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Abstract
Following basic models in time dependent traffic assignment, we propose a flexible route-based pricing scheme where the
tolls change with a given block of departure time. We transform the usual bi-level road pricing problem to a single-level
problem via variational inequality and Karush-Kuhn-Tucker conditions. With input from time dependent origin-destination
(OD) matrix, we study a fixed demand model: fixing the total demand over the study horizon, but allowing it to vary within
the entire modelling horizon. Our aim is to add some basic features of dynamic traffic models to static traffic assignment
in order to derive a flexible and time dependent route-based optimal tolling scheme that can be used to efficiently distribute
traffic in and over time in a network. Incorporating Small’s idea, the optimal route-based toll further takes into account the
cost involved in shifting departure time of a user from one time interval to another.

Keywords
Time dependent traffic models, Time dependent user equilibrium, Variational inequality, Time dependent path-based tolls,
Transfer costs.
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1 INTRODUCTION

Over the recent years researchers have turned attention to modeling dynamic traffic assignment (DTA) owing to the fact
that the so called static traffic assignment (STA) does not represent the real traffic dynamics. In literature, only small has
been done to analytically determine the dynamic tolls corresponding to DTA. Most works are based on simulation of the
link tolls which tries to update the tolls in each iteration given the objective value [7, 8]. A dynamic congestion pricing
scheme using a game-theoretic evolutionary learning model was developed in [5]. Their model recognizes several important
behavioral features related to the response of users to the congestion pricing strategy. Using optimal control method, [4]
developed dynamic congestion pricing models for general traffic networks. Some drawbacks of optimal control technique
are mentioned in [3]. Byung-Wook [12] considers the problem of dynamic congestion pricing that determines optimal time-
varying tolls for a prespecified subset of arcs with bottleneck on a congested general traffic network. He formulated the
problem as a two-person nonzero-sum dynamic Stackelberg game model analysing the characteristics of the Stackelberg
equilibrium solution. His work is of course too specific. It is important to note that there has been no generally accepted
method for modelling DTA, but there have been accepted features that a typical DTA model should have. In this paper, we
follow the DTA models as specified in [10, 3, 6]. The underlying conditions specified in [10, 3, 6] has been used widely in
modelling DTA.
In most models of DTA, the lower level problem also known as the user problem has always been transformed into a varia-
tional inequality VI, the VI will then serve as an equilibrium condition. The problem of optimal road pricing thus becomes a
search for a pricing scheme that optimizes certain objective subject to equilibrium constraint. This problem is often refers to
as mathematical program with equilibrium constraint (MPEC). It is generally known that MPECs are hard to solve. To this
we propose for a time dependent traffic assignment (TDTA) a transformed problem that requires a set of linear constraints to
ensure existence of time dependent user equilibrium (TDUE) in the lower level. The bi-level problem can then be transformed
to a single level program. The problem can be solved in two stages, first we solve for system optimal route-flow pattern, and
then using the transformed TDUE linear conditions, we search for an optimal route-based tolls that can induce the optimal
route-flow in the network. Such models already exist for link-based tolls in static traffic assignment [13, 9]. In this paper
we extend their work to TDTA models. It is important to make clear that we are not trying to analytically determine route
tolls for fully dynamic traffic assignment (DTA) that captures all traffic dynamics, instead, we will utilize some features of
DTA and formulate a time dependent model. Since all fully DTA models are simulation based, we cannot do any analytical
exercise with such models. We use chain of time blocks to replace the almost continuous time model in the DTA models. In
fact, we are incorporating basic dynamic features in the STA. With the time dependent traffic assignment (TDTA) model, we
design a tolling scheme wherein the tolls change with each block of departure time interval. For our model, we take a fixed
demand which is read from OD matrices built by observing traffic over time. With the input from the matrix, traditionally,
fixed demand models for static traffic assignment (STA) fixes the demand for each time interval as read from the OD matrix
and searches for optimal flow pattern for this time slot. In our model, we do not fix the demand for each discretized time
interval, we allow the demand to be ’elastic’ within the modelling horizon, but still ensure that the total amount of traffic
over the entire modelling horizon (as read from the input matrix) is realized. We allow for this flexibility in demand because
counted traffic (user behaviour - or user equilibrium) may be far from system optimal traffic flow as we will see later. In
this way, demands are efficiently distributed over time. Furthermore, we have include in our model the fact that observed
departure travel pattern is not necessarily preferred departure pattern for the road users. To check for this, we have borrowed
the idea of Small [11] and that of Eric and Martie [2] to account for the cost involved in shifting departure time of a user from
a given time slot to another.
To implement the route-based tolls, it may be needed that cars are equiped with tracking system, or at least, there should be a
system that determines/tracks the route followed by a car for a given origin destination.

2 NOTATION AND FEASIBILITY CONDITIONS

Let G = {N, A} denote a transportation network consisting of a set of nodes N and a set of links A. Let P be the set of all
routes in G and p ∈ P the index for routes with G. One or more routes p ∈ P may exist between origin(r)-destination(s) pair
rs = w ∈W . We use W to denote the set of all origin-destination (OD) pairs. Every route p is comprised of one or more
links a ∈ A. We use a discrete time formulation in which the whole studied time period T is divided into a certain number of
small time intervals, denoted by t i [7]. These discrete time intervals t i with i = 1,2, · · · ,T are such that they correspond to
the departure times. For example, if the study time period is the from 6:00hrs to 12:00hrs, then the departure time intervals t i

can be t1 = 6 : 00hrs−7 : 00hrs, t2 = 7 : 00hrs−8 : 00hrs, t3 = 8 : 00hrs−9 : 00hrs, and so on. Note that this length of the
interval is arbitrarily chosen. We will consider one user class model, heterogeneous users model is straightforward. Next we
give the rest of the notations used in this paper. Our aim is to analytical determine the optimal path toll θ w

p
(
t i
)

to be paid on
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route p ∈ Pw when a user travelling to destination s departs origin r during the time interval t i.

TABLE 1 Notations
xa
(
t i
)

number of vehicles traversing link a during time t i

xw
ap
(
t i
)

number of vehicles traversing link a and route p
between OD pair w during departure time interval t i

ua
(
t i
)

inflow rate of link a during departure time interval t i

uw
ap
(
t i
)

inflow rate of link a on route p between OD pair
wduring departure time interval t i

va
(
t i
)

exit flow rate of link a during departure time interval t i

vw
ap
(
t i
)

exit rate of link a on route p between wthOD pair
Ew

p
(
t i
)

cummulative number of vehicles arriving destination s
from origin r on route p by time t i

ew
p
(
t i
)

arrival flow rate at the destination for the wthOD pair
on route pduring departure time interval t

f w
(
t i
)

depature flow rate for the wthOD pair during time t i

f w
p
(
t i
)

depature flow rate into route p for the wthOD pair
during time t i

F set of all feasible path flows
Pw set of all paths belonging to the wthOD pair
A(n) set of links whose tail node is n
B(n) set of links whose head node is n
τa
(
t i
)

travel time over link a for flows entering link aduring
departure time interval t i

ηw
p
(
t i
)

travel time experienced over route p by users of the
wthOD pair during departure time interval t i

d̂w
(
t i
)

demand for the wthOD pair during time t ias observed
from the input OD matrix. It is the number of travellers
departing origin rduring time t itowards destination s

d̄w
(
t i
)

optimized demand for the wthOD pair at time t. It is
the optimize number of travellers departing origin r
during time t itowards destination s

cw
t it j cost involved in shifting departure time of a user from

t i to t jfor wthOD pair
yw

t it j number of users that were departing during t ibut are
rescheduled to depart during t jfor the wthOD pair

zw
t it j number of users who prefer departing during t ibut are

are actually during t jfor the wthOD pair

Flow conservation constraints

f w
p
(
t i) = ∑

aεA(r)
uw

ap
(
t i) ∀i,w, p ∈ Pw, [α] (1)

ew (t i) = ∑
aεB(s)

∑
p

vw
ap
(
t i) ∀i,w (2)

∑
aεA(n)

uw
ap
(
t i) = ∑

aεB(n)
vw

ap
(
t i) ∀i,w, p ∈ Pw,n [γ] (3)

∑
p

f w
p
(
t i) = dw (t i) ∀i,w [δ ] (4)

∑
j

yw
t jt i = dw (t i) ∀ j,w [δ ] (5)

∑
i

yw
t jt i = d̂w

(
t j) ∀i,w [ζ ] (6)

∑
i

dw (t i) = ∑
i

d̂w
(
t i) ∀w [ς ] (7)
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dw(t i) is the optimizable demand for the wth OD pair during the ith departure time interval. d̂w
(
t i
)

is the observed demand
patterns (as read from the input time-dependent OD matrix) for the wth OD pair during the ith departure time interval. Note
that since our model focuses on optimal route tolls θ w

p
(
t i
)

that induce optimal route flow f w
p
(
t i
)

during departure time t i,
(2) can as well be omitted since Eqn (4) takes care of arrival flows. The Greek letters in the square brackets are the Karush-
Kuhn-Tucker (KKT) multipliers associated with the constraints.
Definitional constraints
for all i, the following conditions hold:

∑
w,p

uw
ap
(
t i) = ua

(
t i) , ∑

w,p
vw

ap
(
t i)= va

(
t i) ∀a (8)

uw
bp
(
t i) = vw

ap
(
t i) ∀a ∈ A(r), A(s),b ∈ B(r), B(s) (9)

∑
p

xw
ap
(
t i) = xw

a
(
t i) , ∑

w,p
xw

ap
(
t i)= ∑

w
xw

a
(
t i)= xa

(
t i) ∀w,a (10)

∑
p

Ew
p
(
t i) = Ew (t i) ∀w (11)

In condition (9), we have created an artificial inflow links into origin node r. This is common in traffic modelling where
artificial links are created from the centroids (commonly referred to as zones) to the physical origin and destination nodes
(see figure 1). Observe that equation (3) is well satisfied at both origin and destination nodes r and s.

Centroid r s Centroid

vrp1

vrp2

urp1

urp2 vsp1
usp2

usp1

vsp2

l

l

Physical origin node Physical destination nodePhysical origin node

Artificial links Artificial linksWhere P1 = path 1

P2 = path 2

FIGURE 1 Diagrammatic Explanation of Eqn (9)

Non negativity conditions

uw
ap
(
t i) ≥ 0 [λ ] , vw

ap
(
t i)≥ 0 [ξ ] , xw

ap
(
t i)≥ 0 ∀i,w, p ∈ Pw,a (12)

Ew
p
(
t i) ≥ 0 ∀i,w, p ∈ Pw (13)

yw
t it j ≥ 0 [ρ] ∀i, j,w (14)

Boundary conditions

Ew
p
(
t0) = 0 ∀w, p ∈ Pw (15)

xw
ap
(
t0) = 0 ∀w, p ∈ Pw,a (16)

Flow propagation constraint

xw
ap
(
t i) = ∑

bε p̄

{
xw

bp
[
t i + τa

(
t i)]− xw

bp
(
t i)}+{Ew

p
[
t i + τa

(
t i)]−Ew

p
(
t i)}

∀aεB(l); l 6= r; p,w (17)

Relationships between state and control variables

d
dt i xw

ap
(
t i) = uw

ap
(
t i)− vw

ap
(
t i) ∀a,w, p ∈ Pw, i (18)

d
dt i Ew

p
(
t i) = ew

p
(
t i) ∀w, p ∈ Pw, i (19)

The Greek letters in the square brackets are the Karush-Kuhn-Tucker (KKT) multipliers associated with the constraints.
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3 MODEL FORMULATION

The traditional way to model road pricing is to specify the system controller’s objective in the upper level and the users’
objective in the lower level. This is often referred to as bi-level program. We start by defining the upper level program.

3.1 System Problem (SP)

We assume that the controller’s objective is to minimize the system’s total travel cost: travel time cost and the cost of shifting
users from one departure time interval to another. This objective is thus stated as follows:

min
f

∑
i

(
∑
w

∑
pεPw

[
f w
p
(
t i)ηw

p
(
t i)]+∑

j
∑
w

[
cw

t jt i · yw
t jt i

])
s.t (20)

f low f easibilityconstraints(Eqns (1)− (7))
nonnegativityconstraints(Eqns (12)− (14))

With the conditions in Eqn (20), the relational and definitional conditions are satisfied. The flow propagation is defined by
the flow propagation conditions in Eqn (17), and the boundary conditions are hard coded.
f w
p
(
t i
)

is the departure flow rate into route p for the wthOD pair during departure time interval t i.
For a given OD pair w ∈W , cw

t jt i is the cost involved in shifting departure time of a user from t j to t i [2]. The cost-matrix
cW

T T is determined using the technique of reversed engineering [2]. This technique involves the use of Small’s formulation of
the time of travel choice problem, to determine the preferred time of departure tH by the users given the observed departure
time pattern tJ [11]. Knowing the preferred departure time tH , one can then determine the cost involved involved in shifting
demand from tJ to tI .
ηw

p
(
t i
)

is travel time experienced over route p by users belonging to the wth OD pair. Note that we have used ηw
p
(
t i
)

to mean
ηw

p
(

f w
p
(
t i
))

. Assumption: We assume that the route cost ηw
p
(
t i
)

is a continuously differentiable function of the route flow
f w
p
(
t i
)
.

For the OD pair w ∈W , yw
t jt i is the number of users that in the observed travel pattern d̂ were departing during departure time

interval t j, and will be departing in the interval t i in the optimized pattern d.
The first part of the objective minimizes system travel time cost and the second part minimizes the system cost involved in
shifting departure time of a user from t j to t i. Note that the choice of travel time cost f w

p
(
t i
)

ηw
p
(
t i
)

is an arbitrary choice.
The system controller instead can minimize the cost of emission, noise, etcetera or any combination of the cost as deemed fit.
If we let L to be the Lagrangian, and ¯f w

p
(
t i
)
, ȳw

t jt i (with the corresponding path cost η̄w
p
(
t i
)
) be the solution of program (20),

then, for a given t i, there exists (α,γ,δ ,ζ ,ς ,λ ,ξ ,ρ) such that the following KKT conditions hold:

L = ∑
i
∑
w

∑
pεPw

[
f w
p
(
t i)

η
w
p
(
t i)]+∑

i
∑

j
∑
w

[
cw

t jti · yw
t jti

]
+

(
∑

aεA(r)
uw

ap
(
t i)− f w

p
(
t i))

α

+

(
∑

aεB(n)
vw

ap
(
t i)− ∑

aεA(n)
uw

ap
(
t i))

γ +

(
dw (t i)−∑

p
f w
p
(
t i))

δ

+

(
∑

j
yt jti −dw (t i))

δ +

(
d̂w
(
t j)−∑

i
yt jti

)
ζ +

(
∑

i
d̂w
(
t i)−∑

i
dw (t i))

ς

−uw
ap
(
t i)

λ − vw
ap
(
t i)

ξ − yw
t jti ρ
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∂

∂ f w
p (t i)

L =

(
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i)))−α

w
p
(
t i)−δ

w (t i)= 0 ∀w, p ∈ Pw (21)

∂

∂uw
ap (t i)

L = α
w
p
(
t i)− γ

w
p
(
t i)−λ

w
ap
(
t i)= 0 ∀w, p ∈ Pw,a ∈ p (22)

∂

∂vw
ap (t i)

L = γ
w
p
(
t i)−ξ

w
ap
(
t i)= 0 ∀w, p ∈ Pw,a ∈ p (23)

∂

∂ (dw (t i))
L = δ

w (t i)−δ
w (t i)− ς

w (t i)= 0 ∀w (24)

∂

∂yw
t jti

L = cw
t jti +δ

w (t i)−ζ
w (t i)−ρ

w (t i)= 0 ∀w, j (25)

uw
ap
(
t i)

λ
w
ap
(
t i) = vw

ap
(
t i)

ξ
w
ap
(
t i)= 0 ∀w, p ∈ Pw,a ∈ p (26)

yw
t jti ρ

w (t i) = 0 ∀ j,w (27)

λ
w
ap
(
t i) ,ξ w

ap
(
t i) ≥ 0 ∀w, p ∈ Pw,a ∈ p; ρ

w (t i)≥ 0 ∀w (28)

Equations (26) & (27) are complementarity conditions.
From Eqn (21)(

η̄
w
p

(
t i
)
+ ¯f w

p

(
t i
) d

d f w
p (t i)

(
η̄w

p

(
t i
)))

= α
w
p

(
t i
)
+δ

w
(

t i
)

= γ
w
p

(
t i
)
+λ

w
ap

(
t i
)
+δ

w
(

t i
)
(Eqn (22))

= ξ
w
p

(
t i
)
+λ

w
ap

(
t i
)
− cw

t jt i +ζ
w
(

t i
)
+ρ

w
(

t i
)
(Eqn (23)&(25))(

η̄
w
p

(
t i
)
+ ¯f w

p

(
t i
) d

d f w
p (t i)

(
η̄w

p

(
t i
)))

+ cw
t it j ≥ ζ

w
(

t i
)

(Eqn (28))

Thus we have (
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i))+ cw

t jt i

)
≥ ζ

w (t i) ∀w, i, j (29)

Again, from Eqn (21) (
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i))) = α

w
p
(
t i)+δ

w (t i)
= γ

w
p
(
t i)+λ

w
ap
(
t i)+δ

w (t i) (Eqn (22))

= ξ
w
ap
(
t i)+λ

w
ap
(
t i)+δ

w (t i) (Eqn (23))(
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i))+ cw

t jti

)
= ξ

w
ap
(
t i)+λ

w
ap
(
t i)+ζ

w (t i)+ρ
w (t i) (Eqn (25))

∑
aεA(r)

(
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i))+ cw

t jti

)
¯uw
ap
(
t i) = ∑

aεA(r)

(
ξ

w
ap
(
t i)+λ

w
ap
(
t i)+ζ

w (t i)+ρ
w (t i)) ¯uw

ap
(
t i)

= ∑
aεA(r)

(
ξ

w
ap
(
t i)+ζ

w (t i)+ρ
w (t i)) ¯uw

ap
(
t i) (Eqn (26))

= ∑
aεA(r)

(
ζ

w (t i)+ρ
w (t i)) ¯uw

ap
(
t i) (Eqn (9)&(26))

(
η̄

w
p

(
t i
)
+ ¯f w

p

(
t i
) d

d f w
p (t i)

(
η̄

w
p

(
t i
))

+ cw
t jt i

)
∑

aεA(r)

¯uw
ap

(
t i
)

=
(

ζ
w
(

t i
)
+ρ

w
(

t i
))

∑
aεA(r)

¯uw
ap

(
t i
)

(
η̄

w
p

(
t i
)
+ ¯f w

p

(
t i
) d

d f w
p (t i)

(
η̄

w
p

(
t i
))

+ cw
t jt i

)
¯f w
p

(
t i
)

=
(

ζ
w
(

t i
)
+ρ

w
(

t i
))

¯f w
p

(
t i
)

∑
pεPw

(
η̄

w
p

(
t i
)
+ ¯f w

p

(
t i
) d

d f w
p (t i)

(
η̄

w
p

(
t i
))

+ cw
t jt i

)
¯f w
p

(
t i
)

= ∑
pεPw

(
ζ

w
(

t i
)
+ρ

w
(

t i
))

¯f w
p

(
t i
)

=
(

ζ
w
(

t i
)
+ρ

w
(

t i
))

∑
pεPw

¯f w
p

(
t i
)

=
(

ζ
w
(

t i
)
+ρ

w
(

t i
))

d̄w
(

t i
)
(Eqn (4)) (30)
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but from Eqn (5),

∑
j

yw
t jt i = dw (t i)

thus we have in Eqn (30)

ρ
w (t i)dw (t i) = ∑

j
ρ

w (t i)yw
t jt i = 0; (ρw

(
t i
)

yw
t jt i = 0,see Eqn (27))

Equation (30) now becomes

∑
pεPw

(
η̄

w
p
(
t i)+ ¯f w

p
(
t i) d

d f w
p (t i)

(
η̄

w
p
(
t i))+ cw

t jt i

)
¯f w
p
(
t i)= ζ

w (t i) d̄w
(
t i) ∀w, i, j (31)

3.2 User Problem (UP)

The user problem usually formulated in the lower level of the bi-level road pricing problem is the time dependent version of
the static Wardrop’s equilibrium law. We define this time dependent user equilibrium (TDUE) to be the state of the traffic
in which no user thinks he/she can decrease his/her generalised travel cost by unilaterally changing routes or departure time.
It has been shown that this equilibrium condition can be found by solving an equivalent variational inequality (VI) problem
[6, 10, 3]. Adding the the transfer cost cw

t jt i (which users incur by departing at t i instead of t j), we reformulate the VI for the
DUE in [6, 5] as follows:
Given that F is the set of all feasible path flows, then

Find f̃ w
p
(
t i) ∈ F suchthat ∑

w
∑

i

(
∑

pεPw

(
η̃

w
p
(
t i))( f w

p
(
t i)− f̃ w

p
(
t i))+∑

j

[
cw

t jt i · zw
t jt i

])
≥ 0 ∀ f w

p
(
t i) ∈ F (32)

where η̃w
p
(
t i
)
= min

pεPw

{
ηw

p
(
t i
)}

is the cost of the shortest path traversing the wth OD pair at time t i given the traffic flow

f̃ w
p
(
t i
)

in the network G.
Again, for a given OD pair w ∈W , cw

t jt i is the cost involved in shifting departure time of a user from t j to t i [2]. zw
t jt i is

the number of users that prefer to depart during departure time interval t j but are actually departing during ti. The tilde ’∼’
indicates a fixed parameter. Note also that the transfer cost cw

t jt i is fixed.
The variational inequality above can be written as a minimization problem

min
f

∑
w

∑
i

(
∑

pεPw

[
η̃w

p
(
t i
)

f w
p
(
t i
)]

+∑
j

[
cw

t jt i · zw
t jt i

])
s.t

f w
p
(
t i
)
∈ F

and thus we formulate the UP as follows:

min
f

∑
w

∑
i

(
∑

pεPw

[
η̃w

p
(
t i
)

f w
p
(
t i
)]

+∑
j

[
cw

t jt i · zw
t jt i

])
s.t

f w
p
(
t i) = ∑

aεA(r)
uw

ap
(
t i) ∀i,w, p ∈ Pw, [α] (33)

ew (t i) = ∑
aεB(s)

∑
pεPw

vw
ap
(
t i) ∀i,w

∑
aεA(l)

uw
ap
(
t i) = ∑

aεB(l)
vw

ap
(
t i) ∀i,w, p ∈ Pw, l [γ]

∑
pεPw

f w
p
(
t i) = d̂w

(
t i) ∀i,w [δ ]

∑
j

zw
t jt i = d̂w

(
t i) ∀i,w [δ ]

10



Note that the definitional constraints (Eqns (8) - (12)), non-negativity constraints (Eqns (12) - (13)), boundary conditions
(Eqns (15) - (16)), flow propagation conditions (Eqn (17)) and relationship between state and control variables (Eqns (18) -
(19)) are also applicable.
Observe from system (33) that the route travel cost η̃w

p
(
t i
)

is fixed in accord with the VI in Eqn (32). This is actually the
main difference between the system problem (20) and the user problem (33).
Given that f̃ w

p
(
t i
)
, z̃w

t jt i solves the user problem (33), then analysing the KKT optimality conditions (for a given t i) as we did
in subsection 3.1 yields the following results:

η̃
w
p
(
t i)+ cw

t jt i = ξ
w
ap
(
t i)+λ

w
ap
(
t i)+δ

w (t i) ∀p ∈ Pw,w ∈W, i, j (34)

If for route p, the inflow during time time t i into p is positive, that is f̃ w
p
(
t i
)
> 0, then from Eqn (9) it means that uw

bp

(
t i
)
=

vw
ap
(
t i
)
> 0 ∀a ∈ A(r),b ∈ B(r). Consequently, the complementarity conditions in Eqn (26) force the variables ξ w

ap
(
t i
)

and
λ w

ap
(
t i
)

in Eqn (34) to be zero. Thus we have the following

η̃
w
p
(
t i)+ cw

t jt i = δ
w (t i) ∀ f̃ w

p
(
t i)> 0, p ∈ Pw,w ∈W, i, j (35)

The LHS of (35) is total equilibrated cost for traversing OD pair w∈W using route p∈ Pw for users departing origin r towards
destination s during time t i. Observe that the RHS is a variable that does not depend on p.
Recall that η̃w

p
(
t i
)

is the travel cost on route p ∈ Pw and cw
t jt i is the cost a user incurs for departing during t i instead of t j.

Interpretation: At equilibrium, the travel costs on all used routes for a given OD pair w ∈W are the same and equal to δ w
(
t i
)

for all users departing during time t i.
The following holds in general due to Eqn (28):

η̃
w
p
(
t i)+ cw

t jt i ≥ δ
w (t i) ∀w ∈W, i, j (36)

Interpretation: At equilibrium, the travel cost for all users departing origin during time t i towards the same destination for a
given OD pair w ∈W is greater or equal to δ w

(
t i
)

irrespective of the route they use. This means that at equilibrium, δ w
(
t i
)

must be the least travel cost between the OD pair w ∈W for users departing during time t i. Recall that from (35) δ w
(
t i
)

is
the travel cost on all used path. We thus state the following: at equilibrium, the travel costs on all used paths for a given OD
pair are the same and less or equal to those on unused paths (Wardrop’s first principle).
With the above interpretation, we therefore conclude that any path flow f̃ W

PW

(
tT
)

vector that solves system (33) is a user
equilibrium flow. The proof follows from the KKT analysis and argument given above.
Furthermore, following the same lines of argument that led to Eqn (31), we arrive at the following:

∑
pεPw

(
η̃

w
p
(
t i)+ cw

t jt i

)
f̃ w
p
(
t i)= δ

w (t i) d̂w
(
t i) ∀w ∈W, i, j (37)

Eqn (37) is the network cost balance equation.

3.3 The First-Best time dependent Pricing Scheme

Now compare Eqn (29) with (36) and (31) with (37) and observe that the difference between them is the quantity(
¯f w
p
(
t i
) d

d f w
p (t i)

(
η̄w

p
(
t i
)))

in the analysis of the SP. Therefore by adding the term(
f w
p
(
t i) d

d f w
p (t i)

(
η

w
p
(
t i)))∣∣∣∣∣

f w
p (t i)= ¯f w

p (t i)

to the path travel cost η̃w
p
(
t i
)
∀p ∈ Pw,w ∈W , the first order optimality conditions of user problem will exactly be the same

as those of system problem. This means that any flow pattern that solves the system problem will also solve the user problem(
i.e ¯f w

p
(
t i
)
= f̃ w

p
(
t i
)
∀p ∈ Pw, w ∈W

)
.

If we denote by θ w
p
(
t i
)

the optimal toll to be paid on route p ∈ Pw when departing origin r during time t i towards destination
s, then the first-best optimal toll can be given by

θ̄
w
p
(
t i) =

(
f w
p
(
t i) d

d f w
p (t i)

(
η

w
p
(
t i)))∣∣∣∣∣

f w
p (t i)= ¯f w

p (t i)

(38)
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where ¯f w
p
(
t i
)

is the solution of the SP.
Interpretation: The first term of the toll θ̄ w

p
(
t i
)

is the additional travel cost imposed on all the existing users of route p∈ Pw by
an additional user on route p ∈ Pw , all departing from the same origin at the same departure interval t i and heading towards
the same destination. Therefore, by adding the toll θ̄ w

p
(
t i
)

to the cost of travel on route p ∈ Pw for users departing during t i,
we now ensure that all users, before embarking on a trip, take into account the cost they incur and impose on other travellers
by departing at the chosen time t i. It turns out that θ̄ w

p
(
t i
)

as given in Eqn (38) is not the only possible toll that can achieve
the system optimal flow ¯f w

p
(
t i
)
, in fact there are infinite number of toll vectors that can achieve this optimal flow, thus we

state the following:

Theorem 1: For all departure times t i, any route toll θ w
p
(
t i
)
, p ∈ Pw satisfying the following linear conditions will also result

in an optimal route flow pattern ¯f w
p
(
t i
)
:

(
η̄

w
p
(
t i)+ cw

t jt i +θ
w
p
(
t i))≥ δ

w (t i) ∀w ∈W, j

∑
pεPw

(
η̄

w
p
(
t i)+ cw

t jt i +θ
w
p
(
t i)) ¯f w

p
(
t i)= δ

w (t i) d̄w
(
t i) ∀w ∈W, j (39)

where δ w
(
t i
)

is a free variable, and d̄w
(
t i
)

is the optimal demand of users departing origin r toward destination s during time
t i.

Proof: The proof simply follows from the KKT conditions of the SP and UP and the argument given earlier in this subsection
(similar to the ones given in [13] for static case) �.
Note that with Eqn (39), one can easily define secondary objectives on the path tolls, for example, fixing the total toll collected,
minimizing the maximum route toll over all routes, etcetera.

3.4 Algorithm to generate first-best route-based tolls

Step 1: Solve the system problem (20) to determine the optimal route flow ¯f w
p
(
t i
)

for all ODs and all routes

Step 2: With the optimal route flows ¯f w
p
(
t i
)
, solve the linear system (39) (with or without secondary objective) to determine

a route-based toll pattern θ w
p
(
t i
)

that induces the optimal route flow pattern f̄
Step 3: Stop

3.5 The Second-Best time dependent Pricing Scheme

Here we define the second-best scheme to mean a tolling scheme where tolls are not allowed on some paths. This requirement
may just be for a given time interval, thus for a given origin-destination pair w, a path may be required to have a zero toll
during the interval t i and may assume a positive toll during t j where i 6= j. If we denote by Y w(t i) the set of all non-tollable
paths during departure interval t i for the wth OD pair , then it is required that

θ
w
p
(
t i)= 0∀p ∈ Y w(t i) (40)

If condition (40) is required, then one only need to add this toll constraints to system (39) and solve to see if one can still
achieve the optimal results ¯f w

p
(
t i
)

from system (20). If there is no feasible path toll pattern θ w
p
(
t i
)

for the optimal path flow
pattern ¯f w

p
(
t i
)
, then with the optimal flow pattern ¯f w

p
(
t i
)

as a starting point, one needs to solve system (20) together with
addition conditions in system (39) and of course the toll constraints of system (40) as given below:

min
f

∑
i

(
∑
w

∑
pεPw

[
f w
p
(
t i
)

ηw
p
(
t i
)]

+∑
j
∑
w

[
cw

t jt i · yw
t jt i

])
s.t

f low f easibilityconstraints

nonnegativityconstraints (41)(
ηw

p
(
t i
)
+ cw

t jt i +θ w
p
(
t i
))
≥ δ w

(
t i
)

∀w ∈W

∑
pεPw

(
ηw

p
(
t i
)
+ cw

t jt i +θ w
p
(
t i
))

f w
p
(
t i
)
= δ w

(
t i
)

dw
(
t i
)

∀w ∈W

θ w
p
(
t i
)
= 0∀p ∈ Y w(t i) ∀w ∈W

The third and the fourth conditions ensure that the generated feasible flow is in user equilibrium.
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3.6 Algorithm to generate second-best route-based tolls

Step 1: Solve the system problem (20) to determine the optimal route flow ¯f w
p
(
t i
)

for all ODs and all routes

Step 2: With the optimal route flows ¯f w
p
(
t i
)
, solve the linear system (39) with the toll constraint of Eqn (40) to determine

a route-based toll pattern θ w
p
(
t i
)

that induces the optimal route flow pattern f̄ . If such toll pattern exists, GOTO step 4,
otherwise, GOTO step 3
Step 3: With the optimal flow pattern ¯f w

p
(
t i
)

as a starting point, solve system (41) to determine the second-best path-based
tolls θ w

p
(
t i
)

Step 4: Stop

4 NUMERICAL EXAMPLE

We will demonstrate our model using a five-node network with eight links (see figure 1). In our model and derivations, we
have focused on travel time cost, recall that the choice of travel time cost f w

p
(
t i
)

ηw
p
(
t i
)

is an arbitrary choice. A decision
maker may as well choose to optimize emission, noise, safety etcetera. In this specific example, we have chosen to optimize
the entire travel cost and transfer costs over a given time horizon T . We suppose that the time window T is divided into
3 discrete time intervals t i with i = 1,2,3. Recall again that the t is correspond to the departure time intervals. We further
suppose undifferentiated users, model with different user classes is straightforward. Next we give the link attributes and input
for the model.

4.1 Five-Node Network Example

4.1.1 Link Attributes and Input

FIGURE 2 The five-node network with eight links.
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TABLE 2 Network Attributes
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Table 2a gives the link characteristics for the eight links. 2b gives the transfer costs ct jt i involved in shifting departure time of a
user from t j (observed or counted) to t i(optimized) [2]. Recall that the cost-matrix cT T can be determined using the technique
of reversed engineering as described in [2]. Table 2c gives the observed daily traffic pattern for the example network and for
the three discrete times t1 , t2 and t3.

We use the so called Bureau for Public Roads (BPR) function βT f f
a

(
1+ϕ

(
va(t i)

Ĉa

)φ
)

to define the link travel time cost

during time t i, where
T f f

a - free flow travel time on link a,
va(t i) - total flow on link a during t i, note that we have allowed va(t i) to constitute the remaining link inflows during t i−1,
where va(t0) = 0. This fraction (remaining inflow) is based on the travel time on the chain of links preceding link a and the
length of the departure times.
Ĉa - practical capacity of link a, and
ϕ and φ - BPR scaling parameters.
We set ϕ = 0.15, φ = 4 and β (value of time - VOT) = 0.1671667EUR/minute. The value of time (VOT) used is as stated
in [1].
ηw

p
(
t i
)
= ∑

a
xw

ap
(
t i
)
.
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4.2 Results

As a reference point, we solve the user problem as described in subsection 3.2. This describes the traffic situation without
tolling, and the results are given in table 3 below.

TABLE 3 Observed Traffic Scenario for Three Discrete Time Intervals
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Observe that with the transfer costs given in table 2b, the flows in table 3 are in user equilibrium. As mentioned earlier, our
aim is to efficiently distribute the traffic flows across the departure time interval using tolls.
Given that all paths (links) can be tolled, we solve the system problem (system (20)) for optimal path flows (hence the link
flows) ¯f w

p
(
t i
)

that minimize the entire network cost. As described in subsection 3.4, using the optimal path flows we search
for a path toll pattern θ w

p
(
t i
)

(for all paths) that will induce the optimal path flows using the linear system as given in (39)
(see table 4). Note that we have only one OD pair, and as such w corresponds to the pair ae. In the following tables, we give
the results of the optimal time dependent tolls for the time dependent traffic assignment.
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TABLE 4 Optimized Traffic Scenario for Three Discrete Time Intervals
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TABLE 5 Summary Table
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Observe from tables 3 and 4 that the traffic flows obey Wardrop’s equilibrium, where the cost on all used paths are the same
and smaller than the costs on the unused paths, confirming Eqn (36). Observe again from both tables that traffic flows obey
Wardrop’s equilibrium in and over the time horizon T . This in particular ensures that no user will be better off by switching
routes within a given departure time interval or by changing his/her departure time. With reference to our model in Eqn (39),
it means that the least travel path cost is given by δ w

(
t i
)
= 2.59 . The last two adjacent tables of table 4 give the flow transfers

and the cost of the transfers.
Though we are not optimizing over the tolls, it is interesting to see that the path tolls required to achieve the desired path
flows are very small for all paths. This means that it may even be possible to further reduce these path tolls if we further
optimize over the path toll. It is important to note that the (path) toll patterns as given in table 4 are in general not unique. In
fact, there exist infinite (path) toll patterns that can achieve the desired (path) flow pattern (see theorem 1).
Note that in table 4, the figures under the path cost (column 4) have in them the path travel time cost and the path toll cost,
therefore the system cost (column 5) has in it, the route toll costs and the route travel time costs. Since we are not optimizing
over the tolls, the optimization of the total system cost Eqn (20) as described in section 3.1 does not include the path tolls
in the path travel cost ηp

(
t i
)
. Consequently, the total system cost as summarized in the summary table does not include the

route toll costs. Therefore, to get the values in the summary table, one has to do the following

Total systemcost = ∑
i

(
∑
p

[
f̄p
(
t i)

η̄p
(
t i)]+∑

j
[ct jt i · ȳt jt i ]

)
−∑

i
∑
p

f̄p
(
t i)

θ̄p
(
t i)

The bar ’−’ signifies optimal results.
So, by charging a user who departs origin a at time t i travelling towards destination e over route p a value equal to θ̄p

(
t i
)

as given in table 4, we can assure that the system will tend to a Wardrop’s s equilibrium which coincides with the system
optimal flow pattern ¯f w

p
(
t i
)
. The summary table 5 shows approximately 9% cost reduction (with respect to no-toll scenario)

for this simple network.
Recall from subsection 3.5 that a second-best requires some paths not to be tolled at a given departure time interval, so (for
example) if we are required to keep path v toll free during t1 and path iii toll free during t2 and t3, it means then that we can
still achieve our system optimal flow ¯f w

p
(
t i
)

with the tolls in table 4. On the other hand, with a different requirement on tolls,
it may be that the optimal system flow ¯f w

p
(
t i
)

can no longer be achieved (see subsection 3.5).

5 CONCLUSION

Utilizing the basic features of dynamic traffic models, we have extended the static traffic assignment tolling model to include
those tolls that change with time of the day. Using transformed time dependent user equilibrium (TDUE) in the form of
variational inequality (VI), we have analytically derived a flexible route-based optimal tolling scheme that can be used to
efficiently distribute traffic in and over time in a transportation network. The time dependent tolling scheme also considers
users’ preferred departure times and transfer costs.
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