
Chen, Cogent Mathematics (2016), 3: 1251875
http://dx.doi.org/10.1080/23311835.2016.1251875

PURE MATHEMATICS | RESEARCH ARTICLE

A study on the stability of a modified Degasperis–
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Abstract: A modified Degasperis–Procesi equation is investigated. The local 
existence and uniqueness of the strong solution for the equation are established in 
the Sobolev space Hs(R) with s > 3

2
. The L1(R) local stability for the strong solution is 

obtained under certain assumptions on the initial data.
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1. Introduction and main results
The Degasperis–Procesi (DP) equation of the form

which represents a model for shallow water dynamics, has been investigated by many scholars (see 
Coclite & Karlsen, 2006, 2007; Degasperis, Holm, & Hone, 2002; Escher, Liu, & Yin, 2006; Lai, Yan, Chen, 
& Wang, 2014; Lai & Wu, 2010; Lin & Liu, 2009; Lenells, 2005; Yin, 2003). Coclite and Karlsen (2006) 
established existence and L1 stability results for entropy weak solutions of Equation (3) in the space 
L1

⋂
BV and extended the results to a kind of generalized Degasperis–Procesi equations. Escher et al. 

(2006) discussed several qualitative properties of the Degasperis–Procesi equation. The existence and 
uniqueness of global weak solutions for Equation (1) have been established, provided that the initial 
data satisfy appropriate conditions in Escher (2006). Lenells (2005) dealt with the travelling wave so-
lutions of Equation (1) and classified all weak travelling wave solutions of the Degasperis–Procesi 
equation. Recently, Lai et al. (2014) studied the generalized Degasperis–Procesi equation

where k ≥ 0 and m > 0 are constants. Lai et al. (2014) derived the L2(R) conservation law and 
established the L1(R) stability of local strong solutions to Equation (2) by assuming that its initial 

(1)𝜙t − 𝜙txx + 4𝜙𝜙x = 3𝜙x𝜙xx + 𝜙𝜙xxx, t > 0, x ∈ R,

(2)�t − �txx + k�x +m��x = 3�x�xx + ��xxx,
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value belongs to the space Hs(R) with s > 3

2
. For other approaches to study the DP equation and re-

lated partial differential equations, the reader is referred to Kato (1975), Kruzkov (1970), Rodriguez-
Blanco (2001) and the references therein.

The objective of this work is to investigate the modified Degasperis–Procesi equation in the form

where �, � ∈ R,m ≥ 2, function f (�) is a polynomial of order n(n ≥ 2). Letting � = 0, � = 4, f (�) = �
2

2
, 

Equation (3) reduces to the Degasperis–Procesi Equation (1). Applying the operator 
(
1 − �

2
x

)−1

 to 
Equation (3), we obtain its equivalent form

where (1 − �
2
x )

−1I(t, x) = 1

2
∫
R
e−|x−y|I(t, y) dy. Assuming that the initial value �(0, x) of Equation (4) 

belongs to Hs(R)
(
s > 3

2

)
, we will prove the existence and uniqueness of local solution for Equation 

(4) using the Kato Theorem (see Kato, 1975) in the space C
(
[0,∞);Hs(R)

)
∩ C1

(
[0,∞);Hs−1(R)

)
. 

Furthermore, we will use the approaches presented in Kruzkov (1970) to establish the L1(R) local 
stability of the solution for the modified Degasperis–Procesi Equation (4). The results obtained in this 
paper extend parts of results presented in Lai et al. (2014).

We let Hs(R) (where s is a real number) denote the Sobolev space with the norm defined by

where ĥ(t, 𝜉) = ∫
R
e−ix𝜉h(t, x) dx. For T > 0 and s ≥ 0, we let C

(
[0,∞);Hs(R)

)
 denote the Fréchet 

space of all continuous Hs−valued functions on [0, T). Set Λ = (1 − �
2
x )

1

2. For simplicity, we let c 
denote any positive constants.

We consider the Cauchy problem of Equation (3)

which is equivalent to the problem

Now we state the main results of our work.

Theorem 1.1  Let �0(x) ∈ H
s
(R) with s > 3

2
. There exists a T > 0 depending on ‖�0‖Hs(R) such that problem 

(5) or (6) has a unique solution �(t, x) ∈ C
(
[0, T);Hs(R)

)
∩ C1

(
[0, T);Hs−1(R)

)
.

Theorem 1.2  Assume that �(t, x) and �(t, x) are two local strong solutions of problem (5) or (6) with 
initial data �0(x),�0(x) ∈ L

1
(R) ∩ Hs(R)(s > 3

2
), respectively. Let T > 0 be the maximum existence time 

of �(t, x) and �(t, x). For any t ∈ [0, T), it holds that

(3)
�t − �txx + �f �(�)�x = f

���
(�)�

3
x + 3f

��
(�)�x�xx + f

�
(�)�xxx

+ �m[(m − 1)�m−2
�
2
x + �

m−1
�xx] − ��

m,

(4)�t + f
�
(�)�x + ��

m
+ (� − 1)(1 − �

2
x )

−1
�xf (�) = 0,

‖h‖Hs =
⎛⎜⎜⎝∫R

�
1 + �𝜉�2

�s���ĥ(t, 𝜉)
���
2
⎞⎟⎟⎠

1

2

< ∞,

(5)
⎧⎪⎨⎪⎩

�t − �txx + �f �(�)�x = f
���
(�)�

3
x + 3f

��
(�)�x�xx + f

�
(�)�xxx

+�m[(m − 1)�m−2
�
2
x + �

m−1
�xx] − ��

m,

�(0, x) = �0(x),

(6)
{

�t + f
�
(�)�x + ��

m
+ (� − 1)Λ−2

�xf (�) = 0,

�(0, x) = �0(x).
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where c is a positive constant depending on ‖�0‖L∞(R) and ‖�0‖L∞(R).

This paper is organized as follows. Section 2 gives the proof of Theorem 1.1. The proof of Theorem 
1.2 is given in Section 3.

2. Proof of Theorem 1.1
Firstly, we introduce the abstract quasi-linear evolution equation

Let X and Y be Hilbert spaces where Y is continuously and densely embedded in X, and Q:Y → X be a 
topological isomorphism. We define L(Y, X) as the space of all bounded linear operators from Y to X. 
We denote L(X, X) by L(X). Note that �1, �2, �3 and �4 in the following are constants and depend on 
max{‖y‖Y , ‖z‖Y}.

(I)  A(y) ∈ L(Y ,X) for y ∈ X with 

A(y) ∈ G(X, 1, 𝜉)(𝜉 > 0) and uniform on bounded sets in Y.

(II)  QA(y)Q−1
= A(y) + B(y), in which B(y) ∈ L(X) is bounded and uniform on bounded sets in Y 

and 

(III)  W:Y → Y extends to a map from X to X, is bounded on bounded sets in Y and satisfies 

Kato Theorem (1975). Assume that (I), (II) and (III) hold. If u0 ∈ Y , there is a maximal T > 0  
depending only on ‖u0‖Y and a unique solution u to problem (7) such that

Moreover, the map u0 → u(.,u0) is a continuous map from Y to the space C
(
[0, T);Y

)
∩ C1

(
[0, T);X

)
.

For problem (6), we set A(�) = f �(�)�x,    Y = Hs(R),   X = Hs−1(R),    W(�) = −��
m
− (� − 1)Λ−2

�xf (�), 
and Q = Λ. Then, we will verify that A(�) and W(�) satisfy conditions (I)–(III). We cite several 
conclusions presented in Rodriguez–Blanco (2001).

Lemma 2.1 The operator A(�) = f �(�)�x with � ∈ Hs(R)(s > 3

2
), belongs to G(Hs−1, 1, �).

Lemma 2.2 For �, z,w ∈ Hs(R) with s > 3

2
, A(�) ∈ L(Hs,Hs−1), it holds that

Lemma 2.3 For �, z ∈ Hs(R) and w ∈ Hs−1(R)
(
s > 3

2

)
, it holds that B(�) =

[
Λ, f �(�)�x

]
Λ

−1
∈ L(Hs−1) and

(7)‖�(t, x) − �(t, x)‖L1 ≤ ect �
+∞

−∞

��0(x) − �0(x)� dx,

(7)

{
du

dt
+ A(u)u =W(u), t ≥ 0,

u(0) = u0.

‖(A(y) − A(z))w‖X ≤ �1‖y − z‖X‖w‖Y , y, z,w ∈ Y ,

‖(B(y) − B(z))w‖X ≤ �2‖y − z‖X‖w‖Y , y, z ∈ Y , w ∈ X.

‖W(y) −W(z)‖Y ≤ �3‖y − z‖Y , y, z ∈ Y ,

‖W(y) −W(z)‖X ≤ �4‖y − z‖X , y, z ∈ Y .

u = u(.,u0) ∈ C
(
[0, T);Y

)
∩ C1

(
[0, T);X

)
.

‖(A(�) − A(z))w‖Hs−1 ≤ �1‖� − z‖Hs−1‖w‖Hs .

‖(B(�) − B(z))w‖Hs−1 ≤ �2‖� − z‖Hs‖w‖Hs−1 .
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Lemma 2.4 (Kato, 1975).   Let r and q be real numbers such that −r < q ≤ r. Then,

Lemma 2.5 Let �,z ∈ Hs(R) with s > 3

2
 and W(�) = −��

m
− (� − 1)Λ−2

�xf (�). Then, W is bounded on 
bounded sets in Hs and satisfies

Proof For s > 3

2
, we have ‖�‖L∞ ≤ c‖�‖Hs and ‖�‖Hs−1 ≤ c‖�‖Hs. Applying the algebra property of Hs(R) 

and Lemma 2.4, we get

which completes the proof of (8). Similarly, we get

which completes the proof of (9).  ✷

Proof of Theroem 1.1 Using Lemmas 2.1–2.3 and Lemma 2.5, we know that the conditions (I), (II) 
and (III) hold. Applying the Kato Theorem, we find that problem (5) or (6) has a unique local 
solution

where T > 0 depends on ‖�0‖Hs. ✷

Remark 2.6 Let T > 0 be described in Theorem 1.1. Using the Sobolev embedding Theorem, we en-
sure the boundedness of solution �(t, x) to problem (6) in the domain [0, T) × R. Namely, provided that 
�0 ∈ H

s
(R) with s > 3

2
, we have ‖�‖L∞(R) ≤ MT, where MT is a positive constant.

3. Proof of Theorem 1.2
Let P(t, x,�) = ��

m
+ (� − 1)Λ−2

�xf (�) in the first equation of (6); we get,

Assume that �(t, x) and �(t, x) are solutions of problem (10) in the domain [0, T) × R with initial 
functions �0(x) and 𝜓0(x) ∈ H

s
(R)

(
s > 3

2

)
. Now we give several lemmas.

Lemma 3.1 Let �(t, x) be the solution of problem (10) and �0(x) ∈ H
s
(R) with s > 3

2
. Then, ‖�‖L∞(R) ≤ MT and

‖𝜙𝜓‖Hq leqc‖𝜙‖Hr‖𝜓‖Hq , if r <
1

2
,

‖𝜙𝜓‖
H
r+q− 1

2
≤ c‖𝜙‖Hr‖𝜓‖Hq , ifr <

1

2
.

(8)‖W(�) −W(z)‖Hs ≤ �3‖� − z‖Hs ,
(9)‖W(�) −W(z)‖Hs−1 ≤ �4‖� − z‖Hs−1 .

‖W(�) −W(z)‖Hs ≤ ���‖�m − zm‖Hs + �� − 1�‖Λ−2
�x

�
f (�) − f (z)

�‖Hs
≤ c‖�m − zm‖Hs + c‖f (�) − f (z)‖Hs−1
≤ c‖� − z‖Hs‖�m−1

+ �
m−2z +⋯ + zm−1‖Hs

+ c‖f (�) − f (z)‖Hs
≤ �3‖� − z‖Hs ,

‖W(�) −W(z)‖Hs−1 ≤ ‖��m − �zm‖Hs−1 + �� − 1�‖Λ−2
�x

�
f (�) − f (z)

�‖Hs−1
≤ c‖�m − zm‖Hs−1 + c‖f (�) − f (z)‖Hs−2
≤ c‖� − z‖Hs−1‖�m−1

+ �
m−2z +⋯ + zm−1‖Hs−1

+ c‖f (�) − f (z)‖Hs−1
≤ �4‖� − z‖Hs−1 ,

� = �(t, x) ∈ C
(
[0, T);Hs(R)

)
∩ C1

(
[0, T);Hs−1(R)

)
,

(10)

{
�t + f

�
(�)�x + P(t, x,�) = 0,

�(0, x) = �0(x).

‖P(t, x,�)‖L∞(R) ≤ cMk
T ,
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where positive constant c depends on �, �,m,n, ‖�0‖L∞ and k = max{m,n}.

Proof We have

Applying Remark 2.6 and the integral ∫
R
e−|x−y| dy = 2, we complete the proof.  ✷

Lemma 3.2 Assume that �(t, x) and �(t, x) are solutions of problem (10) in the domain [0, T) × R with 
initial functions �0(x) and 𝜓0(x) ∈ H

s
(R)(s > 3

2
), respectively. Then,

where c > 0 depends on �, �,m,n, ‖�0‖L∞(R),‖�0‖L∞(R) and T.

Proof Using the property of the operator Λ−2 and Remark 2.6, we get

in which we apply the Tonelli Theorem to complete the proof.  ✷

We introduce a function �(�) which is infinitely differential on (−∞,+∞). Note that �(�) ≥ 0, 
�(�) ≡ 0 for |�| ≥ 1, 

+∞∫
−∞

�(�) d� = 1. Let �
�
(�) = �(�

−1
�)�, where � is an arbitrary positive constant. 

It is found that �
�
(�) ∈ C∞

0 (−∞,+∞) and

Let the function v(x) be defined and locally integrable on (−∞,+∞). Let v�(x) denote the 
approximation function of v(x) as

|P(t, x,�)| = |||��
m
(t, x) + (� − 1)�xΛ

−2f (�) dy
|||

=

|||||||
��

m
(t, x) +

� − 1

2 �
R

e−|x−y| sign(y − x)f (�) dy

|||||||

≤ |�|
|||||||
�
m
(t, x)

|||||||
+
|� − 1|
2 �

R

e−|x−y|
|||||||
f (�)

|||||||
dy.

(11)

+∞

�
−∞

|P(t, x,�) − P(t, x,�)| dx ≤ c
+∞

�
−∞

|� − �| dx,

(13)

+∞

�
−∞

|P(t, x,�) − P(t, x,�)| dx

≤ |�|
+∞

�
−∞

|�m − �
m| dx + |� − 1|

2

+∞

�
−∞

|||�xΛ
−2
(f (�) − f (�))

||| dx

≤ c
+∞

�
−∞

|� − �| dx + c
+∞

�
−∞

dx

+∞

�
−∞

|||e
−|x−y| sign(y − x)(f (�) − f (�))||| dy

≤ c
+∞

�
−∞

|� − �| dx + c
+∞

�
−∞

|f (�) − f (�)| dx �
+∞

−∞

e−|x−y| dy

≤ c
+∞

�
−∞

|� − �| dx,

(12)

{
�
�
(�) ≥ 0, �

�
(�) = 0 for |�| ≥ �,

|�
�
(�)| ≤ c

�
, � +∞

−∞
�
�
(�) d� = 1.

(13)
v�(x) =

1

�

+∞

∫
−∞

�

(x − y
�

)
v(y) dy.
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We call x0 a Lebesgue point of the function v(x) if

At any Lebesgue point x0, we get

Since the set of points which are not Lebesgue points of v(x) has measure zero, we have v�(x) → v(x) 
as � → 0 almost everywhere.

For any T1 ∈ [0, T), we denote the band {(t, x):[0, T1] × R} by �T1. Let Kr = {x:|x| ≤ r} and

where r > 0, 𝜌 > 0.

Lemma 3.3 (Kruzkov, 1970).    Let the function v(t, x) be bounded and measurable in cylinder [0, T1] × Kr. 
If for any � ∈ (0,min[r, T1]) and any � ∈ (0, �), the function

satisfies

Lemma 3.4 (Kruzkov, 1970).      If �F(u)
�u

 is bounded, then the function H(u, v) = sign(u − v)(F(u) − F(v)) 
satisfies the Lipschitz condition in u and v.

We state the concept of a characteristic cone. Let T be described in Theorem 1.1 and ‖�‖L∞(R) ≤ MT. 
For any T1 ∈ [0, T) and R1 > 0, we define

Let Ω represent the cone 
{
(t, x):|x| ≤ R1 − Nt, 0 ≤ t ≤ T0 = min(T1,R1N−1

)
}

 and S
�
 designate the 

cross section of the cone Ω by the plane t = �, � ∈ [0, T0].

Lemma 3.5 Let �(t, x) be the solution of problem (10) on �T1, g(t, x) ∈ C
∞

0 (�T1
); it holds that

where k is an arbitrary constant.

lim
�→0

1

�

x0+�

∫
x0−�

|v(x) − v(x0)| dx = 0.

lim
�→0

v�(x0) = v(x0).

Π =

{
(t, x, �, y):

||||
t − �

2

|||| ≤ �, � ≤ t + �

2
≤ T1 − �,

||||
x − y

2

|||| ≤ �,
||||
x + y

2

|||| ≤ r − �

}
,

V
�
=
1

�
2 ∫ ∫ ∫ ∫

Π

|v(t, x) − v(�, y)| dt dx d� dy

lim
�→0

V
�
= 0.

N > max
(t,x)∈[0,T1]×KR

1

||f �(𝜙)||.

(14)

∫ ∫
�T
1

{|� − k|gt + sign(� − k)[f (�) − f (k)]gx

− sign(� − k)g(t, x)P(t, x,�)
}
dt dx = 0,
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Proof Suppose that Φ(�) is a twice differential function. Multiplying the first equation of problem 
(10) by Φ�

(�)g(t, x) and integrating over �T1, we get

Using the method of integration by parts, we get

Notice that

Thus,

Then, we have

Substitute Equations (16) and (17) into Equation (15). Let Φ�
(�) be an approximation of the function 

Φ(�) = |� − k|. When � → 0, Φ�
(�) → Φ(�), we obtain Equation (14).  ✷

We will give the proof of Theorem 1.2. Set function g(t, x) ∈ C∞

0 (�T1
),g(t, x) ≡ 0 outside the cylinder 

� = {(t, x)} = [�, T1 − 2�] × Kr−2�, where Kr−2𝜌 = {|x|:|x| ≤ r − 2𝜌}, r > 0, 0 < 2𝜌 < min(T1, r).

Proof of Theorem 1.2.

We define

in which (⋯) =

(
t+�

2
, x+y

2

)
, (⋮) =

(
t−�

2
, x−y

2

)
. Thus, we obtain

Using Lemma 3.5 and setting k = �(�, y),g(t, x) = F(t, x, �, y), we get

(15)
∫ ∫

�T
1

{
Φ

�
(�)g�t + Φ

�
(�)gf �(�)�x + Φ

�
(�)gP(t, x,�)

}
dt dx = 0.

(16)
∫ ∫

�T
1

Φ
�
(�)g�t dt dx = − ∫ ∫

�T
1

Φ(�)gt dt dx.

⎛⎜⎜⎝

�

∫
k

Φ
�
(z)f �(z) dz

⎞⎟⎟⎠

�

= Φ
�
(�)f �(�)�x.

+∞

∫
−∞

⎛
⎜⎜⎝

�

∫
k

Φ
�
(z)f �(z) dz

⎞
⎟⎟⎠
gx dx = −

+∞

∫
−∞

Φ
�
(�)f �(�)�xg dx.

(17)

∫ ∫
�T
1

Φ
�
(�)f �(�)�xg dt dx = − ∫ ∫

�T
1

⎛
⎜⎜⎝

�

∫
k

Φ
�
(z)f �(z) dz

⎞
⎟⎟⎠
gx dt dx

= − ∫ ∫
�T
1

�
Φ

�
(�)[f (�) − f (k)]

−

�

∫
k

Φ
��
(z)

�
f (z) − f (k)

�
dz

⎫⎪⎬⎪⎭
gx dt dx.

(18)F(t, x, �, y) = g
(
t + �

2
,
x + y

2

)
�
�

(
t − �

2
,
x − y

2

)
= g(⋯)�

�
(⋮),

Ft + F� = gt(⋯)�
�
(⋮), Fx + Fy = gx(⋯)�

�
(⋮).
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Similarly, we have

Adding (19) and (20), we obtain

We note that the first two terms of the integrand of (21) have the form

where K satisfies the Lipschitz condition in all its variables. Then,

Note that K
�
= 0 outside the region Π. Applying the estimate �

�
(⋮)| ≤ c

�
2 and Lemma 3.4, we get 

where c is a positive constant independent of �. Using Lemma 3.3, we know J11(�) → 0 as � → 0.

For the term J12, we substitute t = �1,
t−�

2
= �1, x = �, x−y

2
= �. Combining with the identity

(19)

∫ ∫ ∫ ∫
�T
1
×�T

1

{|�(t, x) − �(�, y)|Ft + sign(�(t, x) − �(�, y))

×
[
f (�(t, x)) − f (�(�, y))

]
Fx − sign(�(t, x) − �(�, y))

×P(t, x,�(t, x))F} dt dx d� dy = 0.

(20)

∫ ∫ ∫ ∫
�T
1
×�T

1

{|�(�, y) − �(t, x)|F
�
+ sign(�(�, y) − �(t, x))

×
[
f (�(�, y)) − f (�(t, x))

]
Fy − sign(�(�, y) − �(t, x))

×P(�, y,�(�, y))F} dt dx d� dy = 0.

(21)

0 ≤ � � � �
�T
1
×�T

1

{|�(t, x) − �(�, y)|gt��
+ sign(�(t, x) − �(�, y))

×
[
f (�(t, x)) − f (�(�, y))

]
gx��

}
dt dx d� dy +

||||||||
� � � �
�T
1
×�T

1

{
sign(�(t, x) − �(�, y))

×
[
P(t, x,�(t, x)) − P(�, y,�(�, y))

]
g�

�

}
dt dx d� dy

|||.

(22)K
�
= K(t, x, �, y,�(t, x),�(�, y))�

�
(⋮),

(23)

∫ ∫ ∫ ∫
�T
1
×�T

1

K
�
dt dx d� dy = ∫ ∫ ∫ ∫

�T
1
×�T

1

K(t, x, �, y,�(t, x),�(�, y))�
�
dt dx d� dy

= ∫ ∫ ∫ ∫
�T
1
×�T

1

{K(t, x, �, y,�(t, x),�(�, y))

−K(t, x, t, x,�(t, x),�(t, x))}�
�
dt dx d� dy

+ ∫ ∫ ∫ ∫
�T
1
×�T

1

K(t, x, t, x,�(t, x),�(t, x))�
�
dt dx d� dy

= J11(�) + J12

��J11(�)�� ≤ c
⎡⎢⎢⎣
� +

1

�
2 � � � �

Π

��(t, x) − �(�, y)� dt dx d� dy
⎤⎥⎥⎦
,

�

∫
−�

+∞

∫
−∞

�
�
(�1, �) d�1 d� = 1,
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we obtain

Thus, we have

Similarly, the integrand of the third term in (21) can be represented as

Then,

Using Lemma 3.4, we have 

Using Lemma 3.3, it yields J21(�) → 0 as � → 0. Repeating the steps as before, we have

From (21) to (25), we get

We set

and

J12 = 2
2 ∫ ∫

�T
1
×�T

1

K
�
�1, �, �1, �,�(�1, �),�(�1, �)

�⎛⎜⎜⎝

�

∫
−�

+∞

∫
−∞

�
�
(�1, �) d�1 d�

⎞
⎟⎟⎠
d�1 d�

= 4 ∫ ∫
�T
1

K(t, x, t, x,�(t, x),�(t, x)) dt dx.

(23)lim
�→0 ∫ ∫ ∫ ∫

�T
1
×�T

1

K
�
= 4 ∫ ∫

�T
1

K(t, x, t, x,�(t, x),�(t, x)) dt dx.

(24)
K
�
= sign(�(t, x) − �(�, y))

[
P(t, x,�(t, x)) − P(�, y,�(�, y))

]
g�

�

= K(t, x, �, y,�(t, x),�(�, y))�
�
(⋮).

∫ ∫ ∫ ∫
�T
1
×�T

1

K
�
dt dx d� dy = ∫ ∫ ∫ ∫

�T
1
×�T

1

{
K(t, x, �, y,�(t, x),�(�, y))

−K(t, x, t, x,�(t, x),�(t, x))�
�

}
dtdxd�dy

+ ∫ ∫ ∫ ∫
�T
1
×�T

1

K(t, x, t, x,�(t, x),�(t, x))�
�
dt dx d� dy

= J21(�) + J22.

��J21(�)�� ≤ c
⎡⎢⎢⎣
� +

1

�
2 � � � �

Π

��(t, x) − �(�, y)� dt dx d� dy
⎤⎥⎥⎦
.

(25)J22 = 4 ∫ ∫
�T
1

K(t, x, t, x,�(t, x),�(t, x)) dt dx.

(26)

� �
�T
1

{|�(t, x) − �(t, x)|gt + sign(�(t, x) − �(t, x))
[
f (�) − f (�)

]
gx
}
dt dx

+

||||||||
� �

�T
1

sign(�(t, x) − �(t, x))
[
P(t, x,�) − P(t, x,�)

]
g dt dx

||||||||
≥ 0.

(27)h(t) =

+∞

∫
−∞

|�(t, x) − �(t, x)| dx
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Take two numbers �, � ∈ (0, T0) and 𝜌 < 𝜏. In (26), we let

in which

where � is a small positive constant and �(t, x) = 0 outside the cone Ω. When � → 0,R1 → +∞, we 
observe that �

�
→ 1. By the definition of the number N, we have

Applying (26)–(30), we get

In (31), sending � → 0,R1 → +∞ and using Lemma 3.2, we obtain

where c is independent of �.

Applying the properties of the function �
�
 for � ≤ min(�, T0 − �), we get

Then,

Let

We observe that

(28)�
�
(�) =

�

∫
−∞

�
�
(�) d�.

(29)g(t, x) =
[
𝜇
𝜀
(t − 𝜌) − 𝜇

𝜀
(t − 𝜏)

]
𝜒(t, x), 𝜀 < min(𝜌, T0 − 𝜏),

(30)�(t, x) = �
�
(t, x) = 1 − �

�
(|x| + Nt − R1 + �),

0 = �t + N|�x| ≥ �t + N�x, (t, x) ∈ Ω.

(31)

� �
�T
0

{|�(t, x) − �(t, x)|[�
�
(t − �) − �

�
(t − �)

]
�
�
(t, x)

}
dt dx

+

T0

�
0

dt

+∞

�
−∞

{|P(t, x,�) − P(t, x,�)|

×
[
�
�
(t − �) − �

�
(t − �)

]
�
�
(t, x)

}
dx ≥ 0.

(32)

T0

�
0

[
�
�
(t − �) − �

�
(t − �)

]
h(t) dt + c

T0

�
0

[
�
�
(t − �) − �

�
(t − �)

]
h(t) dt ≥ 0,

|||||||

T0

�
0

�
�
(t − �)h(t) − h(�) dt

|||||||
=

|||||||

T0

�
0

�
�
(t − �)[h(t) − h(�)] dt

|||||||

≤ c

�

�+�

�
�−�

||h(t) − h(�)|| dt.

(33)

T0

∫
0

�
�
(t − �)h(t) dt → h(�) as � → 0.

G(�) =

T0

∫
0

�
�
(t − �)h(t) dt =

T0

∫
0

dt

t−�

∫
−∞

�
�
(�)h(t) d�.
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Let � → 0; it derives that

and

Therefore, we have

From (32)–(34), we obtain inequality

Let � → 0, � → t; we get

Applying the Gronwall inequality, we complete the proof of Theorem 1.2.  ✷

G�
(�) = −

T0

∫
0

�
�
(t − �)h(t) dt.

G�
(�) → −h(�)

G(�) → G(0) −

�

∫
0

h(t) dt, G(�) → G(0) −

�

∫
0

h(t) dt.

(34)
G(�) − G(�) →

�

∫
�

h(t) dt as � → 0.

h(�) + c �
�

�

h(t) dt ≥ h(�).

+∞

�
−∞

|�(0, x) − �(0, x)| dx + c
t

�
0

dt

+∞

�
−∞

|�(t, x) − �(t, x)| dx

≥
+∞

�
−∞

|�(t, x) − �(t, x)| dx.
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