PDGs obtained so far by applying the notion of conditional dependency
proposed by Sukumaran et al. [39]. This allows us to transform PDGs into
Dependence Condition Graphs (DCGs) that enable to identify the conditions
for dependences between program points. We lift the semantics of DCGs from
concrete domain to an abstract domain of interest. The satisfiability of the
conditions in DCGs by (abstract) execution traces helps in removing semanti-
cally unrealizable dependences from them, yielding to refined semantics-based
(abstract) DCGs.

These two contributions in combination with semantic data dependency
[30] lead to an abstract program slicing algorithm that strictly improves with
respect to the literature. The algorithm constructs a semantics-based abstract
DCG from a given program by combining these three notions: (i) semantic
relevancy of statements, (ii) semantic data dependency at expression level [30],
and (iii) conditional dependency based on DCG annotations [39].

The rest of the report 1 is organized as follows: Section 2 recalls some basic
background. Section 3 provides an example that motivates us to propose a fur-
ther refinement of the existing semantics-based abstract PDGs into semantics-
based abstract DCGs by combining the notion of statement relevancy, semantic
data dependency, and conditional dependency. Section 4 introduces how to
compute semantic relevancy of statements and blocks w.r.t. a concrete/abstract
property, and discusses the way to treat the relevancy of control statements
too. The atomicity property of the abstract states, as discussed in Section 5, is
a crucial requirement while computing the statements relevancy. In section 6,
we formalize an algorithm to construct semantics-based abstract PDG from a
given program. The optimization of the relevancy and data dependency com-
putation is discussed in section 7. In section 8, we lift the semantics of DCGs
from concrete to an abstract domain of interest, and we propose a refinement
of syntactic DCCs into semantics-based abstract DCGs. The proposed abstract
slicing algorithm is formalized in section 9. The idempotancy of the proposal
is discussed in section 10. In section 11, we prove the soundness and provide
an overall complexity analysis of the proposal. Section 12 concludes the paper.

2 Preliminaries

In this Section, first we recall some basic ideas about PDG representation of pro-
grams in Static Single Assignment (SSA) form, PDG-based slicing techniques,
and Dependence Condition Graph (DCG) representation; then we recall basic

1The report is a revised and extended version of [8]
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ideas about the Abstract Interpretation theory covering abstract semantics of
expressions, statements and the induced partitioning of abstract domains.

Static Single Assignment (SSA). The SSA form [11] of a program is a se-
mantically equivalent version of the program where each variable has a unique
(syntactic) assignment. The SSA form introduces special φ-assignments at join
nodes of the program where assignments to the same variable along multiple
program paths may converge. Each assignment to a variable is given a unique
name, and all of the uses reached by that assignment are renamed to match the
assignment’s new name. Figure 1(a) and 1(b) depict a program P and its SSA
form Pssa respectively. Observe that the operands to the φ-function indicate
which assignments to x (x1 or x2) reach the join point. The subsequent uses
of x become uses of x3. Thus, there is only one assignment to xi in the entire
program.

1. start
2. x = input;
3. i f (x < 10)
4. x = 4x2;
5. print(x);
6. stop

(a) Program P

1. start
2. x1 = input;
3. i f (x1 < 10)
4. x2 = 4x2

1;
φ. x3 = f (x1, x2);
5. print(x3);
6. stop

(b) Pssa: SSA f orm o f P

Figure 1: Program P and its SSA form Pssa

Program Dependence Graph. Program Dependence Graph (PDG) [13, 27,
33, 40] for a program is a directed graph with vertices denoting program com-
ponents (start, stop, skip, assignment, conditional or repetitive statements) and
edges denoting dependences between components. An edge represents either
control dependence or data dependence. The sub-graph of the PDG induced by the
control dependence edges is called control dependence graph (CDG) and the
sub-graph induced by the data dependence edges is called data dependence
graph (DDG). The source node of a CDG edge corresponds to either start or
conditional or repetitive statement. Any CDG edge e whose source node e.src cor-
responds to start statement is denoted by an unlabeled edge e = e.src → e.tgt,
whereas any CDG edge e whose source node e.src corresponds to conditional

or repetitive statement is denoted by a labeled edges e = e.src lab
−−→ e.tgt, where

lab ∈ {true, f alse}. In the former case, the condition represented by e.src is im-
plicitly true which means that during an execution once e.src executed, then its
target e.tgt will eventually be executed, while in latter case, e.tgt is lab-control
dependent on e.src which means that whenever the condition represented by
e.src is evaluated and its value matches the label lab, then its target node rep-
resented by e.tgt will be executed, if the program terminates. A DDG edge
is denoted by e = e.src x

−→ e.tgt, representing that the target node e.tgt is data
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dependent on the source node e.src for a variable x. The PDG representation of
the program Pssa (Figure 1(b)) is depicted in Figure 2.
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Figure 2: PDG of Pssa

PDG-based Slicing. The results of the program dependence graph discussed
so far have an impact on different forms of static slicing: backward slicing [42],
forward slicing [2], and chopping [23, 35]. The backward slice with respect
to variable v at program point p consists of those program points that affect
v directly or indirectly. Forward slicing is the dual of backward slicing. The
forward slice with respect to variable v at program point p consists of those
program points that are affected by v. Chopping is a combination of both
backward and forward slicing. A slicing criterion for chopping is represented
by a pair 〈s, t〉 where s and t denote the source and the sink respectively. In
particular, chopping of a program w.r.t. 〈s, t〉 identifies a subset of its statements
that account for all influences of source s on sink t.

The slicing based on program dependence graph is slightly restrictive in the
sense that the dependency graph permits slicing of a program with respect to
program point p and a variable v that is defined or used at p, rather than w.r.t.
arbitrary variable at p. PDG-based backward program slicing is performed by
walking the graph backwards from the node of interest in linear time [33]. The
walk terminates at either entry node or already visited node. Thus, the slice
w.r.t. the variable v at PDG node n is a graph containing all vertices of the PDG
that can reach directly or indirectly to n and affect the value of v via data-flow
or control edges.

In case of PDG-based forward slicing technique, similarly, we traverse the
graph in forward direction rather than backward from the node of interest. We
can use the standard notion of chop of a program with respect to two nodes
s and t in slicing technique [23, 35]: chop(s, t) is defined as the set of inter-
procedurally valid PDG paths from s to t where s, t are real program nodes,
in contrast to φ nodes in SSA form of the program. We define it as follows
[39]: AC(s, t) is defined to be true if there exists at least one execution ψ that
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satisfies a valid PDG path η between s and t i.e. AC(s, t) , ∃ψ : AC(s, t, ψ)
and AC(s, t, ψ) , ∃η ∈ chop(s, t) : ψ ` η. The ¬AC(s, t) implies that ∀ψ and
∀η ∈ chop(s, t) : ψ 0 η, that is, chop(s, t) is empty.

In PDG-based dynamic slicing [1, 17, 32] w.r.t. a variable for a given execu-
tion history, a projection of the PDG w.r.t. the nodes that occur in the execution
history is obtained, and then static slicing algorithm on the projected Depen-
dence Graph is applied to find the desired dynamic slice. Agrawal and Horgan
[1] also introduce a variant of it based on the graph-reachability framework,
called Dynamic Dependence Graph and Reduced Dynamic Dependence Graph,
to obtain more precise dynamic slice.

Dependence Condition Graph (DCG). Dependence Condition Graph (DCG)
[39] is built from the PDG by annotating each edge e = e.src→ e.tgt in the PDG
with information eb = 〈eR, eA

〉 that captures the conditions under which the
dependence represented by that edge is manifest. eR refers to Reach Sequences,
whereas eA refers to Avoid Sequences. The informal interpretation of eR is that the
conditions represented by it should be true for an execution to ensure that e.tgt
is reached from e.src. The Avoid Sequences eA captures the possible conditions
under which the assignment at e.src can get over-written before it reaches e.tgt.
The interpretation of eA is that the conditions represented by it must not hold in
an execution to ensure that the variable being assigned at e.src is used at e.tgt.
For instance, consider the DDG edge 2 x

−→ 4 in Figure 2, the Reach Sequence of

it is (2 x
−→ 4)R = 1 true

−−→ 3 true
−−→ 4 and the Avoid Sequence of it is (2 x

−→ 4)A = ∅,
meaning that the condition at node 3 must be true to ensure that the definition
of x at node 2 can reach node 4. If we consider the DDG edge 2 x

−→ φ, we see
that the Reach Sequence of it is (2 x

−→ φ)R = ∅ and the Avoid Sequence of it is

(2 x
−→ φ)A = 1 true

−−→ 3 true
−−→ 4, meaning that the condition at node 3 should be

f alse to ensure that the definition of x at node 2 does not get over-written by
the definition at node 4, so that x can reach from node 2 to φ. It is worthwhile
to note that eA is relevant only for DDG edges and it is ∅ for CDG edges. Table
1 depicts the DCG annotations for all DDG edges in the PDG of Figure 2. The
interested readers may look at [39] to see the detail description of the algorithm
to compute DCG from a PDG.

d dR dA

2 x
−→ 3 ∅ ∅

2 x
−→ 4 1 true

−−→ 3 true
−−→ 4 ∅

4 x
−→ φ ∅ ∅

2 x
−→ φ ∅ 1 true

−−→ 3 true
−−→ 4

φ
x
−→ 5 ∅ ∅

Table 1: DCG annotation for Pssa
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2.1 Abstract Interpretation

Abstract Interpretation, originally introduced by Cousot and Cousot is a well
known semantics-based static analysis technique [10, 16]. Its main idea is to re-
late concrete and abstract semantics where the later are focussing only on some
properties of interest. Abstract semantics is obtained from the concrete one by
substituting concrete domain of computation and their basic concrete seman-
tic operations with the abstract domain and corresponding abstract semantic
operations. This can be expressed by means of closure operators.

An (upper) closure operator on a set C, or simply a closure, is an operator
ρ : C → C which is monotone, idempotent, and extensive. The upper closure
operator is the function that maps the concrete values with their abstract prop-
erties, namely with the best possible approximation of the concrete value in the
abstract domain. For example, the operator PAR : ℘(Z) → ℘(Z) associates
each subset of integers with its parity, PAR(⊥) = ⊥, PAR(S) = EVEN = {n ∈
Z | n is even} if ∀n ∈ S. n is even, PAR(S) = ODD = {n ∈ Z | n is odd} if ∀n ∈ S. n
is odd, and PAR(S) = I don′t know = Z otherwise.

Abstract Semantics: Expressions and Statements

As in [30], we consider the IMP language [43]. The statements of a program P
act on a set of constants C = const(P) and a set of variables VAR = var(P). A
program variable x ∈ VAR takes its values from the semantic domain V = Zf
where, f represents an undefined or uninitialized value and Z is the set of
integers. The arithmetic expressions e ∈ Aexp and boolean expressions b ∈ Bexp
are defined by standard operators on constants and variables. The set of states
Σ consists of functions σ : VAR → V which map the variables to their values.
For the program with k variables x1, . . . , xk, the state is denoted by k-tuples:
σ = 〈v1, . . . , vk〉, where vi ∈ V, i = 1, ..., k and hence, the set of states Σ = (V)k.
Given a state σ ∈ Σ, v ∈ V, and x ∈ VAR: σ[x ← v] denotes a state obtained
from σ by replacing its contents in x by v, i.e. define

σ[x← v](y) =

v i f x = y
σ(y) i f x , y

The semantics of arithmetic expression e ∈ Aexp over the state σ is denoted
by E[[e]](σ) where, the function E is of the type Aexp → (σ → V). Similarly,
B[[b]](σ) denotes the semantics of boolean expression b ∈ Bexp over the state σ
of type Bexp→ (σ→ T) where T ∈ {true, f alse}.

The Semantics of statement s is defined as a partial function on states and
is denoted by S[[s]](σ) which defines the effect of executing s in σ.

Consider an abstract domain ρ on values. The set of abstract states is
denoted by Σρ , ρ(℘(V))k. The abstract semantics E[[e]]ρ(ε) of expression e is
defined as the best correct approximation of E[[e]]: let σ = 〈v1, . . . , vk〉 ∈ Σ and
ε = 〈ρ(v1), . . . , ρ(vk)〉 ∈ Σρ : E[[e]]ρ(ε) = ρ({E[[e]](〈u1, . . . ,uk〉) | ∀i. ui ∈ ρ(vi)}).
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Given an abstract state ε, a covering {ε1, . . . , εl} is a set of states such that ε
describes the same set of concrete states as all the εi: ε = ∪iεi.

Partitions, Atoms

Given ρ ∈ uco(℘(Zf)), the induced partition Π(ρ) of ρ is the set {V1, . . . , ,V j}, par-
tition of V, characterizing classes of values undistinguishable by ρ: ∀i. ∀x, y ∈
Vi. ρ(x) = ρ(y). A domain ρ is partitioning if it is the most concrete among
those inducing the same partition: for a partition P, ρ = u{µ | Π(µ) = P}. If ρ
is partitioning, Π(ρ) is the set of atoms of ρ, viewed as a complete lattice, i.e.,
atoms of partitioning domain are the abstractions of singletons [30].

3 A Motivating Example

In [30], the traditional syntactic PDG is refined by introducing the notion of
semantic data dependency between an expression e and the set of variables
var(e) appearing in e at program point p. The expression e does not semantically
depend on a variable x ∈ var(e) if the evaluation of e over any two different states
σ1 andσ2 at p where∀y ∈ var(e)∧y , x : σ1(y) = σ2(y), results the same values for
e. Although the presence of variable x in expression e shows the syntactic data
dependency of e on x, semantically may be there is no such dependency. For
instance, the expression e = x+x−2x+4 does not depend semantically on x. The
concrete semantic data dependency can easily be lifted to an abstract domain
where the dependency is computed with respect to properties of variables
rather than their concrete values. This (abstract) semantic data dependency is
used to eliminate irrelevant dependences from traditional PDGs, resulting into
more precise (abstract) slices. However, if we observe carefully, we see that
the semantic data dependency derived at expression level [30] does not always
result in a more precise PDG for the program.

In the rest of the paper, we use static single assignment (SSA) form of pro-
grams due to its compact representation and easy to compute DCG annotations
as well as to define its semantics. The SSA form also helps in improving the
flow-sensitive analysis of any program [20, 12].

Example 1 Consider the program P and the corresponding traditional Program De-
pendence Graph (Gpdg) for its SSA correspondent code, as depicted in Figure 3. Observe
that the condition represented by node 1 is implicitly true which means that during
an execution once node 1 is executed, then its target 2, 3, 4, 5, 6, 8, φ1 and φ2 will
eventually be executed, whereas a control dependence edge labeled by ‘lab’ (where ‘lab’

∈ {true, f alse}) represents lab-control dependence, for instance, the edge 8
f alse
−−−→ 11

represents that 11 is f alse-control dependent on 8. The data dependency between two
nodes n1 and n2 for a variable x is represented by the edge n1

x
−→ n2.

Suppose we are interested only in the sign of the program variables, and we consider
the abstract domain SIGN = {⊥,+, 0,−, 0+, 0−,>}, where 0+ represents {x ∈ Z : x ≥
0}, 0− represents {x ∈ Z : x ≤ 0}, and Z is the set of integers. After computing the
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1. start
2. i = −2;
3. x = input;
4. y = input;
5. w = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
9. x = x × 2;
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;
13. print(x, y);
14. stop

(a) Program P

1. start
2. i1 = −2;
3. x1 = input;
4. y1 = input;
5. w = input;
6. i f (x1 ≥ 0)
7. y2 = 4 × (x1)3;
φ1 y3 = f (y1, y2);

while(
φ2 (x2, i2) = f ((x1, i1), (x3, i3));
8. i2 ≤ 0

){
9. x3 = x2 × 2;
10. i3 = i2 + 1; }
11. i f (x2 ≤ 0)
12. y4 = (x2)2 + 4w mod 2;
φ3 y5 = f (y3, y4);
13. print(x2, y5);
14. stop

(b) Pssa: SSA f orm o f program P

 

1 

8 

3φ  

11 
12 

10 

2φ  

2 

13 

14 

3 

6 7 

1φ  

4 

5 

x 

T 

x 

y 

y 

T 

i 

i 

F 

T 

y 

y y 

w 

9 

T 

x 

i 

x 

F 

F F 

x 

x 

x 

(c) Gpdg: PDG o f Pssa

Figure 3: The traditional Program Dependence Graph (PDG)

semantic data dependency [30] w.r.t. SIGN, we get the semantics-based abstract PDG
shown in Figure 4(a). Observe that the semantic data dependency w.r.t. SIGN removes
the data dependency between y4 and w at statement 12, as “4w mod 2” always yields to
0. Therefore, the corresponding data dependence edge 5 w

−→ 12 is disregarded from the
traditional PDG. The slicing algorithm based on this semantics-based abstract PDG
with respect to criteria 〈13, y,SIGN〉 returns the program depicted in Figure 4(b). At
program point 9, the variable x2 may have any abstract value in {+, 0,−}. Since the
evaluation of the expression x2 × 2 over all these possible abstract values yields to the
dependency of the expression x2 × 2 on x2 w.r.t. SIGN, the dependency is included in
the semantics-based abstract PDG by the edge linking node 9 to node φ2. However,
we observe that the execution of statement 9 does not affect at all the sign of x. This
“ f alse positive” is due to the fact that the semantic data dependency in [30] is defined
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(a) Gd
pdg : PDG o f Pssa a f ter computing Semantic Data Dependency w.r.t. SIGN [30]

1. start
2. i = −2;
3. x = input;
4. y = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
9. x = x × 2;
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;

(b) Slice w.r.t. criteria 〈13, y,SIGN〉 computed f rom Gd
pdg

Figure 4: Semantics-based abstract PDG and corresponding slice after comput-
ing Semantic Data Dependency w.r.t. SIGN

at expression level. The abstract semantics of the program should say that the entire
statement 9 is not relevant w.r.t. SIGN for the slicing criteria 〈13, y,SIGN〉. Thus,
slicing with respect to criteria 〈13, y,SIGN〉 should have the correct and more precise
slice shown in Figure 5(b), as the sign of x at line 11 and 12 in the original program is
the same as that in the input value at line 3.

The point we raise is that the semantics-based PDG obtained from the semantic data
dependency [30] can be improved w.r.t. accuracy if, before deriving the data dependency
at expression level, we compute the semantic relevancy of statements in the program
w.r.t. the property of interest. This way, we can refine the PDG, by eliminating
the nodes corresponding to the semantically irrelevant statements from the PDG. In
our example, Figure 5(a) depicts a more precise semantics-based abstract PDG Gr,d

pdg
obtained by computing first the semantic relevancy of the statements w.r.t. SIGN that
removes the node corresponding to the irrelevant statement at program point 9, and
then by computing the semantic data dependency w.r.t. SIGN [30] that removes the
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(a) Gr,d
pdg : PDG o f Pssa by computing Statement Relevancy f irst, and then

Semantic Data Dependency w.r.t. SIGN − Observe that node 9 does not appear anymore.

1. start
2. i = −2;
3. x = input;
4. y = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;

(b) Slice w.r.t. criteria 〈13, y,SIGN〉 obtained f rom Gr,d
pdg

Figure 5: Semantics-based abstract PDG and corresponding slice by computing
Statement Relevancy first, and then Semantic Data Dependency w.r.t. SIGN

data dependency 5 w
−→ 12.

We can even be more accurate in the slicing procedure. By following [39], we can
extend every PDG into the Dependence Condition Graph (DCG) by introducing the
annotation eb , 〈eR, eA

〉 over all the data/control dependence edges e = e.src → e.tgt:
eR is referred to as Reach Sequences and represents the conditions required to reach the
data from e.src to e.tgt, and eA is referred to as Avoid Sequences and used to avoid the
re-definition of the data coming from e.src (in case of control dependence edge, eA is ∅).
An execution trace ψ is said to satisfy eb for a data dependence edge e if it satisfies all
the conditions in eR, and at the same time, it avoids the conditions in eA. This means
that the execution trace ψ ensures that the value computed at e.src successfully reaches
e.tgt. We can easily extend this to any arbitrary dependence path η = e1e2 . . . en in
DCG.

Let us illustrate the computation of DCG annotations over the edges as reported
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e eR eA

4
y
−→ φ1 ∅ 1 true

−−→ 6 true
−−→ 7

7
y
−→ φ1 ∅ ∅

3 x
−→ 6 ∅ ∅

3 x
−→ 7 1 true

−−→ 6 true
−−→ 7 ∅

3 x
−→ 11 1 true

−−→ 8
f alse
−−−→ 11 ∅

3 x
−→ 12 1 true

−−→ 8
f alse
−−−→ 11 true

−−→ 12 ∅

3 x
−→ 13 1 true

−−→ 8
f alse
−−−→ 13 ∅

12
y
−→ φ3 ∅ ∅

φ1
y
−→ φ3 1 true

−−→ 8
f alse
−−−→ φ3 1 true

−−→ 8
f alse
−−−→ 11 true

−−→ 12

φ3
y
−→ 13 ∅ ∅

2 i
−→ φ2 ∅ ∅

φ2
i
−→ 8 ∅ ∅

10 i
−→ φ2 ∅ ∅

φ2
i
−→ 10 1 true

−−→ 8 true
−−→ 10 ∅

(a) Gdcg : DCG a f ter computing annotations on Gr,d
pdg
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(b) Gs
dcg : semantics-based abstract DCG a f ter removing e = 4

y
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Figure 6: Semantics-based abstract DCG
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in [39] on our example: Given the semantics-based abstract PDG Gr,d
pdg of Figure 5(a),

consider the DDG edge e = φ1
y
−→ φ3. For this DDG edge, we see that node φ3

does not post-dominate the node φ1. Thus, the reach sequence for the edge is eR =

(φ1
y
−→ φ3)R={1 true

−−→ 8
f alse
−−−→ φ3}. This means that the condition at 8 must be f alse

in the execution trace to ensure that once φ1 is executed φ3 is also executed, and the
data y assigned at φ1 can reach φ3. To compute the avoid sequences for the edge
φ1

y
−→ φ3, we consider two data dependence edges e1 = φ1

y
−→ φ3 and e2 = 12

y
−→ φ3

with φ3 as target. By following the algorithm of [39], we get the avoid sequences of

e1 as eA
1 = (φ1

y
−→ φ3)A = {1 true

−−→ 8
f alse
−−−→ 11 true

−−→ 12}. This reflects the fact that the
“i f ” condition at 11 must be false in order to guarantee that the definition of y at φ1
is not re-defined at 12 and can reach φ3. The table in the Figure 6(a) depicts the DCG
annotations over the data dependence edges of Gr,d

pdg, yielding to a DCG Gdcg.

Let us consider the dependence path ηφ = 4
y
−→ φ1

y
−→ φ3

y
−→ 13, which is a φ-

sequence [39] representing the flow of definition at 4 to 13 in the DCG Gdcg. Observe
that, since the abstract values of x may have any value from the set {+, 0,−}, there
is no such execution trace ψ over the abstract domain SIGN that can avoid both

(4
y
−→ φ1)A = {1 true

−−→ 6 true
−−→ 7} and (φ1

y
−→ φ3)A = {1 true

−−→ 8
f alse
−−−→ 11 true

−−→ 12}
simultaneously, i.e., ∀ψ : ψ 0SIGN ηφ. For each execution trace over the abstract

domain of sign, at least one of the conditions among 6 true
−−→ 7 and 11 true

−−→ 12 must be
satisfied. This means that the definition at 4 is over-written either by 7 or by 12 or by
both, and can never reach 13. Since there exists no semantically realizable φ-sequence
from the node 4 to any target node t such that y defined at 4 can reach t, we can remove
the edge 4

y
−→ φ1 from Gdcg, resulting into a more precise semantics-based abstract DCG

Gs
dcg as depicted in Figure 6(b). Thus, if we apply the backward slicing technique [33]

on Gs
dcg w.r.t. the slicing criteria 〈13, y,SIGN〉, we get a sub-DCG Gsdcg and a more

precise slice as shown in Figure 7.

4 Semantic Relevancy

In this section, we define the semantic relevancy of statements w.r.t. a property
of interest in both the concrete and the abstract domains. We also discuss how
to treat the relevancy of the control statements based on the relevancy at block
level.

4.1 Semantic Relevancy of Statements

The semantic relevancy of a statement w.r.t. a concrete/abstract property de-
termines whether the execution of the statement affects the conceret/abstract
property of the variables of interest.

Definition 1 (Concrete Semantic Relevancy)
Given a program P and a concrete property ω on states, the statement s at program
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(a) Gsdcg: sub-DCG after performing backward slicing on Gs
dcg w.r.t. 〈13, y〉

1. start
2. i = −2;
3. x = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;

(b) Slice w.r.t.〈13, y〉 computed f rom Gsdcg

Figure 7: Slicing w.r.t. 〈13, y,SIGN〉

point p in P is semantically relevant w.r.t. ω if:

∃σ ∈ Σp : S[[s]](σ) = σ′ ∧ ω(σ) , ω(σ′)

where Σp are the set of states that can possibly reach the program point p.

In other words, the statement s at program point p is semantically irrelevant
w.r.t. a concrete property ω if the execution of s over any state σ ∈ Σp yields to
a state that is equivalent to σ w.r.t. ω.

In particular, whenever ω distributes over program variables, we may use
the Definition 2.

Definition 2 (Concrete Semantic Relevancy for a Set of Variables)
Given a program P and a concrete property ω that distributes over program variables,
the statement s at program point p in P is semantically relevant w.r.t. ω for a subset of
variables U if

∃σ = 〈σ(v1), σ(v2), . . . , σ(vk)〉 ∈ Σp and ∃vi ∈ U such that ω(πi(S[[s]]σ)) , ω(πi(σ))

where πi(〈σ(v1), σ(v2), . . . , σ(vk)〉) = σ(vi).

Example 2 Consider the concrete property ω(x,4) : Σ → {true, f alse}, which is true
in state σ iff σ(x) , 4. The statement x = y + 1 is semantically relevant w.r.t. ω(x,4)
only if ∃σ ∈ Σp such that σ(y) = 3 and σ(x) , 4.
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Example 3 Consider the program Pssa in Figure 8. The statement at program point 7
is semantically irrelevant w.r.t. all concrete properties, as the execution of this statement
over any state possibly reaching program point 7 does not change the state. That is,
∀σ ∈ Σ7 where σ(x) = σ(y) and σ(z) = 4, the execution of the statement over σ does
not modify the value of z.

1. start
2. x1 = input;
3. y1 = input;
4. w = input;
5. z1 = 4;
6. i f (x1 == y1){
7. z2 = 2 × (x1 + y1) − 4 × (x1) + 4;
8. x2 = x1 + 1; }
9. else { z3 = x1 + w;
10. x3 = x1 + 2; }
φ (x4, z4) = f ((x2, z2), (x3, z3));
11. print(x4, z4);
12. stop

Figure 8: Program Pssa

Example 4 Consider the program Pssa in Figure 8 and the property defined by ω ,
#{x ∈ VAR : [[x]]σ ∈ EVEN} = #{x ∈ VAR : [[x]]σ ∈ ODD} where VAR is the set
of program variables, σ ∈ Σ, EVEN represents {y ∈ Z : y is even}, ODD represents
{y ∈ Z : y is odd}, Z is the set of integers, and # denotes the cardinality of set. The
statement s , x = x + 1 at program point 8 is relevant w.r.t. ω, since the execution of s
over any state σ at 8 with equal number of values belonging to ODD and EVEN sets,
yields to a state σ′ where the value of x move from one set to another. Observe that the
statement at program point 10, on the other hand, is irrelevant w.r.t. ω.

In order to compute semantic relevancy of a statement at program point p
w.r.t. a concrete property, we need to compare the concrete property of each
state possibly reaching p with that of the corresponding state resulting after the
execution of the statement. If the execution changes the property for at least
one state, we say that the statement is relevant w.r.t. that concrete property.

Now we discuss how to obtain all possible reaching states at each program
points of a program using its collecting semantics.

Collecting Semantics. Let Σ and Label be the set of states and the set of
program points. The context vector is defined by Context-Vector : Label →
Context, where Context = ℘(Σ).

Let P be a program of size n. The context at program point i is denoted
by Cxi. The context vector associated with program P is, thus, denoted by
CvP = 〈Cx1,Cx2, . . . ,Cxn〉, where CvP(i) = Cxi.

Let
Fi : Context-Vector→ Context

16



be a collection of monotone functions, where

Cx1 =F1(Cx1, . . . ,Cxn)
Cx2 =F2(Cx1, . . . ,Cxn)

. . . . . .

Cxn =Fn(Cx1, . . . ,Cxn)

Combining the above functions, we get

F : Context-Vector→ Context-Vector

That is,

F(Cx1, . . . ,Cxn) = (F1(Cx1, . . . ,Cxn), . . . ,Fn(Cx1, . . . ,Cxn))

The function Fi includes the transition function defined as follows:

Cxi =
⋃

s j∈pred(si)

∪σ j∈Cx j S[[s j]](σ j)

where, pred(si) is the set of predecessors of the statement si. Now consider the
following:

• s j is assignment statement (s j , x = e):

S[[x = e]]σ j = σ j[x = v] if E[[e]]σ j = v

• s j is conditional/while statement containing cond as the condition in it,
and si is true-successor:

S[[s j]]σ j = σ j if B[[cond]]σ j = true

• s j is conditional/while statement containing cond as the condition in it,
and si is f alse-successor:

S[[s j]]σ j = σ j if B[[cond]]σ j = f alse

We can compute the least fix-point of F in order to obtain the collecting
semantics for P. We start with the initial Context-Vector=〈⊥, . . . ,⊥〉 which is
the bottom element of the lattice Ln, where L = (℘(Σ),⊆,∩,∪,>,⊥). With this
collecting semantics, we can easily obtain the states possibly reaching each
program points in a program that help in computing semantic relevancy of
all statements w.r.t. any concrete property of interest. The following exam-
ple shows how to compute collecting semantics of a program using fix-point
computation.
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1. start
2. n = input;
3. x = 1;
4. while(n > 0){
5. x = x × n;
6. n = n − 1; }
7. stop

Figure 9: Program P

1. Start

2. n = input

3. x = 1

4. while(n > 0) 7. Stop

5. x = x × n6. n = n − 1

Cx2 = ⊥

Cx3 = {n ≥ 0}

Cx4 = {n ≥ 0, x == 1 ∨ x ≥ n}

No

Cx7 = {n == 0, x == 1 ∨ x ≥ n}

Yes Cx5 = {n > 0, x == 1 ∨ x ≥ n}

Cx6 = {n > 0, x ≥ n}

{n ≥ 0, x ≥ n}

Figure 10: Control Flow Graph of P

Example 5 Let us consider the following program P as depicted in Figure 9. The
control-flow graph of the program P is shown in Figure 10. Observe that initially the
contexts associated with each program point is ⊥, i.e., ∀i ∈ [1..7]: Cxi = ⊥. Thus, the
initial context vector is represented by CvP = 〈Cx1, . . . ,Cx7〉 = 〈⊥, . . . ,⊥〉.

We assume that the initial value of n is always greater than or equal to 0. The
monotone function F = (F1,F2, . . . ,F7) for the program P is defined as follows:

Cx1 =F1(Cx1 . . . ,Cx7) = ⊥

Cx2 =F2(Cx1 . . . ,Cx7) = ⊥

Cx3 =F3(Cx1 . . . ,Cx7) = {σ | σ(n) ≥ 0}
Cx4 =F4(Cx1 . . . ,Cx7) = {σ[x = 1] | σ ∈ C3} ∪ {σ[n = σ(n) − 1] | σ ∈ C6}

Cx5 =F5(Cx1 . . . ,Cx7) = C4 ∩ {σ | σ(n) > 0}
Cx6 =F6(Cx1 . . . ,Cx7) = {σ[x = σ(x) × σ(n)] | σ ∈ C5}

Cx7 =F7(Cx1 . . . ,Cx7) = C4 ∩ {σ | σ(n) == 0}
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Starting from the initial context vector CvP = 〈Cx1, . . . ,Cx7〉 = 〈⊥,⊥, . . . ,⊥〉, if we
apply F repeatedly, we get the following least solution, as depicted in Figure 10:

Cx1 =⊥

Cx2 =⊥

Cx3 ={n ≥ 0}
Cx4 ={n ≥ 0, x == 1 ∨ x ≥ n}
Cx5 ={n > 0, x == 1 ∨ x ≥ n}
Cx6 ={n > 0, x ≥ n}
Cx7 ={n == 0, x == 1 ∨ x ≥ n}

We now lift to an abstract setting, and we define the relevancy of statements
w.r.t. an abstract property of interest.

Definition 3 (Abstract Semantic Relevancy)
Given a program P and ρ ∈ UCO(℘(V)), the statement s at program point p in P is
semantically relevant w.r.t. abstract property ρ if

∃ε ∈ Σ
ρ
p : S[[s]]ρ(ε) , ε

where Σ
ρ
p are the set of abstract states that can possibly reach the program point p, and

all the abstract states ε ∈ Σ
ρ
p take atomic values from the induced partition Π(ρ).

In other words, the statement s at program point p is semantically irrelevant
w.r.t. the abstract property ρ if no changes take place in the abstract states ε
possibly reaching program point p, when s is executed over ε.

Observe that Definition 3 is not parametric on variables. Below we provide
a parametric definition for the abstract statements relevancy:

Definition 4 (Abstract Semantic Relevancy for a Set of Variables)
Given a program P and ρ ∈ UCO(℘(V)), the statement s at program point p in P is
semantically relevant w.r.t. abstract property ρ for a subset of variables U if

∃ε = 〈ρ(v1), ρ(v2), . . . , ρ(vk)〉 ∈ Σ
ρ
p and ∃vi ∈ U such that πi(S[[s]]ρ(ε)) , πi(ε)

where πi(〈ρ(v1), ρ(v2), . . . , ρ(vk)〉) = ρ(vi).

This definition may be useful, combined with independence analysis, to further
refine the slicing when focussing just on a proper subset of program variables
in the slicing criteria.

Intuitively, the semantic relevancy of statements just says that an asser-
tion remains true over the states possibly reaching the corresponding program
points. Observe that if we consider the predicate ω as an abstraction on the
concrete states, Definition 3 is just a rephrasing of Definition 1.

Example 6 Consider the statement s , x = x + 2 at program point 10 of the program
Pssa depicted in Figure 8. The statement s is semantically relevant w.r.t. ρ = SIGN,
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because ∃ε = 〈ρ(x), ρ(y), ρ(w), ρ(z)〉 = 〈−, +, +, + 〉 ∈ ΣSIGN
10 : S[[s]]ρ(〈−, +, +, +〉)

= 〈>, +, +, + 〉. On the other hand, if we consider the abstract domain ρ = PAR, we
see that s is semantically irrelevant w.r.t. PAR because ∀ε ∈ ΣPAR

10 : S[[s]]ρ(ε) does not
change the parity of x.

It is worthwhile to mention that only the “assignment” statements are able
to change the property of the variables which are defined by those statements.
So, relevancy checking for the statements except “assignment” are meaningless,
as they are not able to change the property for any variable.

We can easily compute abstract collecting semantics of the program by
computing the least fix point of abstract monotone function F] (corresponds
to the concrete monotone function F) in the abstract domain ρ, where we
consider abstract contexts denoted by Context]=℘(Σρ) instead of the concrete
one. This way, we can obtain all possible abstract states that can possibly reach
each program points in the program. It is worthwhile to mention that during
the computation of abstract contexts Cx]i for statement si using the abstract

monotone function F]i , we consider ε j if it is atomic, otherwise we consider the
covering {ε1, . . . , εk} of ε j where each εi is atomic, to compute S[[s j]]ρ(ε j) for all
ε j ∈ Cx]j for all predecessors s j.

The notion of statements relevancy have many interesting application ar-
eas. For instance, if we are analyzing a speed control engine and we are just
interested on the portion of program that may lead to a totally unexpected
negative value of a speed variable (yielding to a crash-prone situation), then
every statement that does not affect neither directly nor indirectly its sign can
immediately be disregarded.

Given a program and its syntactic PDG, we can obtain a more precise
semantics-based (abstract) PDG for the program by disregarding from the syn-
tactic PDG all the nodes that corresponds to the irrelevant statements w.r.t. the
concrete/abstract property. Figure 11(a) depicts the syntactic PDG Gpdg of the
program Pssa shown in Figure 8, whereas Figure 11(b) depicts the semantics-
based abstract PDG Gr

pdg which is obtained by disregarding from Gpdg two nodes
corresponding to the statements 7 and 10 which are irrelevant w.r.t. PAR.

4.2 Semantic Relevancy of Blocks

In the previous section, we defined the semantic relevancy of statements w.r.t.
concrete/abstract property. Now we define semantic relevancy of blocks w.r.t.
concrete/abstract property, where by block we mean a set of statements S =
{s1, . . . , sn}. Let us denote a block of a set of statements S by blkS.

Definition 5 blkS is semantically irrelevant w.r.t. a concrete property ω (or abstract
property ρ) if

∀si ∈ blkS, i ∈ [1..n] : si is semantically irrelevant w.r.t. ω (or ρ)
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(b) Gr
pdg : Semantics − based abstract PDG o f

Pssa w.r.t. PAR

Figure 11: Syntactic and Semantics-based abstract PDG of Pssa of Figure 8

Definition 6 blkS is partially relevant w.r.t. a concrete propertyω (or abstract property
ρ) if

∃si, s j ∈ blkS ∧ i, j ∈ [1..n] ∧ i , j : si is semantically relevant w.r.t. ω (or ρ) and
s j is semantically irrelevant w.r.t. ω (or ρ)

Definition 7 blkS is completely relevant w.r.t. a concrete property ω (or abstract
property ρ) if

∀si ∈ blkS, i ∈ [1..n] : si is semantically relevant w.r.t. ω (or ρ)

Observe that we can convert any partially relevant block w.r.t. ω (or ρ) into a
corresponding completely relevant block by removing all the irrelevant state-
ments w.r.t. ω (or ρ) present in that block.

4.3 Treating Relevancy of Control Statements

In this section, we consider the conditional statements “i f ”, “i f − else” and the
repetitive statement “while”, and their relevancy w.r.t. a concrete propertyω (or
abstract property ρ).

The “i f ” statement can be expressed as

i f (cond) then blki f
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The “i f − else” statement can be expressed as

i f (cond) then blki f else blkelse

Similarly, the repetitive statement “while” can be expressed as

while(cond) blkwhile

The semantic relevancy of “i f ”, “i f − else” and “while” statements solely de-
pend on the relevancy of their corresponding blocks blki f , blkelse and blkwhile
respectively.

For a “i f ” statement “i f (cond) then blki f ”, if the corresponding block blki f is
irrelevant w.r.t. a concrete property ω (or abstract property ρ), we say that the
“i f ” statement is irrelevant w.r.t. ω (or ρ).

For a “while” statement “while(cond) blkwhile”, if the corresponding block
blkwhile is irrelevant w.r.t. ω (or ρ), we say that the relevancy of the “while”
statement is equivalent to the relevancy of the statement “while(cond) then skip”
w.r.t. ω (or ρ).

The relevancy of “i f −else” statement, i.e., “i f (cond) then blki f else blkelse” w.r.t.
a concrete property ω (or abstract property ρ) is defined as follows:

1. An “i f − else” statement “i f (cond) then blki f else blkelse” is semantically
irrelevant w.r.t. ω (or ρ) if both blki f and blkelse are semantically irrelevant
w.r.t. ω (or ρ).

2. If any or both of the blocks blki f and blkelse in “i f − else” statement are
partially relevant w.r.t. ω (or ρ), we say that the “i f − else” statement is
partially relevant w.r.t. ω (or ρ). The partial relevancy of the “i f − else”
statement can be converted into complete relevancy by converting the
corresponding partial relevant blocks into completely relevant blocks.

3. If blkelse in “i f−else” statement is semantically irrelevant w.r.t. ω (orρ), then
the relevancy of the “i f − else” statement is equivalent to the relevancy of
the statement “i f (cond) then blki f ” w.r.t. ω (or ρ).

4. If blki f in “i f −else” statement is semantically irrelevant w.r.t. ω (or ρ), then
the relevancy of the “i f − else” statement is equivalent to the relevancy of
the statement “i f (cond) then skip else blkelse” w.r.t. ω (or ρ).

The semantic irrelevancy of a repetitive statement “while” w.r.t. PAR and a
“i f − else” statement w.r.t. SIGN are illustrated in Example 7 and Example 8
respectively.

Example 7 Consider the program of Figure 12(a) and the property PAR. The tradi-
tional syntactic PDG of it, is shown in Figure 12(b). Consider the repetitive statement
“while” and the corresponding block blkwhile that contains two statements at program
points 5 and 6. At program point 2 and 3, the parity of x and y are odd and even
respectively. These properties of x and y remain unchanged during the execution of the
while loop. Statements 5 and 6, therefore, are not semantically relevant w.r.t. PAR. In
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fact, at 5 the parity of x2 is not affected as its value is not changed by the assignment,
and the parity of x3 is preserved by adding an even value like the constant 2. Similar
in case of statement at 6. Since, the block blkwhile is semantically irrelevant w.r.t. PAR,
we can replace it by a “skip” statement (denoted by node ”q” in the graph), yielding a
more precise PDG shown in Figure 12(c).

1. start
2. x1 = 1;
3. y1 = 2 × x1;

while(
φ (x2, y2) = f ((x1, y1), (x3, y3))
4. x2 < 20){
5. x3 = x2 + 2;
6. y3 = y2 + 2 × x2

3; }
7. print(x2, y2);
8. stop

(a) Program Pssa
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(c) Semantics − based abstract PDG o f Pssa
a f ter computing Semantic Relevancy w.r.t. PAR

Figure 12: Treating “while” block

Example 8 Consider the program in Figure 13(a). Observe that the statements 6 and
7 in the “i f ” block blki f and the statement 8 in the “else” block blkelse are semantically
irrelevant w.r.t. the sign property of the variables. The execution of the statements 6,
7, and 8 over all possible abstract states reaching these program points does not change
the sign of y and z. Thus, the “i f ” block blki f is completely irrelevant, whereas the
“else” block blkelse is partially relevant as it contains one relevant statement 9 w.r.t. the
sign property. According to the rules discussed above, we can’t remove blki f . Hence,
we replace blki f with the statement “skip”. The corresponding semantics-based form of
the program and semantics-based abstract PDG w.r.t. the sign property are shown in
Figure 13(b) and 13(c) respectively.
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1. start
2. x1 = input;
3. y1 = 5;
4. z1 = 2;
5. i f (x1 ≥ 0){
6. y2 = y1 + 2;
7. z2 = y2 + x1; }

else{
8. y3 = y1 + 5;
9. z3 = y3 + x1};
φ. (y4, z4) = f ((y2, z2), (y3, z3));
10. print(y4, z4);
11. stop

(a) Program Pssa

1. start
2. x1 = input;
3. y1 = 5;
4. z1 = 2;
5. i f (x1 ≥ 0)
q. skip;

else{
9. z3 = y1 + x1};
φ. (y4, z4) = f ((y1, z1), (y1, z3));
10. print(y4, z4);
11. stop

(b) Program Pssa a f ter computing
semantic relevancy w.r.t.SIGN

 

1 

4 

2 

5 

3 

q 

9 

F 

T 

10 
11 

x 

x 

y 

z 

y 

z 

y,z 

  

(c) Semantics−based abstract PDG o f Pssa a f ter computing Semantic Relevancy w.r.t.SIGN

Figure 13: Treatment of “if-else” block

5 Atomicity of the Abstract States in computing State-
ments Relevancy

While computing the semantic relevancy of a statement over an abstract state
ε w.r.t. the property ρ, the atomicity of the abstract value for each variable in ε
is one of the crucial requirements. These atomic abstract values are obtained
from induced partitioning [30]. Example 9 shows how to compute the semantic
relevancy of statements by using covering techniques satisfying the atomicity
requirement.

Example 9 Consider the abstract domain of parity PAR and an abstract state ε =
〈even, odd,>〉 for the variables x, y, z ∈ dom(ε). The induced partitions for the domain
PAR is Π(PAR) = {even, odd}. Since > is not an atomic state for the domain PAR,
we can instead consider a covering {ε1, ε2} for the state ε, where ε1 = 〈even, odd, even〉
and ε2 = 〈even, odd, odd〉. Hence, the relevancy of the statement s at program point p
(if ε occurs at p) is computed over ε1 and ε2. Observe that the elements in the covering

24



contains atomic abstract values (atoms, in other word) for the variables.
Consider the example shown in Figure 3. One abstract state possibly reaching

program points 9 and 10 w.r.t. SIGN is ε = 〈−,>,>,>〉 where dom(ε) = 〈i, x, y,w〉.
Since the values for x, y,w are provided by the user, it can be any value from the set
{+, 0,−} and is denoted by the top element> of the lattice for SIGN. When we compute
the semantic relevancy of statements 9 and 10, the execution over the abstract state ε
can not reveal the fact of semantic relevancy because of the overapproximated state and
lack of precision. Therefore, we compute the semantic relevancy of 9 and 10 over the
covering of ε i.e. {〈−,−,−,−〉, 〈−, 0,−,−〉, 〈−,+,−,−〉, . . . , 〈−,+,+,+〉}. This way,
we can easily conclude about the semantic irrelevancy of 9 and the semantic relevancy
of 10 w.r.t. SIGN.

6 Algorithm for Semantics-based Abstract PDG

We are now in position to formalize a new algorithm to construct semantics-
based abstract PDG Gr,d

pdg of a program P w.r.t. an abstract property ρ as depicted
in Figure 14. In this proposed algorithm, we combine (i) the notion of semantic
relevancy of statements, and (ii) the notion of semantic data dependency of
expressions.

We use the notation εi j to denote the jth abstract state w.r.t. ρ possibly
reaching program point pi. The input of the algorithm is a program P and
output is the semantics-based abstract PDG Gr,d

pdg of P w.r.t. ρ.
Step 3 computes the semantic relevancy of all “assignment” statements in the

program P w.r.t. ρ, and thus at step 6, Prel contains only the relevant non-control
statements along with all the control statements from P. Steps 7 computes the
relevancy of control statements in Prel w.r.t. ρ. Step 8 deals with the repetitive
statement “while(cond) then blkwhile”, step 9 deals with the conditional statement
“i f (cond) then blki f ” and step 10 deals with the conditional statement “i f (cond)
then blki f else blkelse”, where we denote by blkS a block of a set of statements S.
Observe that steps 9 and 11 disregard the irrelevant control statements from Prel,
whereas steps 8, 12 and 13 replace the control statements by another form with
equivalent relevancy w.r.t. ρ. In step 15, we compute abstract semantic data
dependency for all expressions in Prel by following the algorithm of Mastroeni
and Zanardini [30]. Finally, in step 16, we construct PDG from Prel that contains
only the relevant statements and the relevant data dependences w.r.t. ρ.

The idea to obtain a semantics-based abstract PDG is to unfold the program
into an equivalent program where only statements that have an impact w.r.t.
the abstract domain are combined with the semantic data flow w.r.t. the same
domain.
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Algorithm 1: REFINE-PDG

Input: Program P and an abstract domain ρ
Output: Semantics-based Abstract PDG Gr,d

pdg of P w.r.t. ρ

1. FOR each assignment-statement s at program point pi in P DO
2. FOR all εi j ∈ Σ

ρ
pi
DO

3. Execute s on εi j and determine its relevancy;
4. END FOR

5. END FOR

6. Disregard all the irrelevant assignment-statements from P and generate its
relevant version Prel;

7. FOR each control-statement in Prel DO

8. Case 1: Repetitive statement “while(cond) then blkwhile”:
If the block blkwhile is semantically irrelevant w.r.t. ρ, replace
“while(cond) then blkwhile” in Prel by the statement “while(cond) then
skip”;

9. Case 2: Conditional statement “i f (cond) then blki f ”:
If the block blki f is semantically irrelevant w.r.t. ρ, disregard
“i f (cond) then blki f ” from Prel;

10. Case 3: Conditional statement “i f (cond) then blki f else blkelse”:
11. Case 3a: Both blki f and blkelse are semantically irrelevant w.r.t. ρ:

Disregard the statement “i f (cond) then blki f else blkelse” from
Prel;

12. Case 3b: Only blkelse is semantically irrelevant w.r.t. ρ:
Replace the statement “i f (cond) then blki f else blkelse” in Prel

by the statement “i f (cond) then blki f ”;
13. Case 3c: Only blki f is semantically irrelevant w.r.t. ρ:

Replace the statement “i f (cond) then blki f else blkelse” in Prel

by the statement “i f (cond) then skip else blkelse”;
14. END FOR

15. Compute abstract semantic data dependency for all expressions in Prel

w.r.t. ρ by following the algorithm of Mastroeni and Zanardini;
16. Construct PDG from Prel by using only the relevant statements and rele-

vant data dependences w.r.t. ρ, as obtained in previous steps;

Figure 14: Algorithm to generate Semantics-based Abstract PDG

7 Reversing the order of Slicing and Relevancy Com-
putation

In program slicing, we are interested only on a subset of program variables
rather than all.

Till now, we have defined the relevancy of statements w.r.t. the abstract
property of all program variables. We propose to construct a semantics-based
abstract PDG from a syntactic PDG by computing statements relevancy and
semantic data dependency.

However, if we apply slicing on the syntactic PDG first, and then, compute
statements relevancy and semantic data dependency on this sliced program,
we see that the computation complexity can be reduced.
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When we perform slicing on a program, the resulting slice behaves like a
reduced program with a subset of statements and subset of program variables
with the same behavior as the original program. Thus, the computation of
statements relevancy and semantic data dependency over these subset of state-
ment w.r.t. the abstract property of subset of variables of interest reduce the
overall time complexity.

However, this can not be applicable in the situations where repeated appli-
cation of slicing with respect to different criteria is performed. In such case, we
construct semantics-based abstract PDG once, and then, we perform the slicing
repeatedly on it as many times as necessary with respect to different slicing
criteria.

8 Dependence Condition Graph (DCG)

In this section, we extend the semantics-based abstract PDGs obtained so far
into semantics-based abstract Dependence Condition Graphs (DCGs).

The notion of Dependence Condition Graphs (DCGs) is introduced by Suku-
maran et al. in [39]. A DCG is built from a PDG by annotating each edge e
of the PDG with the information eb whose semantic interpretation encodes the
condition for which the dependency represented by that edge actually arises in
a program execution. The annotation eb on any edge e = e.src → e.tgt is a pair
〈eR, eA

〉. The first component eR is referred to as Reach Sequences, and repre-
sents the conditions that should be true for an execution to ensure that the target
e.tgt of e is executed once the source e.src of e is executed if e is a control depen-
dence edge, or that the target e.tgt is reached from the source e.src if e is a data
dependence edge. The component eA is referred to as Avoid Sequences which
is only relevant for data dependence edges (for control dependence edges it
is ∅), and captures the possible condition under which the assignment at e.src
can be overwritten before it reaches e.tgt. Sukumaran et al. also described the
semantics of DCG annotations in terms of execution semantics of the program
over concrete domain.

Below, we first define the abstract semantics of DCG annotations in an
abstract domain of interest. Then, we propose a refinement of the DCGs by re-
moving semantically unrealizable dependences from them under their abstract
semantics.

Abstract Semantics of eb , 〈eR, eA
〉

The program executions are recorded in finite or infinite sequences of states
over a given set of commands, called traces. An execution trace ψ of a program
P over an abstract domain ρ is a (possibly infinite) sequence 〈(pi, εpi )〉i≥0 where
εpi represents the abstract data state at the entry of the statement at program
point pi in P. We use the notion “ι : (pi, εpi )” to denote that (pi, εpi ) is the ι-th
element in the sequence ψ. The trace ψ holds the following conditions:
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1. The first abstract state in the sequence is (p0, εp0 ) where p0 = “start” and
εp0 is the initial abstract data state.

2. Each state (pi, εpi ), i = 1, 2, 3, . . . is the successor of the previous state
(pi−1, εpi−1 ).

3. The last abstract state in the sequence ψ of length #ψ = m, if it exists, is
(pm, εpm ) where pm=“stop”.

Note that the DCG nodes corresponding to the statements at program points
pi are labeled by pi. We denote the control dependence edge (CDG edge) in DCG

by e = pi
lab
−−→ p j, where the node pi corresponds to the conditional or repetitive

statement containing the condition pi.cond and the label e.lab associated with e
represents the truth value (either true or f alse). We denote the data dependence
edge (DDG edge) in DCG by e = pi

x
−→ p j, where x is the data defined by the

statement corresponding to the node pi.
We now define the semantics of the annotations eb , (eR, eA) on dependence

edges e in DCG in terms of the execution traces ψ over an abstract domain ρ.

Definition 8 (Execution satisfying eb for a CDG edge e at index ι)
An execution trace ψ over an abstract domain ρ is said to satisfy eb at index ι for a

CDG edge e = pi
lab
−−→ p j (written as ψ `ρι e) if the following conditions hold:

• eb , 〈eR, eA
〉 = 〈{e}, ∅〉, and

• ψ contains ι : (pi, εpi ) such that [[pi.cond = e.lab]](εpi ) yields either to “true” or
to the logic value “unknown” (meaning possibly true or possibly false).

Definition 9 (Execution satisfying eb for a CDG edge e)

An execution traceψ over an abstract domain ρ satisfying eb for a CDG edge e = pi
lab
−−→

p j (written as ψ `ρ e) is defined as:

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

Definition 10 (Execution satisfying eR for a DDG edge e at ι)
An execution trace ψ over an abstract domain ρ is said to satisfy eR at index ι for a
DDG edge e = pi

x
−→ p j (written as ψ `R

ι e) if the following conditions hold:

• The trace ψ contains ι : (pi, εpi ), and

• Either eR = ∅ or for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR where ps1 , ps2 ,

. . . , psn correspond to conditional statements, the trace ψ contains ιk : (psk , εpsk
)

for k = 1, . . . ,n and ι1 < ι < ι2 < · · · < ιn and
∧

1≤k≤n [[psk .cond = labsk ]](εpsk
)

yields to “true” or “unknown”.
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Definition 11 (Execution satisfying eA for a DDG edge e at ι)
An execution trace ψ over an abstract domain ρ is said to satisfy eA at index ι for a
DDG edge e = pi

x
−→ p j (written as ψ `A

ι e) if ψ contains ι : (pi, εpi ), and for each

(ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p′) ∈ eA the subtraceψ′ ofψ from the index ι to the next

occurrence of (p j, εp j ) (or, if (p j, εp j ) does not occur then ψ′ is the suffix of ψ starting
from ι), satisfies exactly one of the following conditions:

• ψ′ does not contain (psk , εpsk
) for 1 ≤ k ≤ n, or

• ∃ k : 1 ≤ k ≤ n: ψ′ contains (psk , εpsk
) such that [[psk .cond = labsk ]](εpsk

) yields
to false.

Definition 12 (Execution satisfying eb for a DDG edge e at ι)
An execution trace ψ over an abstract domain ρ satisfying eb at index ι for a DDG edge
e = pi

x
−→ p j (written as ψ `ρι e) is defined as

ψ `
ρ
ι e , (ψ `R

ι e) ∧ (ψ `A
ι e)

Definition 13 (Execution satisfying eb for a DDG edge e)
An execution traceψ over an abstract domainρ satisfying eb for a DDG edge e = pi

x
−→ p j

(written as ψ `ρ e) is defined as

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

Theorem 8.1 Given a DDG edge e = pi
x
−→ p j and an execution trace ψ over an

abstract domain ρ, the trace ψ satisfies eb for e (denoted ψ `ρ e) iff the abstract value of
x computed at pi reaches the next occurrence of p j in ψ.

Proof Since the execution traceψ over an abstract domain ρ satisfies eb for e = pi
x
−→ p j,

we have

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

, ∃ι ≥ 0 : (ψ `R
ι e) ∧ (ψ `A

ι e)

This means that ψ satisfies both the Reach Sequences eR and the Avoid Sequences eA

for e at some index ι in ψ.
The trace ψ satisfies eR at some index ι meaning that ψ contains ι : (pi, εpi ), and ψ

satisfies all the conditions in eR which ensures that p j is reached from pi i.e. the abstract
value of x computed at pi can reach p j. At the same time, the trace ψ satisfies eA at ι
meaning that ψ avoids the execution of all the other possibilities (if exists) so that the
abstract value of x computed at pi can not be overwritten by any other intermediate
statements that also define x. Thus,ψ `ρ e implies that the abstract value of x computed
at pi reaches the next occurrence of p j in ψ.

On the other side, we should also prove that if the abstract value of x computed at
pi reaches the next occurrence of p j in ψ, then ψ `ρ e where e = pi

x
−→ p j.
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Since the abstract value of x computed at pi reaches to the next occurrence of p j,
we can say that there is entries ι : (pi, εpi ) and ι′ : (p j, εp j ) in ψ where ι′ is the smallest
index greater than ι and the statements corresponding to both pi and p j are executed in
ψ (i.e. ψ satisfies Reach Sequences eR), and at the same time it avoids the execution of
all other intermediate statements which can overwrite the abstract value of x coming
from pi (i.e. ψ satisfies Avoid Conditions eA). Thus, ∃ι ≥ 0 : (ψ `R

ι e) ∧ (ψ `A
ι e) i.e.

ψ `ρ e.

Example 10 Consider the program P and its PDG depicted in Figure 15(a) and 15(b)
respectively. The set of program variables in P is VAR = {x, y}. Consider the DDG
edge e = 2 x

−→ φ. By following the algorithm in [39], we get eR = {1 true
−−→ 4 true

−−→ φ} and
eA = {1 true

−−→ 4 true
−−→ 5 true

−−→ 6}. The DCG annotations over the DDG edges are shown
in Figure 15(c). Consider the abstract domain SIGN. The initial state of P is defined

1. start
2. x1 = input;
3. y = input;
4. i f (x1 > 0){
5. i f (y == 5)
6. x2 = x1 × 2;
φ. x3 = f (x1, x2);
7. print(x3); }
8. stop

(a) Pssa : Program P in SSA f orm
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(b) Gpdg : PDG o f program Pssa

e eR eA

2 x
−→ 6 1 true

−−→ 4 true
−−→ 5 true

−−→ 6 ∅

2 x
−→ 4 ∅ ∅

2 x
−→ φ 1 true

−−→ 4 true
−−→ φ 1 true

−−→ 4 true
−−→ 5 true

−−→ 6

3
y
−→ 5 1 true

−−→ 4 true
−−→ 5 ∅

6 x
−→ φ ∅ ∅

φ
x
−→ 7 ∅ ∅

(c) DCG annotations 〈eR, eA
〉 f or DDG edges e o f Gpdg

Figure 15: The program Pssa and its DCG

by 〈start, εstart〉 = 〈start, (⊥,⊥)〉 where εstart = (⊥,⊥) are the initial abstract values for
x, y ∈ VAR respectively. Consider the execution trace

ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,−)〉 ι5 : 〈5, (+,−)〉
ιφ : 〈φ, (+,−)〉 ι7 : 〈7, (+,−)〉 ι8 : 〈8, (+,−)〉
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where in each state of ψ the first component represents program point of the corre-
sponding statement and the other component represents abstract values of x and y
respectively. Note that the condition from the statement at program point 1 to 4 is
implicitly “true” irrespective of the states at 1. We have ψ `R

ι2 (2 x
−→ φ) because

• ψ contains the entry ι2 : 〈2, (⊥,⊥)〉 corresponding to the statement 2 at index
ι2, and

• ψ is of the form ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 . . . ι4 : 〈4, (+,−)〉 . . . ιφ :

〈φ, (+,−)〉 . . . for 1 true
−−→ 4 true

−−→ φ ∈ (2 x
−→ φ)R such that [[1.cond = true]](⊥,⊥)

and [[4.cond = true]](+,−) are evaluated to “true”.

Similarly, ψ `A
ι2 (2 x
−→ φ), because for 1 true

−−→ 4 true
−−→ 5 true

−−→ 6 ∈ (2 x
−→ φ)A the sub-trace

of ψ contains the entry ι5 : 〈5, (+,−)〉 such that [[5.cond = true]](+,−) is “false”.

As ψ `R
ι2 (2 x

−→ φ) and ψ `A
ι2 (2 x

−→ φ), we can say ψ `SIGN
ι2 (2 x

−→ φ) meaning
that in ψ the sign of x defined at program point 2 reaches program point φ, and it is
not changed or overwritten by the intermediate statement 6.

Abstract Semantics of Dependence Paths in DCGs

The final step, in order to combine Dependence Condition Graphs with ab-
stract semantics-based Program Dependence Graphs, is to define the abstract
semantics of the dependence paths in a Dependence Condition Graph.

Given a program P and its DCG, we consider dependence paths in this
graph. First we define the φ-sequence and then the semantics of a dependence
path over an abstract domain ρ.

Definition 14 (PhiSeqs)
A φ-sequence ηφ is a DDG path of the form: n1 → φ1 → φ2 → · · · → φk → n2,
where n1 and n2 are nodes of the program and all the φi (1 ≤ i ≤ k) are φ-nodes (that
correspond to assignments to the same variable along different paths). Observe that all
edges on a φ-sequence will be labeled with the same variable.

Consider an arbitrary dependence path η = e1e2 . . . en in DCG representing
a chain of dependences. To satisfy η by an execution trace ψ over an abstract
domain ρ, we need to satisfy the annotations eb of each edge ei, i ∈ [1..n], at
some ιi (i.e., ψ `ριi ei) such that the execution sub-traces of ψ corresponding to
the ei are contiguous.

Definition 15 (Evidence)
For an execution trace ψ over an abstract domain ρ and a dependence edge e, s.t.
ψ `

ρ
ι e, evidence(ψ, e, ι) = ι′ where ι′ is the index of the first occurrence of (e.tgt,−) in

ψ from index ι.
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Definition 16 (Execution satisfying a dependence path)
A series of program dependences represented by a dependence path η = e1e2 . . . en is
said to be satisfied by an execution ψ over an abstract domain ρ (written as ψ `ρ η) if∧

1≤i≤n

ψ `
ρ
ιi ei ∧ ( ∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1 )

Theorem 8.2 Given a φ-sequence ηφ = e1e2 . . . en and the execution trace ψ over an
abstract domain ρ, the trace ψ satisfies ηφ (denoted ψ `ρ ηφ) iff the abstract value
computed at e1.src reaches en.tgt in ψ along the execution path that satisfies ηφ.

Proof Since ψ `ρ ηφ, we have∧
1≤i≤n

ψ `
ρ
ιi ei ∧ ( ∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1 )

This means that the sub-traces ψi of ψ satisfying the annotations of ei of ηφ, where
i = 1, . . . ,n, are contiguous. Observe that all the edges ei of ηφ are labeled with the
same variable x. Consider any two consecutive edges ei = pr

x
−→ ps and ei+1 = ps

x
−→ pt

in ηφ where 1 ≤ i < i + 1 ≤ n and the corresponding contiguous sub-traces ψi and ψi+1
that satisfy ei and ei+1 respectively. From Theorem 8.1, we can say that the abstract
value of x can reach from pr to ps and from ps to pt in ψi and ψi+1 respectively. If the
intermediate node ps is a φ node (which does not recompute the value but only pass
through), then this transitivity implies that the abstract value of x can reach from pr
to pt in ψq where ψq is the concatenation of ψi and ψi+1. Since in a φ-sequence all the
intermediate nodes are φ nodes, we can extend this transitivity for all i from 1 to n,
and we can say that the abstract value of x can reach from e1.src to en.tgt in ψ where ψ
is the concatenation of all subtraces ψi, i = 1, . . . ,n. Observe that in a φ-sequence the
starting and end nodes are not φ nodes, and the datum is computed at starting node
and is used by the end node. Thus, the abstract value computed at e1.src reaches en.tgt
in ψ.

Let us now prove the “only if” part of the theorem: given a φ-sequence ηφ =
e1e2 . . . en and an execution trace ψ over an abstract domain ρ, if the abstract value at
e1.src reaches en.tgt in ψ, then ψ `ρ ηφ.

Since in φ-sequence ηφ = e1e2 . . . en all the intermediate nodes are φ nodes except
the starting and end ones, and the datum computed at e1.src reaches en.tgt in ψ, from
Theorem 8.1 we can say that ∀i, 1 ≤ i ≤ n: ψ `ριi ei where ιi is the index of (ei.src,−)
in ψ. Now we show that evidence(ψ, ei, ιi) = ιi+1 for all i, 1 ≤ i ≤ n. Consider two
consecutive edges ei = pr

x
−→ ps and ei+1 = ps

x
−→ pt in ηφ where 1 ≤ i < i + 1 ≤ n.

Since ψ `ριi ei and ψ `ριi+1
ei+1, the trace ψ contains ιi : (pr, εpr ) and ιi+1 : (ps, εps ).

Thus, we have evidence(ψ, ei, ιi) = ιi+1 because ιi+1 is the index of the first occurrence
of (ei.tgt,−) i.e. (ps, εps ) in ψ from the index ιi. Therefore, we have∧

1≤i≤n

ψ `
ρ
ιi ei ∧ ( ∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1 )

That is,
ψ `ρ ηφ.
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Example 11 Consider the dependence path η = 2 x
−→ 6 x

−→ φ
x
−→ 7 in the graph of

Figure 15, and the following execution trace over the abstract domain SIGN:

ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉
ι6 : 〈6, (+,+)〉 ι7 : 〈φ, (+,+)〉 ι8 : 〈7, (+,+)〉 ι9 : 〈8, (+,+)〉

The trace ψ satisfies eb for all the edges 2 x
−→ 6, 6 x

−→ φ and φ x
−→ 7 of η, and the

sub-traces of ψ that satisfy these edges are contiguous, that is,

• ψ `SIGN
ι2 (2 x

−→ 6) and evidence(ψ, 2 x
−→ 6, ι2) = ι6,

where 1 true
−−→ 4 true

−−→ 5 true
−−→ 6 ∈ (2 x

−→ 6)R and (2 x
−→ 6)A = ∅ and ψ is of the form

ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 . . . ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉 ι6 : 〈6, (+,+)〉 . . .
such that [[1.cond = true]](⊥,⊥), [[4.cond = true]](+,+) are evaluated to “true”
and [[5.cond = true]](+,+) is evaluated to “unknown”.

• ψ `SIGN
ι6 (6 x

−→ φ) and evidence(ψ, 6 x
−→ φ, ι6) = ι7,

where (6 x
−→ φ)R = ∅ and (6 x

−→ φ)A = ∅ and ψ is of the form . . . ι6 : 〈6, (+,+)〉
ι7 : 〈φ, (+,+)〉 . . . .

• ψ `SIGN
ι7 (φ x

−→ 7) and evidence(ψ,φ x
−→ 7, ι7) = ι8,

where (φ x
−→ 7)R = ∅ and (φ x

−→ 7)A = ∅ and ψ is of the form . . . ι7 : 〈φ, (+,+)〉
ι8 : 〈7, (+,+)〉 . . . .

Thus, we can say that the dependence path η is satisfied by ψ over the abstract domain
SIGN i.e. ψ `SIGN η.

Satisfiability of Dependence Paths with Semantic Relevancy

Let η be a dependence path in a DCG. Suppose an execution trace ψ over
an abstract domain ρ satisfies η (denoted ψ `ρ η). If we compute semantic
relevancy w.r.t. ρ and we disregard the irrelevant entries from both η and ψ,
we see that the satisfiability of the refined path is also preserved, as depicted in
Theorem 8.3.

Theorem 8.3 Given a program P and its DCG Gdcg. Let ψ be an execution trace of
P over an abstract domain ρ, and η = e1e2 . . . elel+1 . . . eh be a dependence path in Gdcg

where el : pi
x
−→ p j and el+1 : p j

x
−→ pk (el and el+1 are contiguous). Suppose removal of

the element corresponding to irrelevant statement at p j w.r.t. ρ from η and ψ yield to a
dependence path η′ = e1e2 . . . eq . . . eh, where eq : pi

x
−→ pk, and a trace ψ′ respectively.

Then,
i fψ `ρ η, then ψ′ `ρ η′

.
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Proof Since ψ `ρ η, we can say that for the edges el : pi
x
−→ p j and el+1 : p j

x
−→ pk in η:

• ψ `R
ιi el ∧ ψ `A

ιi el ∧ evidence(ψ, el, ιi) = ι j, and

• ψ `R
ι j el+1 ∧ ψ `A

ι j el+1 ∧ evidence(ψ, el+1, ι j) = ιk

where, ιi, ι j and ιk are the indexes where (pi, εpi ), (p j, εp j ) and (pk, εpk ) occur respectively
in ψ.

We already know that the dependence edges e in DCG are annotated by the Reach
Sequences eR and the Avoid Sequences eA. The Reach Sequences eR for the edge
e : e.src x

−→ e.tgt represents the conditions that need to be satisfied by the execution
trace ψ to reach the data x from e.src to e.tgt. If eR = ∅, it means that e.tgt post-
dominates e.src and thus, the execution trace should contain e.src, and once e.src is
executed e.tgt will also be executed which yield x to reach from e.src to e.tgt. When
eR , ∅, e.tgt does not post-dominate e.src and thus, the conditions in eR need to be
satisfied by the trace ψ so that e.tgt executes, and since ψ also contains e.src the data x
must reach from e.src to e.tgt. Therefore, we have ψ as follows under the four different
cases of Reach Sequences:

r1: eR
l = eR

l+1 = ∅: pi is post-dominated by p j and p j is post-dominated by pk, and ψ
contains ιi : (pi, εpi ), ι j : (p j, εp j ) and ιk : (pk, εpk ) where ιi < ι j < ιk.

r2: eR
l , ∅ and eR

l+1 = ∅: ψ contains ιi : (pi, εpi ), ι j : (p j, εp j ) and ιk : (pk, εpk ) where

ιi < ι j < ιk. For each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR

l , ψ contains
ιm : (psm , εpsm

) for m = 1, . . . ,n and ι1 < ιi < ι2 < · · · < ιn < ι j < ιk and∧
1≤m≤n [[psm .cond = labsm ]](εpsm

) yields to “true” or “unknown”, and p j is
post-dominated by pk.

r3: eR
l = ∅ and eR

l+1 , ∅: pi is post-dominated by p j and ψ contains ιi : (pi, εpi ),

ι j : (p j, εp j ) and ιk : (pk, εpk ) where ιi < ι j < ιk. For each (ps1

labs1
−−−→ ps2

labs2
−−−→

. . . psn

labsn
−−−→ pk) ∈ eR

l+1, ψ contains ιm : (psm , εpsm
) for m = 1, . . . ,n and ι1 < ιi <

ι j < ι2 < · · · < ιn < ιk and
∧

1≤m≤n [[psm .cond = labsm ]](εpsm
) yields to “true” or

“unknown”.

r4: eR
2 , ∅ and eR

3 , ∅: ψ contains ιi : (pi, εpi ), ι j : (p j, εp j ) and ιk : (pk, εpk ) where

ιi < ι j < ιk. For each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR

l and (psn

labsn
−−−→

psn+1

labsn+1
−−−−→ . . . psr

labsr
−−−→ pk) ∈ eR

l+1, ψ contains ιm : (psm , εpsm
) for m = 1, . . . , r

and ι1 < ιi < ι2 < · · · < ιn < ι j < ιn+1 < · · · < ιr < ιk and
∧

1≤m≤r [[psm .cond =
labsm ]](εpsm

) yields to “true” or “unknown”.

We know that after computing semantic relevancy w.r.t. ρ and after removing the
irrelevant element corresponding to p j from η and ψ, we get η′ = e1e2 . . . eq . . . eh where
eq : pi

x
−→ pk and the execution trace ψ′. Now we have to show that ψ′ `ρ η′. That is

ψ′ `R
ιi eq ∧ ψ′ `A

ιi eq and evidence(ψ, eq, ιi) = ιk.
Corresponding to the above four cases r1, r2, r3 and r4, we have the following four

cases:

34



r′1: [eR
l = ∅, eR

l+1 = ∅] eR
q = ∅: Since pi is post-dominated by p j and p j is post-dominated

by pk, after removing the irrelevant entry corresponding to p j, we have that pi is
post-dominated by pk. Since the trace ψ′ contains ιi : (pi, εpi ) and ιk : (pk, εpk )
where ιi < ιk, we get ψ′ `R

ιi eq.

r′2: [eR
l , ∅, eR

l+1 = ∅]:

• eR
q = ∅: Since pi is not dominated by p j and p j is post-dominated by pk, after

removing the irrelevant element corresponding to p j, it may happen that
pi is post-dominated by pk. Since ψ′ contains ιi : (pi, εpi ) and ιk : (pk, εpk )
where ιi < ιk, we get ψ′ `R

ιi eq.

• eR
q , ∅: After removing the irrelevant element corresponding to p j, we have

that pi is not post-dominated by pk. In such case, the trace ψ′ contains

ιi : (pi, εpi ) and ιk : (pk, εpk ) where ιi < ιk and for each (ps1

labs1
−−−→ ps2

labs2
−−−→

. . . pst

labst
−−−→ pk) ∈ eR

q where t ∈ [2...n], the trace ψ′ contains ιm : (psm , εpsm
)

for m = 1, . . . , t and ι1 < ιi < ι2 < · · · < ιt < ιk and
∧

1≤m≤t [[psm .cond =
labsm ]](εpsm

) yields to “true” or “unknown”. Thus, ψ′ `R
ιi eq.

r′3: [eR
l = ∅, eR

l+1 , ∅] eR
q , ∅: Here removal of irrelevant element corresponding to p j,

we have that pi is not post-dominated by pk. In such case ψ′ contains ιi : (pi, εpi )

and ιk : (pk, εpk ) where ιi < ιk and for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ pk) ∈

eR
l+1, ψ′ contains ιm : (psm , εpsm

) for m = 1, . . . ,n and ι1 < ιi < ι2 < · · · < ιn < ιk
and
∧

1≤m≤n [[psm .cond = labsm ]](εpsm
) yields to “true” or “unknown”. Thus,

ψ′ `R
ιi eq.

r′4: [eR
l , ∅, eR

l+1 , ∅] eR
q , ∅: Since pi is not post-dominated by p j and p j is not

post-dominated by pk, the removal of element corresponding to p j results that pi
is never post-dominated by pk. In such case the trace ψ′ contains ιi : (pi, εpi )

and ιk : (pk, εpk ) where ιi < ιk and for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . pst

labst
−−−→

pst+1

labst+1
−−−−→ . . . psr

labsr
−−−→ pk) ∈ eR

q where t ∈ [1...n], ψ′ contains ιm : (psm , εpsm
)

for m = 1, . . . , r and ι1 < ιi < ι2 < · · · < ιt < ιt+1 < · · · < ιr < ιk and
∧

1≤m≤r
[[psm .cond = labsm ]](εpsm

) yields to “true” or “unknown”.

Similarly, we can prove that ψ′ `A
ι1 eq.

Thus, for any dependence path η = e1e2 . . . elel+1 . . . eh where el : pi
x
−→ p j and

el+1 : p j
x
−→ pk, and an execution trace ψ over an abstract domain ρ: if ψ `ρ η then

ψ′ `ρ η′, where η′ = e1e2 . . . eq . . . eh (where eq = pi
x
−→ pk) and ψ′ are the dependence

path and the execution trace corresponding to η and ψ respectively obtained after
computing semantic relevancy w.r.t. ρ.

Example 12 Look at Figure 15 and consider the dependence path η = 2 x
−→ 6 x
−→ φ

x
−→ 7

and the following execution trace over the abstract domain SIGN:
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ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉
ι6 : 〈6, (+,+)〉 ι7 : 〈φ, (+,+)〉 ι8 : 〈7, (+,+)〉 ι9 : 〈8, (+,+)〉

Note that ψ `SIGN η, as already shown in Example 11.

1. start
2. x = input;
3. y = input;
4. i f (x > 0){
7. print(x); }
8. stop

(a) P′ssa : a f ter computing Semantic
Relevancy o f Pssa w.r.t. SIGN

 

1 

4 

3 
2 

8 

7 

T 

x 

x 

(b) G′pdg : PDG o f P′ssa

e eR eA

2 x
−→ 7 1 true

−−→ 4 true
−−→ 7 ∅

2 x
−→ 4 ∅ ∅

(c) DCG annotations 〈eR, eA
〉 f or the

DDG edges e o f G′pdg

Figure 16: Program P′ssa and its DCG after relevancy computation

Figure 16(a) and 16(b) depict the program P′ssa and its PDG G′pdg which are obtained
after computing semantic relevancy w.r.t. SIGN. Observe that in Pssa the statement at
program point 6 is irrelevant w.r.t. SIGN. Therefore, we can remove the conditional
statement at 5 and the φ statement, because after removing statement 6 the correspond-
ing “i f ” block becomes semantically irrelevant and the SSA function f is not necessary
anymore, as x has just a single definition. The DCG annotations over the DDG edges
of G′pdg are shown in Figure 16(c).

After removing the irrelevant entries from η and ψ, we get the dependence path
η′ = 2 x

−→ 7, and the execution trace ψ′ as follows:

ψ′ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι8 : 〈7, (+,+)〉
ι9 : 〈8, (+,+)〉

Now, let us show that ψ′ `SIGN η′.
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Algorithm 2: REFINE-DCG

Input: Syntactic DCG Gdcg and an abstract domain ρ
Output: Semantics-based abstract DCG Gs

dcg w.r.t. ρ

1. FOR each nodes q ∈ Gdcg DO

2. If ∀ψ: ψ 0ρ (p lab
−→ q) where lab ∈ {true, f alse} THEN

3. Remove from Gdcg the node q and all its associated dependences. If q is
a control node, the removal of q also removes all the nodes transitively
control-dependent on it. Data dependences have to be re-adjusted
accordingly;

4. END IF

5. FOR each data dependence edge e = (q x
−→ pi) DO

6. IF ∀ψ: ψ 0ρ e THEN
7. Remove e from Gdcg and re-adjust the data dependence of pi for

the data x;
8. END IF

9. END FOR

10. FLAG:=true;
11. FOR each φ-sequences ηφ = (q x

−→ φ1
x
−→ . . .

x
−→ φ j

x
−→ pi) starting from q DO

12. IF ∃ψ: ψ `ρ ηφ THEN
13. FLAG:=false;
14. BREAK;
15. END IF

16. END FOR

17. IF FLAG==true THEN
18. Remove the edge q x

−→ φ1;
19. END IF

20. END FOR

Figure 17: Algorithm to generate Semantics-based Abstract DCG

In η′, for the edge 2 x
−→ 7, the statement at 7 does not post-dominate the statement at

2. The Reach Sequences and the Avoid Sequences for the edge e = 2 x
−→ 7 are (2 x

−→ 7)R =

{1 true
−−→ 4 true

−−→ 7} and (2 x
−→ 7)A = ∅ respectively. For 1 true

−−→ 4 true
−−→ 7 ∈ (2 x

−→ 7)R :
[[1.cond = true]](⊥,⊥) and [[4.cond = true]](+,+) yields to true. Thus, ψ′ `R

ι1 (2 x
−→ 7).

The Avoid Sequence behaves similarly, yielding to ψ′ `SIGN η′.

8.1 Refinement into Semantics-based Abstract DCG

Given a DCG, we can refine it into more precise semantics-based abstract DCG
by removing from it all the semantically unrealizable dependences where con-
ditions for a control dependence never be satisfiable or data defined at a source
node can never be reachable to a target node in all possible abstract execution
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traces. The notion of semantically unrealizable dependence path is defined in
Definition 17.

Definition 17 (Semantically Unrealizable Dependence Path)
Given a DCG Gdcg and an abstract domain ρ. A dependence path η ∈ Gdcg is called
semantically unrealizable in the abstract domain ρ if∀ψ: ψ 0ρ η, whereψ is an abstract
execution trace.

The refinement algorithm of a DCG from syntactic to semantic one is de-
picted in Figure 17. Step 2 says that if the condition on which a node q is
control-dependent, never be satisfied by any of the execution traces, then the
node and all its associated dependences are removed. In that case, if q is a
control node, we remove all the nodes transitively control-dependent on q.
If any DDG edge with q as source is semantically unrealizable under its ab-
stract semantics, the corresponding DDG edge is removed in step 5. If all the
φ-sequences emerging from q are semantically unrealizable under its abstract
semantics, we remove the dependence of the φ-sequences on q in step 11.

Observe that in case of static slicing the satisfiability of the dependence
paths are checked against all possible traces of the program, whereas in case of
dynamic slicing or other forms of slicing the checking is performed against the
traces generated only for the inputs of interest.

9 Slicing Algorithm

We are now in position to formalize our proposed slicing algorithm, depicted
in Figure 18, that takes a program P and an abstract slicing criteria 〈p, v, ρ〉 as
inputs, and produces an abstract slice w.r.t. 〈p, v, ρ〉 as output. The proposed
slicing algorithm make the use of semantics-based abstract DCG of the program
that is obtained in two steps: first by generating semantics based abstract PDG
by following the algorithm REFINE-PDG depicted in section 6, and then by
converting it into semantics-based abstract DCG by following the algorithm
REFINE-DCG depicted in section 8.

Observe that the sub-DCG Gsdcg which is obtained in step 4 by applying
slicing criteria on the semantics-based abstract DCG Gs

dcg, is further refined in
step 5 by removing unrealizable data dependences, if present, from it. Let us
illustrate the reason behind it with an example. Consider the graph in Figure
19(a) showing a portion of DCG with three φ-sequences φ1, φ2 and φ3 that
describe the data dependences of the nodes 3, 5 and 7 respectively on the node
1 for a data y.

• η1 = 1
y
−→ φ1

y
−→ 3

• η2 = 1
y
−→ φ1

y
−→ φ2

y
−→ 5

• η3 = 1
y
−→ φ1

y
−→ φ2

y
−→ φ3

y
−→ 7
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Algorithm 3: GEN-SLICE

Input: Program P and an abstract slicing criteria 〈p, v, ρ〉
Output: Abstract Slice w.r.t. 〈p, v, ρ〉

1. Generate a semantics-based abstract PDG Gr,d
pdg from the program P by

following the algorithm REFINE-PDG.

2. Convert Gr,d
pdg into the corresponding DCG Gdcg by computing annotations

over all the data/control edges of it.

3. Generate a semantics-based abstract DCG Gs
dcg from Gdcg by following the

algorithm REFINE-DCG.

4. Apply the criteria 〈p, v〉 on Gs
dcg by following PDG-based slicing techniques

[33] and generate a sub-DCG Gsdcg that includes the node corresponding
to the program point p as well.

5. Refine Gsdcg into more precise one G′sdcg by performing the following op-
eration for all nodes q ∈ Gsdcg:

∀ηφ = (q x
−→ φ1

x
−→ . . .

x
−→ φ j

x
−→ pi) and ∀ψ: if ψ 0ρ ηφ, then remove the edge

q x
−→ φ1 from Gsdcg.

6. Apply again the criteria 〈p, v〉 on G′sdcg that results into the desired slice.

Figure 18: Slicing Algorithm

Suppose, ∃ψ: ψ `ρ η1
∧
∀ψ: ψ 0ρ (η2

∧
η3). During refinement of a DCG in

the algorithm REFINE-DCG, we can not remove the dependence edge 1
y
−→ φ1

because there is one semantically realizable φ-sequence φ1 from node 1.
Given a slicing criteria C. In algorithm GEN-SLICE, suppose the sub-DCG

generated after applying C does not include the node 3, as depicted in Figure
19(b). Now if we apply step 5 on the sub-DCG, we see that all the φ-sequences
emerging from node 1 (φ2 and φ3) are not semantically realizable. Therefore,

we can remove the edge 1
y
−→ φ1 from it as depicted in Figure 19(c). The further

application of the slicing criteria C (in step 6) on this refined sub-DCG generate
a slice that does not include the statement corresponding to the node 1 any
more.

10 Idempotency

In this Section, we show that our slicing technique is idempotent. That means,
if we apply our slicing procedure more than once, it yields the same result if
we apply it only once.
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(a) A part of a DCG containing three φ-sequences
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(b) Sub-DCG after applying Slicing Criteria C
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(c) Refiement of Sub-DCG

Figure 19: Refinement of sub-DCG during slicing

Given a set of programs P. Let fρ be a mapping function from P to Pρsem,
where Pρsem is the set of programs that are obtained after computing semantics-
based statement relevancy of the programs in P w.r.t. the property ρ and by
disregarding the irrelevant statements from them. That is,

fρ : P→ P
ρ
sem

Let Sc be a function that generates slice w.r.t. the slicing criteria c from the
programs in Pρsem. Thus,

Sc : Pρsem → Sliceρc

Thus, we have,
gρc = Sc ◦ fρ : P→ Sliceρc

The next theorem shows that gρc is idempotent, i.e., there is no benefit by apply-
ing the slicing procedure more than once.
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Theorem 10.1 Given a set of programsP and two mapping functions fρ : P→ P
ρ
sem

and Sc : Pρsem → Sliceρc , where Pρsem is the set of programs obtained after removing
irrelevant statements from P ∈ P w.r.t. an abstract property ρ, and Sliceρc is the set
of sliced programs w.r.t. the criteria c. The application of gρc = Sc ◦ fρ on P ∈ P is
idempotent, i.e.,

∀P ∈ P, gρc (gρc (P)) = gρc (P)

Proof Since gρc = Sc ◦ fρ, we have gρc (P) = Sc ◦ fρ(P) where P ∈ P. The first
application of fρ removes from P all the irrelevant statements w.r.t. ρ and yield
to Prel ∈ P

ρ
sem.

Now we prove that the removal of any irrelevant statement s ∈ P by the
application of fρ does not make any other relevant statement s′ ∈ P irrelevant,
and thus, all statements in Prel are relevant w.r.t. ρ. We prove it by contradiction.

Suppose the removal of irrelevant statement s at program point p in P makes
another relevant statement s′ at program point p′ in P irrelevant, and s′ appears
in Prel.

Since s′ at p′ is relevant, we can say ∃ε ∈ Σ
ρ
p′ : S[[s′]]ρ(ε) , ε. The removal

of irrelevant statement s makes s′ irrelevant, that is, all ε at p′ for which s′ is
relevant change into different states ε′ such that S[[s′]]ρ(ε′) = ε′.

Since s is irrelevant w.r.t. ρ and does not change any state at p, the states
resulting from the execution of the predecessors of s are equal to the states
reaching its successor at p + 1. That is, s does not introduce any changes to the
states which can flow forward and can not change the states reaching program
point p′. It means that the removal of s does not change the states at p′, and
hence, the relevancy of s′.

So after applying fρ, the resulting semantics-based program Prel contains all
relevant statements w.r.t. ρ. The application of Sc on Prel results into a sliced
program Pc which, in turn, also contains only the relevant statements w.r.t. ρ.

11 Soundness and Complexity Analysis

In this section, we prove that the abstract semantic relevancy computation
is sound, and we perform the complexity analysis of the proposed slicing
technique.

11.1 Semantic Relevancy: Soundness

When we lift the semantics-based program slicing from the concrete domain to
an abstract domain, we are loosing some information about the states occurring
at different program points in P. Thus, some relevant statements at the concrete
level may be treated as irrelevant in an abstract domain as they do not have
any impact on the property observed through the abstract domains.

In order to prove the soundness of the abstract semantic relevancy of state-
ments, we need to show that if any statement s at program point p in the
program P is irrelevant w.r.t. an abstract property ρ, then the execution of s
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over all the concrete states possibly reaching p does not change the property ρ
of the variables in those concrete states.

Theorem 11.1 (Soundness) If a statement s at program point p in the program P is
semantically irrelevant w.r.t. an abstract property ρ, then s is semantically irrelevant
with respect to the concrete property ω defined by: ω , ∀σ ∈ Σp, ∀xi ∈ VAR :
ρ(σ[xi]) = ρ((S[[s]]σ)[xi]).

Proof Given an abstract domain ρ on values, the set of abstract states is denoted by
Σρ whose elements are tuples ε = 〈ρ(v1), . . . , ρ(vk)〉 where vi = σ(xi) for xi ∈ VAR
being the set of program variables.

Let σ = 〈v1, . . . , vk〉 ∈ Σ and ε = 〈ρ(v1), . . . , ρ(vk)〉 ∈ Σρ. Observe that since
∀xi ∈ VAR : σ(xi) is a singleton and ρ is partitioning, each variable xi will have the
atomic property obtained from the induced partition Π(ρ) [30]. The concretization of
the abstract state ε is represented by γ(ε) = {〈u1, . . . ,uk〉 | ∀i. ui ∈ ρ(vi)}. We denote
the jth concrete state in γ(ε) by the notation 〈u1, . . . ,uk〉

j and we denote by u j
i the

elements of that tuple.
As S[[s]]ρ(ε) is defined as the best correct approximation of S[[s]] on the concrete

states in γ(ε), we get:

S[[s]]ρ(ε) = ρ(
⋃

j∈[1..|γ(ε)|]

{S[[s]]〈u1, . . . ,uk〉
j
})

= ρ(
⋃

j∈[1..|γ(ε)|]

{〈u′1, . . . ,u
′

k〉
j
| S[[s]]〈u1, . . . ,un〉

j = 〈u′1, . . . ,u
′

k〉
j
})

= 〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉

where u′ ji denotes the concrete value of the ith variable xi ∈ VAR in the state obtained
after the execution of the statement s over the jth concrete state in γ(ε). Observe that
the later equality relies on the distributivity of ρ, that comes from the assumption of
the atomicity of abstract domain obtained from induced partitioning.

From the definition of abstract irrelevancy of a statement s at program point p w.r.t.
abstract property ρ, we get

∀ε ∈ Σ
ρ
p : S[[s]]ρ(ε) = ε

Therefore,
S[[s]]ρ(ε) = 〈 ρ(

⋃
j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = ε

Then, by def. of ε,

〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = 〈 ρ(v1), . . . , ρ(vk) 〉 (1)
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And so, by def. of γ(ε) we get:

〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = 〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u j
1}), . . . , ρ(

⋃
j∈[1..|γ(ε)|]

{u j
k}) 〉

(2)
We already mentioned that given an abstract property ρ, since ∀xi ∈ VAR : σ(xi)

is a singleton and ρ is a partitioning, each variable xi will have the property obtained
from the induced partition Π(ρ) [30]. Thus, ∀xi ∈ VAR : ρ(σ(xi)) = ρ(vi) is atomic.

Therefore, from the Equations 1 and 2, we get

∀xi ∈ VAR, ρ(
⋃

j∈[1..|γ(ε)|]

{u′ ji }) = ρ(vi) = ρ(
⋃

j∈[1..|γ(ε)|]

{u j
i }) is atomic.

This allows us to conclude that for each ith program variables xi ∈ VAR (where
i ∈ [1...k]) in all the jth concrete states (where j ∈ [1..|γ(ε)|]), the concrete value u′ ji
which is obtained after the execution of s over those concrete states have the same
property as the concrete value u j

i before the execution of s. This means that for any
irrelevant statement s at program point p in P w.r.t. abstract property ρ, the execution
of s over the concrete states possibly reaching p does not lead to any change of the
property ρ of the concrete values of the program variables xi ∈ VAR in those concrete
states.

Thus, s is semantically irrelevant w.r.t. the concrete property w , ∀σ ∈ Σp, ∀xi ∈

VAR : ρ(σ[xi]) = ρ((S[[s]]σ)[xi]).

11.2 Complexity Analysis

Given an abstract domain ρ, our proposal has the following four subsequence
steps to obtain abstract slice w.r.t. a slicing criteria C:

1. Compute semantic relevancy of program statements w.r.t. ρ.

2. Obtain semantic data dependency of each expression on the variables
appearing in it w.r.t. ρ.

3. Generation of semantics-based abstract DCG by removing all the unreal-
izable dependences w.r.t. ρ.

4. Finally, slice the semantics-based abstract DCG w.r.t. C.

11.2.1 Complexity in Computing Statements Semantic Relevancy

Given an abstract domain ρ. To compute semantic relevancy of a statement
s at program point p w.r.t. ρ, we compare each abstract state ε ∈ Σ

ρ
p possibly

reaching p with the state ε′ = S[[s]]ρ(ε). For all state ε ∈ Σ
ρ
p , if ε = ε′, we say s is

irrelevant w.r.t. ρ.
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To obtain all possible abstract states reaching each program point in a pro-
gram, we compute its abstract collecting semantics by using the following
abstract monotone function

F](Cx]1, . . . ,Cx]n) = (F]1(Cx]1, . . . ,Cx]n), . . . ,F]n(Cx]1, . . . ,Cx]n))

The least fix point of F] i.e. FIX](F]) gives the abstract collecting semantics for
the program that helps in obtaining all possible abstract states reaching each
program point.

Complexity to compute abstract collecting semantics. The abstract function
F] involves n monotone functions F]i , i = 1, . . . ,n. The time complexity of

each F]i depends on the no. of predecessors of si and the execution time of
S[[.]]ρ, assuming the no. of possible abstract states appearing at each program
point as constant. For “skip” statement, S[[skip]]ρ is constant, whereas for as-
signment/conditional/repetitive statements, it depends on the execution time
for arithmetic and boolean expressions occurred in those statements. The-
oretically, there is no limit of the length of expressions i.e. the no. of vari-
ables/constants/operations present in the expressions. However, practically,
we assume that β is the maximum no. of operations (arithmetic or boolean)
that can be present in any expression. Assuming the time needed to perform
each operation as constant, we get the time complexity of S[[.]]ρ as O(β). Since
in a control flow graph the no. of predecessors of each si is constant, and F]

involves n monotone functions, the time complexity of F] is O(nβ), where n is
the no. of statements in the program.

The least solution for F] depends on the number of iteration performed to
reach the fix-point. In case of finite height lattice, let h be the height of the
context-lattice L = (℘(Σρ),v,u,t,>,⊥). The height of Ln is, thus, nh which
bounds the number of iteration we perform to reach the fix-point. So the time
complexity for Fix(F]) is O(n2βh).

However, for the lattice with infinite height, a widening operation is manda-
tory [9] and the overall complexity of Fix(F]) depends on it.

Complexity to compute statements semantic relevancy. Once we obtain the
collecting semantics for a program P in an abstract domain ρ, the time com-
plexity to compute semantic relevancy of each statement depends only on the
comparison between the abstract states in the contexts associated with it and in
the corresponding contexts of its successors. Any change in the abstract states
determines its relevancy w.r.t. ρ. For a program with n statements, the time
complexity to compute semantic relevancy is, thus, O(n).

11.2.2 Complexity in computing Semantic Data Dependency

Mastroeni and Zanardini [30] introduced an algorithm to compute semantic
data dependency of an expression on the variables appearing in it. Before
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discussing the complexity, we briefly mention the algorithm.
Given an expression e and an abstract state ε, the atomicity condition AU

e (ε)
holds iff execution of e over ε i.e. E[[e]]ρ(ε) results an atomic abstract value U, or
there exists a covering {ε1, . . . , εk} of ε such that AU

e (εi) holds for every i.
In order to compute semantic data dependency of an expression e on the

variables var(e) appearing in it, the algorithm calls a recursive function with
X = var(e) as parameter. The recursive function uses an assertion A′e(ε,X),
where ε is an abstract state possibly reaching the statement containing the
expression e. The assertion A′e(ε,X) holds iff ∃U : AU

e (ε), or there exists an
X-covering {ε1, . . . , εk} of ε such that ∀i : A′e(εi,X). Intuitively, X-covering is a
set of restriction on a state, which do not involve X. If A′e(ε,X) holds, it implies
the non-relevance of X in the computation of e, otherwise for each x ∈ X the
same is repeated with X\x as parameter.

Thus, the time complexity to compute semantic data dependency at expres-
sion level for the whole program depends on the following factors:

• The time complexity of E[[e]]ρ: Theoretically there is no limit of the length
of expression e i.e. the no. of variables/constants/operations present in e.
However, practically, we assume that β is the maximum no. of operations
(arithmetic or boolean) that can be present in e. Assuming the time needed
to perform each operation as constant, we get the time complexity of E[[e]]ρ

as O(β).

• The time complexity of the atomicity condition AU
e (ε): In worst case, the

time complexity of AU
e (ε) depends on the time complexity of E[[e]]ρ and

the no. of elements in the covering of ε. Let m be the no. of atomic values
in the abstract domain ρ. Since the no. of elements in a covering depends
on the no. of atomic values in the abstract domain, the time complexity
of AU

e (ε) is O(mβ).

• The time complexity of the assertion A′e(ε,X): In worst case, the time com-
plexity of A′e(ε,X) depends on the time complexity of atomicity condition
AU

e (ε) and the no. of elements in the X-covering of ε. Thus, the time
complexity of A′e(ε,X) is O(m2β).

In worst case, the recursive function that uses A′e(ε,X) executes for all subset
of variables appearing in e i.e. ∀X ∈ ℘(var(e)). So, it depends on the set of pro-
gram variables VAR. Therefore, the time-complexity of the recursive function
is O(m2βVAR), where VAR is the set of program variables. For a program P of
size n, the no. of expressions that can occur in worst case is n. Thus, finally we
get the time complexity to compute semantic data dependency for a program
P of size n is O(m2βnVAR).

11.2.3 Complexity to generate Semantics-based Abstract DCG and slicing
based on it

Given a program P (in IMP language) and its PDG, the time complexity to
construct DCG from a PDG is O(n) [39], where n is the no. of nodes in the PDG.
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However, to obtain semantics-based abstract DCG Gs
dcg from a syntactic DCG

Gdcg, our algorithm removes all the unrealizable dependences present in Gdcg.
To do this, the algorithm checks the satisfiability of the annotations of all

the outgoing DDG edges, incoming CDG edge and outgoing φ-sequences as-
sociated with each node in the DCG against all the abstract execution traces.

For a DCG with n nodes, the maximum no. of edges need to check is O(n2).
Thus, in case of lattice of finite height h, the worst case time complexity to
verify all dependences for their satisfiability against abstract execution traces
is O(n3h).

As we know that the slicing which is performed by walking a DCG back-
wards or forwards from the node of interest takes O(n) [33], the worst case time
complexity to obtain DCG-based slicing is, therefore, O(n3h).

11.2.4 Overall Complexity of the Proposal

Let us consider that the maximum number of operations (β) presented in any
expression and the number of atomic values (m) present in the abstract domain
are constants, and O(VAR) = O(n).

As an overall complexity evaluation of the techniques presented so far, we
can say that it has worst case time complexity, in case of finite height abstract
lattices, is O(n3h)), where n is the no. of statements in the program and h is the
height of the lattice of context.

12 Discussions and Conclusions

We acknowledge that there are other possible improvements that deserve to
be considered as a future works. As for instance, the semantic relevancy at
statement-level does not take into account the semantic interaction between
statements. For example, if consider a block consisting of two statements
{y = y + 3; y = y − 1; }, we observe that each of the two statements is not
semantically irrelevant w.r.t. PAR, while the block as a whole is irrelevant w.r.t.
PAR.

Therefore, to be more precise, we should start to compute the relevancy of
a program from block-level to statement-level. If any block is irrelevant, we
disregard all statements in that block; otherwise, we compute relevancy for all
sub-blocks of that block. In this way, we compute the relevancy by moving from
block-level towards the statement-level. Instead, we can also use the partial
evaluation technique, although costlier, to resolve this issue. For instance, the
above two statements can be replaced by a single statement y=y+2 which is
irrelevant w.r.t. PAR.

In [30], the problem related to the control dependency is not addressed. For
example, consider the following example:
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4. ....
5. i f ((y + 2x mod 2) == 0) then
6. w=5;
7. else w=5;
8. ....

Here the abstract semantic data dependency says that the condition in “i f ”
statement is only dependent on y. But it does not say anything about the
dependency between w and y.

Observe that although w is invariant w.r.t. the evaluation of the guard, this
is not captured by [30].

The block-level semantic relevancy, rather than statement-level, can resolve
this issue of independency. Let us denote the complete “i f -else” block by s.
The semantics of s says that ∀σ1, σ2 ∈ Σ5, S[[s]](σ1) = σ′1 and S[[s]](σ2) = σ′2
implies σ′1 = σ′2, where σ′1(w) = σ′2(w) = 5. It means that there is no control of
the “i f -else” over the resultant state which is invariant. So we can replace the
whole conditional block s by the single statement w = 5. Notice that this is also
true if we replace the statement at line 6 by w=y+5, as the line 6 is executed
when y==0.

The combined result of semantic relevancy, semantic data dependency and
conditional dependency in the refinement of the PDGs can be applied to all
forms of slicing: static, dynamic, conditional, amorphous etc. Since the allowed
initial states are different for different forms of slicing, we compute statements
relevancy and semantic data dependency of expressions over all the possible
states reaching the program points in the program by starting only from the
allowed initial states, according to the criteria. Similarly, the satisfiability of the
depenedence paths in the DCG are checked against the traces generated from
the allowed initial states only. For instance, in case of conditional slicing, a
condition is specified in the slicing criteria to disregard some initial states that
do not satisfy it. In case of dynamic slicing, inputs of interest are specified in
the slicing criteria. Therefore, the collecting semantics and execution traces are
generated based on the allowed initial states specified or satisfying the condi-
tions in the criteria, and are used to compute statements relevancy, semantic
data dependency and satisfiability of the dependence paths.

The combination of results on the refinement of dependence graphs with
static analysis techniques discussed in this report may give rise to further
interesting applications to enhance the accuracy of the static analysis and for
accelerating the convergence of the fixed-point computation. This is the topic
of our ongoing research.
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analysis of while-programs. ACM Transactions on Programming Languages and Sys-
tems, 7(1):37–61, 1985.

47



[3] S. Bhattacharya. Property Driven Program Slicing and Watermarking in the Abstract
Interpretation Framework. PhD thesis, Università Ca’ Foscari Venezia, 2011.
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