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Abstract. We introduce a class of stationary processes characterized by the behaviour
of their infinite moving average parameters. We establish the asymptotic behaviour of the
covariance function and the behaviour around zero of the spectral density of these
processes, showing their antipersistent character. Then, we discuss the existence of an
infinite autoregressive representation for this family of processes, and we present some
consequences for fractional autoregressive moving average models.
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1. INTRODUCTION

Antipersistent time series are defined by Dittmann and Granger (2002) as those
covariance-stationary processes with zero spectral density at the origin. They have
been used to model time series from disciplines as diverse as finance and
economics (Barkoulas and Baum, 1996; McLeod, 1998; Henry, 2002),
oceanography (Ausloos and Ivanova, 2001), and biology (Liebovitch and Yang,
1997). In turn, there has been a considerable amount of theoretical developments
on antipersistent processes during the last decades. For instance, estimation
techniques have been discussed by Beran (1995), and Beran and Feng (2002); the
behaviour of partial autocorrelations and optimal prediction error variance have
been studied by Inoue (2000), and Inoue and Kasahara (2004); interpolation of
missing data has been investigated by Wilson et al. (2003); nonlinear
transformations of these processes have been analysed by Robinson (2001), and
Dittmann and Granger (2002).

In this article, we introduce a class of processes whose infinite moving
average parameters satisfy two conditions and we prove that these conditions
imply the antipersistent character defined by Dittmann and Granger (2002).
Then we study the invertibility of antipersistent processes, and as a particular
result, we show that the fractional autoregressive integrated moving average
(FARIMA) model is invertible if and only if its degree of differencing belongs
to (�1, 1/2), extending the interval (�1/2, 1/2) which is usually given in the
literature.
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This paper is structured as follows. Section 2 concerns preliminaries, Section 3
contains the main results and Section 4 is devoted to the invertibility of
antipersistent FARIMA processes. Proofs of the theorems are given in the
Appendix.

2. PRELIMINARIES

Let (Xt)t2Z be a real, zero-mean, weakly stationary process defined on a
probability space (X,F,P). Here, E stands for the expectation operator, L2 ¼
L2(X,F,P) denotes the Hilbert space with inner product hX,Yi ¼ E(XY) and norm
kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX 2Þ

p
. For a collection S of random variables in L2, the subspace of all

(finite) linear combinations of elements of S is denoted by sp S and its closure in
L2 by sp S. In particular, spfXs;s � tg is the past and present subspace of the
process (Xt) up to time t, and the orthogonal projection of Xt onto
spfXs; s � t�1g, that we shall denote by X̂t, is the best mean square infinite
past linear predictor of Xt.

Let Lp(k), 1 � p � 1, be the Banach space for the Lebesgue measure k on
(�p,p]. The process (Xt) is assumed to be purely nondeterministic which means
that its spectral measure is absolutely continuous with respect to k, and that its
spectral density f satisfies ln f 2 L1(k). In this case, the function

hðzÞ ¼ exp
1

4p

Z p

�p

eik þ z
eik � z

ln f ðkÞdk

� �
; z 2 C; jzj < 1; ð1Þ

is an outer function in the Hardy space H2(k), does not vanish for |z| < 1, and
satisfies f(k) ¼ |h(eik)|2 (see, for instance, Rozanov, 1967, Ch. II). Let g(z) ¼ h(z)/
h(0), and N the set of non-negative integers. The MA (1) parameters (ck)k2N of
(Xt) are defined by

gðzÞ ¼
X1
k¼0

ckzk; z 2 C; jzj < 1; ð2Þ

and the AR(1) parameters (ak)k2N by

�1
gðzÞ ¼

X1
k¼0

akzk; z 2 C; jzj < 1:

Both sequences (ck) and (ak) are real, and we have

c0 ¼ �a0 ¼ 1 and
X1
k¼0

c2k <1:

The Wold decomposition theorem states that (Xt) has the L
2-convergent series

representation

262 P. BONDON AND W. PALMA

� 2006 The Authors
Journal compilation � 2006 Blackwell Publishing Ltd.
JOURNAL OF TIME SERIES ANALYSIS Vol. 28, No. 2



Xt ¼
X1
k¼0

ck�t�k; ð3Þ

where �t ¼ Xt � X̂t is the innovation process of (Xt) and is zero-mean, uncorre-
lated and weakly stationary with variance

r2
� ¼ 2p exp

1

2p

Z p

�p
ln f ðkÞdk

� �
: ð4Þ

It follows from eqn (3) that the covariance function (ck)k2Z of (Xt) satisfies,

cn ¼
X1
k¼0

ckcnþk; n � 0; ð5Þ

and then, asymptotic properties of (ck) follow directly from equivalent properties
of (ck). For instance, if (ck) converges to zero at least exponentially, i.e. cn ¼ O(an)
for some a 2 (0, 1), then cn ¼ O(an), and this behaviour is typical of short-
memory processes like autoregressive moving average (ARMA) models. Simi-
larly, if cn � C1n

d�1 when n ! 1, where C1 2 Rnf0g and d 2 (0,1/2), then eqn
(5) implies that cn � C2n

2d�1 where C2 2 Rnf0g (see Lemma 2), and this
behaviour is characteristic of long-memory processes like FARIMA time series.

Let C be the Gamma function, and R0 be the set of slowly varying functions at
infinity: the set of positive, measurable functions l, defined on some
neighbourhood [A, 1) of infinity, such that limx!1l(kx)/l(x) ¼ 1 for any
k > 0 (Bingham et al., 1987 Ch. I).

3. A CLASS OF ANTIPERSISTENT PROCESSES

We introduce the class of purely nondeterministic processes whose MA(1)
parameters satisfy the two conditions
(A1) cnþ1�cn � nd�2l(n)C(d � 1)�1 when n!1, where l 2 R0 and d 2 (�1, 0),
(A2)

P1
k¼0 ck ¼ 0.

This class is nonempty and contains, in particular, the FARIMA model with a
negative degree of differencing (see Remark 3). We establish that the processes
satisfying (A1) and (A2) are antipersistent in the sense that (ck) tends to zero
hyperbolically but is summable. More precisely, we prove in Theorem 1 that (A1)
and (A2) imply that cn � C1n

2d�1l(n)2 when n ! 1 and f(k) � C2k
�2dl(1/k)2

when k ! 0þ, where C1,C2 2 Rnf0g. We show in Theorem 2 that condition (A2),
which may seem restrictive, actually holds when (ck) and (ak) satisfy, respectively,

(A3)
P

ck is convergent, and
(A4) ðakÞ is eventually negative and

P1
k¼1 akk�� ¼ �1 for some � > 0.

Since (A1) implies (A3) (see Lemma 1), the processes satisfying (A1) and (A4) are
antipersistent.
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Then we discuss the invertibility of the Wold decomposition (3) in the sense of
the existence of an L2-convergent series representation

�t ¼ �
X1
k¼0

akXt�k: ð6Þ

Observe that eqn (6) is equivalent to the existence of a series representation for the
predictor X̂t itself, which is of fundamental importance in prediction theory and
time series analysis (see Pourahmadi, 2001, Ch. 6). We show in Theorem 3 that the
series in eqn (6) converges in L2 whenever f(k) � k�2dl(1/k) when k ! 0þ, where
l 2 R0 and d 2 (�1, 1/2), and f is sufficiently smooth outside zero. Lemma 1 is
useful in the following.

Lemma 1. Let l 2 R0 and d 2 (�1, 0). Condition (A1) implies that

cn � nd�1lðnÞCðdÞ�1; n!1; ð7Þ

and eqn (7) implies (A3) and

X1
k¼n

ck � �ndlðnÞCðd þ 1Þ�1; n!1: ð8Þ

Proof. Since d < 1, we deduce from (A1) and Bingham et al. (1987, Propn
1.5.10) that the sequence (ckþ1 � ck) is summable and we have,

lim
k!1

ck � cn ¼
X1
k¼n

ðckþ1 � ckÞ � �nd�1lðnÞCðdÞ�1; n!1:

Since (ck) is square summable, limk!1ck ¼ 0, which gives eqn (7). Similarly,
since d < 0, eqn (7) implies (A3) and eqn (8). h

Theorem 1. Let l 2 R0 and d 2 (�1, 0). Conditions (A1) and (A2) imply that

cn �
n2d�1lðnÞ2Cð1� 2dÞ sinðpdÞ

p
; n!1: ð9Þ

Furthermore, condition (A2) and eqn (9) imply that

f ðkÞ � k�2dlð1=kÞ2

2p
; k! 0þ: ð10Þ

Theorem 2. Conditions (A3) and (A4) imply (A2).

Corollary 1 is an immediate consequence of Lemma 1 and Theorems 1 and 2.
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Corollary 1. Let l 2 R0 and d 2 (�1, 0). Conditions (A1) and (A4) imply eqns
(9) and (10).

Theorem 3 gives sufficient spectral conditions for the existence of the series
representation (6).

Theorem 3. If f satisfies the three conditions:

(i) f(k) � k�2dl(1/k) when k ! 0þ, where l 2 R0 and d 2 (�1, 1/2),
(ii) f is bounded on [�, p] for every � > 0,
(iii) f�1 is locally integrable on (0, p],

then the series representation (6) converges in L2.

Remark 1. Theorem 3 does not hold if d > 1/2 because in that case, f j2 L1(k)
(Bingham et al., 1987, Propn 1.5.8) and hence cannot be a spectral density
function. Theorem 3 does not hold if d � �1. Indeed, consider the MA(1) process
(Xt) defined by Xt ¼ Zt � Zt�1 where (Zt) is a sequence of uncorrelated
random variables in L2 with unit variance. We have f(k) ¼ 2 sin (k/2)2/p, and
then f satisfies the three conditions of Theorem 3 with l a constant function and
d ¼ �1. Nevertheless, in this case, the series representation (6) does not converge
in L2 (see, Tops�e, 1977, p. 52) or Theorem 4(ii).

4. INVERTIBILITY OF FARIMA PROCESSES

The FARIMA model was introduced by Granger and Joyeux (1980) and Hosking
(1981) and has been used to describe long-memory phenomena in a wide variety
of scientific disciplines, from hydrology to economics (see, e.g. Doukhan et al.,
2003, and references therein). More precisely, (Xt) is called a FARIMA(p, d, q)
process if (Xt) satisfies the difference equation

ð1� /1B� � � � � /pBpÞXt ¼ ð1þ h1Bþ � � � þ hqBqÞð1� BÞ�dZt; ð11Þ

where B is the backward shift operator BXt ¼ Xt�1, (Zt) a sequence of zero-mean
uncorrelated random variables in L2 with the same variance r2

Z , d 2 (�1,1/2),
and the polynomials /(z) ¼ 1 � /1z � � � � � /pz

p and h(z) ¼ 1 þ h1z þ � � �
þ hqz

q with real coefficients have no common zeros and neither /(z) nor h(z) has
zeros in the closed unit disc fz 2 C:|z| � 1g. If d 2 �N, (1 � B)�d is a
polynomial in B and (Xt) is an ARMA process. If d j2 �N, the process
(1 � B)�dZt is defined by

ð1� BÞ�dZt ¼
X1
k¼0

bkZt�k; ð12Þ
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where (bk)k2N are the coefficients in the Taylor series expansion of (1 � z)�d for
|z| < 1, i.e.

bk ¼
Cðk þ dÞ

Cðk þ 1ÞCðdÞ ; k 2 N: ð13Þ

By Stirling’s formula, bk � kd�1/C(d) when k ! 1, and then the series in eqn
(12) converges in L2 whenever d < 1/2. According to Kokoszka and Taqqu
(1995, Thm 2.1), the unique causal moving average satisfying eqn (11) is the
process

Xt ¼
X1
k¼0

ukZt�k; ð14Þ

where (uk)k2N are the coefficients in the Taylor series expansion of u(z) ¼
(1 � z)�dh(z)//(z) for |z| < 1. This process has the spectral density

f ðkÞ ¼ r2
Z juðeikÞj

2

2p
; ln f 2 L1ðkÞ;

and we deduce from eqn (4) by easy calculations that the variance of the
innovation process of (Xt) is r2

� ¼ r2
Z . Therefore, the function Q defined by

QðzÞ ¼ r�uðzÞ=
ffiffiffiffiffiffi
2p
p

is analytic in the open unit disc fz 2 C:|z| < 1g and satisfies

jQðeikÞj2 ¼ f ðkÞ; Qð0Þ ¼ r�ffiffiffiffiffiffi
2p
p :

According to Hannan (1970, Thm 5, p. 142), Q coincides with the outer function h
defined by eqn (1). Hence, g ¼ u in eqn (2), the MA (1) parameters (ck)k2N of
(Xt) are the coefficients (uk)k2N, and the AR (1) parameters (ak)k2N of (Xt) are
the coefficients in the Taylor series expansion of �1/u(z) for |z| < 1. Let ~�ðkÞ,
~ZðkÞ and ~X ðkÞ be the random spectral measure of (�t), (Zt) and (Xt), respectively.
According to eqns (3) and (14), we have

Xt ¼
Z
ð�p;p�

eitkuðe�ikÞd~�ðkÞ ¼
Z
ð�p;p�

eitkuðe�ikÞd~ZðkÞ: ð15Þ

Since (�t) and (Zt) are white noises, their spectral distribution functions are
continuous at zero. As u(e-ik) 6¼ 0 for k 6¼ 0, it results from eqn (15) and
Brockwell and Davis (1991, Thm 4.10.1) that

�t ¼
Z
ð�p;p�

eitkuðe�ikÞ�1d~X ðkÞ ¼ Zt:

Therefore, (Zt) is the innovation process of (Xt) and eqn (14) is the Wold
decomposition of (Xt).

We show in Theorem 4 that (Zt) has the L2-Abel-convergent series
representation (16) for any d < 1/2, and the L2-convergent series
representation (17) if and only if d 2 (�1, 1/2).
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Theorem 4. Let (Xt) be the FARIMA process defined by eqn (11) where the
polynomials /(z) and h(z) have no common zeros and do not have zeros in the closed
unit disc fz 2 C:|z| � 1g. Then

(i) (Zt) has the L2-Abel-convergent series representation

Zt ¼ � lim
r!1�

X1
k¼0

rkakXt�k; ð16Þ

for any d 2 (�1,1/2);
(ii) (Zt) has the L2-convergent series representation

Zt ¼ �
X1
k¼0

akXt�k; ð17Þ

if and only if d 2 (�1, 1/2).

Remark 2. Theorem 4 generalizes Hosking (1981, Thm 2) where d is restricted
to the range (�1/2, 1/2). It is interesting to notice that it is generally thought that
the series in eqn (17) converges in L2 only when d 2 (�1/2, 1/2) (see, for instance,
Hosking, 1981, p. 170, and Brockwell and Davis, 1991, Rmk 7, p. 526).
Bloomfield (1985, p. 231) seems to be the first who noticed that the series in eqn
(17) converges in L2 whenever d 2 (�1, 1/2) and (Xt) is a fractional noise (/(z) ¼
h(z) ¼ 1).

Remark 3. The MA (1) parameters (ck) of any FARIMA process with
d 2 (�1,0)n�N satisfy (A1) and (A2) with l(x) ¼ h(1)//(1). Indeed, since (ck) are
the coefficients in the Taylor series expansion of u(z) for |z| < 1, it follows from
Inoue (2002, Lem. 2.1) that (A1) and eqn (7) hold for any d 2 (�1,1/2)n�N and
l(x) ¼ h(1)//(1). Therefore, if d < 0,

P
ck is convergent and we deduce from eqn

(23) that

X1
k¼0

ck ¼ lim
x!1�

uðxÞ ¼ 0:

APPENDIX

To prove Theorem 1, we need Lemma 2 which is an immediate consequence of Inoue (1997,

Propn 4.3).

Lemma 2. Let r, s 2 R with s < 1<r þ s, l1,l2 2 R0, and (fk)k2N, (gk)k2N two real
sequences satisfying fk � k�rl1(k), gk � k�sl2(k) when k ! 1. For any n 2 N, the sequence

(fnþkgk)k2N is summable, and we have
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X1
k¼0

fnþkgk � n�ðrþs�1Þl1ðnÞl2ðnÞBðr þ s� 1; 1� sÞ; n!1;

where B(Æ,Æ) is the beta function.

Proof of Theorem 1. According to Lemma 1, (A3) holds. For all non-negative integers
k, n, N, let gk ¼

P1
l¼kþ1 cl, and

cn;N ¼
XN

k¼0
gkðcnþkþ1 � cnþkÞ:

Using (A2), we get

cn;N ¼ gN cnþNþ1 þ
XN

k¼0
ckcnþk ;

and then, according to eqn (5), limN ! 1cn,N ¼ cn, i.e.

cn ¼
X1
k¼0

gkðcnþkþ1 � cnþkÞ: ð18Þ

Since d 2 (�1, 0), using eqn (8) and (A1) in Lemma 2, it follows from eqn (18) that

cn � �n2d�1lðnÞ2Cðd � 1Þ�1Cðd þ 1Þ�1Bð1� 2d; d þ 1Þ; n!1:

Using simple manipulations and the formula C(x)C(1 � x) ¼ p/sin(px), this equation
simplifies to eqn (9). According to eqn (9), (ck) is summable, and then f is given by the

absolutely convergent series

f ðkÞ ¼ 1

2p

X1
k¼�1

cke
�ikk ¼ 1

2p
c0 þ 2

X1
k¼1

ck cosðkkÞ
" #

:

Since (ck) is summable, it results from eqn (5) that

X1
n¼�1

cn ¼ 2
X1
n¼1

X1
k¼0

ckcnþk þ
X1
k¼0

c2k ¼
X1
k¼0

ck

 !2

:

Hence, (A2) implies that

c0 ¼ �2
X1
k¼1

ck ;

and we get

f ðkÞ ¼ � 2

p

X1
k¼1

ck sin
kk
2

� �2

: ð19Þ

For all positive integers k, n, let an,k ¼ sin(k/2n)2/k. Fix q 2 (�2, 0), we have
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Xn

k¼1
an;k

k
n

� �q

� 1

4n

Xn

k¼1

k
n

� �qþ1
¼ Oð1Þ; n!1;

X1
k¼nþ1

an;k
k
n

� �q

� 1

n

X1
k¼nþ1

k
n

� �q�1
¼ Oð1Þ; n!1:

Hence,

Mq ¼ lim sup
n!1

X1
k¼1

an;k
k
n

� �q

<1: ð20Þ

Let g > 0 with �2 < q � g and q þ g < 0, and let d 2 (0, 1). We have

X
k�nd

þ
X

k>n=d

0
@

1
Aan;k

k
n

� �q

� dg
X
k�nd

an;k
k
n

� �q�g

þ
X

k>n=d

an;k
k
n

� �qþg
0
@

1
A:

Hence,

lim
d!0þ

lim sup
n!1

X
k�nd

þ
X

k>n=d

0
@

1
Aan;k

k
n

� �q

� ðMq�g þMqþgÞ lim
d!0þ

dg ¼ 0: ð21Þ

Now, let

aðqÞn ðtÞ ¼
X½nt�

k¼1
an;k

k
n

� �q

¼ 1

n

X½nt�

k¼1
u

k
n

� �
; t > 0;

where u(x) ¼ sin(x/2)2xq�11Rþ
(x). Since the function u is continuous on (0, t], it may be

shown that the sequence (un)n � 1 defined by

unðxÞ ¼
X½nt�

k¼1
u

k
n

� �
1ðk�1n ;

k
n�ðxÞ þ uðtÞ1ð½nt�

n ;t�
ðxÞ; 0 < x � t;

converges simply to u on (0, t]. Furthermore, for all n � 1 and for all x 2 (0, t],
|un(x)| � v(x) where v is integrable on (0, t]. Take for instance, v(x) ¼ tqþ1/4 if q � �1 and
v(x) ¼ xqþ1/4 if q 2 (�2, �1). Therefore, it results from the Lebesgue’s dominated

convergence theorem that

lim
n!1

Z t

0

unðxÞ dx ¼
Z t

0

uðxÞdx:

Since Z t

0

unðxÞdx ¼ aðqÞn ðtÞ þ O
1

n

� �
;

limn!1 aðqÞn ðtÞ exists and is given by

aðqÞðtÞ ¼ lim
n!1

aðqÞn ðtÞ ¼
Z t

0

sin
x
2

� �2
xq�1dx; t > 0: ð22Þ

Equations (20), (21) and the existence of a(q)(t) are conditions (4.0.8), (4.0.9b) and (4.0.11)

in Bingham et al. (1987, p. 196) respectively. These conditions imply that the sequence
(an,k) is q-radial for every q 2 (�2, 0), i.e. (an,k) is (�2, 0)-radial. Let sk ¼ kck. According
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to eqn (9), we have sn � nql0(n) when n ! 1, where l0 2 R0 and q ¼ 2d 2 (�2, 0). It
results from Bingham et al. (1987, Cor. 4.2.3) that

tn :¼
X1
k¼1

an;ksk

exists for all large n and tn � a
�ðqÞnql0ðnÞ when n ! 1, where

a
�ðqÞ ¼

Z 1
0

daðqÞðtÞ:

Integrating by part, we deduce from eqn (22) that

a
�ðqÞ ¼ � 1

2q

Z 1
0

xq sin x dx ¼ � p
4Cð1� qÞ sinðpq=2Þ ;

where the last equality follows from Bingham et al. (1987, eqn 4.3.1a). Therefore,
tn � �n2dl(n)2/4 when n ! 1, and it results from eqn (19) that

f ð1=nÞ ¼ � 2tn
p
� n2d lðnÞ2

2p
; n!1:

As in Bingham et al. (1987, p. 207), we may replace 1/n by k, and let k ! 0þ through
continuous values, which gives eqn (10). h

Proof of Theorem 2. It results from eqn (2) and (A3) that

lim
x!1�

gðxÞ ¼
X1
k¼0

ck ; ð23Þ

(see, for instance, Rudin, 1976, Thm 8.2). According to (A4), there exists k0 > 2 such that
ak < 0 for all k � k0. Let

C ¼
Xk0�1
k¼0
jak j;

then

1

gðxÞ � �C �
X1
k¼k0

akxk ; �1 < x < 1:

Let � > 0 such that (A4) holds, and let M > 0. Then there exists k1 � k0 such that

�
Xk1
k¼k0

akk�� � C þM :

Let a ¼ 1� exp(�� ln k1/k1). Since k1 > 1, a 2 (0, 1), and for all x 2 [1�a,1), we have
ln x þ � ln k1/k1 � 0. Since the function ln t/t is decreasing for t > e and k0 > e, we
have for all k 2 [k0, k1] and for all x 2 [1�a,1), ln x þ � ln k/k � 0, i.e. xkk� � 1. Hence,

1

gðxÞ � �C �
Xk1
k¼k0

akxk � �C �
Xk1
k¼k0

akk�� � M ; 1� a � x < 1;

which implies that limx!1�
1/g(x) ¼ 1. Combining with eqn (23), we get (A2). h
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Proof of Theorem 3. The parameter d can be written as d ¼ d1 þ d2 where
d1 2 (�1/2, 0) and d2 2 (�1/2, 1/2). Let f2(k) ¼ |1�eik|�2d2 and f1(k) ¼ f(k)/f2(k). Then
f1(k) � k�2d1l(1/k) when k ! 0þ, and f1 satisfies (ii) and (iii). It results from Helson and
Szegö (1960 Thm 1 and Corollary) that f2 satisfies condition A2 in Bloomfield (1985, Thm

3). Now, there exists � > 0 such that f1(k)
�1 � 2k2d1l1(1/k) for all k 2 (0,�), where l1 ¼

l�1 2 R0. If � < p, we have

Z p

0

f1ðkÞ�1dk � 2

Z �

0

k2d1l1ð1=kÞdkþ
Z p

�

f1ðkÞ�1dk: ð24Þ

Since f1 satisfies (iii), the last term on the right-hand side of eqn (24) is finite. On the other
hand, Z �

0

k2d1l1
1

k

� �
dk ¼

Z 1
1=�

x�2ðd1þ1Þl1ðxÞdx;

which is finite because d1 > �1/2 (Bingham et al., 1987, Propn 1.5.10). Therefore, the left-

hand side of eqn (24) is finite. If � � p, we replace � by p in eqn (24), and we get the same
conclusion. Thus f�11 2 L1ðkÞ. Since d1 < 0, limk!0þ

f1(k) ¼ 0 (Bingham et al., 1987,
Propn 1.3.6). Moreover, f1 satisfies (ii), and then f1 2 L1(k). Therefore, taking p ¼ 1 in

Bloomfield (1985, Thm 4), we get the result. h

Proof of Theorem 4. (i) Consider the class of spectral densities f satisfying the A1
condition Z

E
f ðkÞdk � C

jEj
jI j

	 
�Z
I

f ðkÞdk;

in which � > 0 is fixed and C > 0 is independent of the interval I 	 (�p,p] and its

measurable subsets E. According to Huang et al. (1997, Example 3.1) the density g(k) ¼
|1 � eik|�2d is in A1 for any d < 1/2. For any z 2 C with |z| � 1, we have

0 < ch :¼
Yq

i¼1
ð1� jnij�1Þ � jhðzÞj � 1þ

Xq

i¼1
jhij :¼ Ch <1;

where (ni) are the non-necessarily distinct zeros of h(z). Analogously,

0 < c/ � j/ðzÞj � C/ <1; z 2 C; jzj � 1:

Therefore, the spectral density f of (Xt) satisfies f ¼ gf1 where f1; f�11 2 L1ðkÞ, and since g is
in A1, f is in A1. Then, it follows from Huang et al. (1997, Thm 3.1) that X̂t has the
L2-Abel-convergent series representation

X̂t ¼ lim
r!1�

X1
k¼1

rkakXt�k ;

which is equivalent to eqn (16). (ii) Since f ¼ gf1 where f1; f�11 2 L1ðkÞ, f satisfies the
conditions of Theorem 3 whenever d 2 (�1, 1/2), and eqn (17) holds. To complete the
proof, we now show that if d 2 (�1,�1], then an /! 0 when n ! 1 which implies that

anXt�n /!0 in L2 when n ! 1 and therefore, the series representation (6) cannot converge
in L2. For any a 2 R, let (kk(a))k2N be the coefficients in the Taylor series expansion of
(1 � z)a/(z)/h(z) for |z| < 1, and (gk)k2N the coefficients in the Taylor series expansion of
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/(z)/h(z) for |z| < R, where R ¼ min(|ni|) > 1. We have ak ¼ �kk(d). For any non-
negative integer m, (kk(aþm))k2N are therefore the coefficients in the Taylor series
expansion of ð1� zÞm

P1
k¼0 kkðaÞzk for |z| < 1, and satisfy

knðaþ mÞ ¼
Xm

k¼0
ð�1Þk m

k

� �
kn�kðaÞ; n � m: ð25Þ

Let d 2 (�1,�1], b�dc the greatest integer less than or equal to �d, and d ¼ d þ b�dc.
Then b�dc � 1, d ¼ 0 if d is an integer, and d 2 (�1, 0) if d is a noninteger. Suppose d is an
integer, and take a ¼ d and m ¼ �d � 1 in eqn (25). Then

knð�1Þ ¼
X�d�1

k¼0
ð�1Þk m

k

� �
kn�kðdÞ; n � �d � 1: ð26Þ

On the other hand,

knð�1Þ ¼
Xn

k¼0
gk ; n � 0: ð27Þ

Suppose that limn!1kn(d) ¼ 0. Then according to eqn (26), limn!1kn(�1) ¼ 0. But
according to eqn (27),

lim
n!1

knð�1Þ ¼
X1
k¼0

gk ¼
/ð1Þ
hð1Þ 6¼ 0:

Therefore, kn(d) ¼ �an /! 0 when n ! 1. Suppose now that d is a noninteger. Since the

sequence (gk) converges to zero at least exponentially and d 2 (�1, 0), it results from Inoue
(2002, Lem. 2.1) that

knðdÞ �
P1

k¼0 gk

Cð�dÞ n�d�1; n!1: ð28Þ

Since d < 0, eqn (28) implies that the series
P

kn(d) is divergent. Taking m ¼ 1 and a ¼
d � 1 in eqn (25), we see that kn(d) ¼ kn(d � 1) � kn�1(d � 1) for all n � 1, which implies
that

knðd� 1Þ ¼
Xn

k¼0
kkðdÞ;

since k0(a) ¼ 1 for any a 2 R. Then the sequence (kn(d � 1)) is divergent. Suppose that

limn ! 1kn(d) ¼ 0. Then, taking a ¼ d and m ¼ b�dc � 1 in eqn (25), we see that
limn ! 1kn(d � 1) ¼ 0, which leads to a contradiction. Then kn(d) ¼ �an /!0 when
n ! 1. h
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