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Abstract. Electric grids are moving from a centralized single supply
chain towards a decentralized bidirectional grid of suppliers and con-
sumers in an uncertain and dynamic scenario. Soon, the growing smart
meter infrastructure will allow the collection of terabytes of detailed data
about the grid condition, e.g., the state of renewable electric energy
producers or the power consumption of millions of private customers,
in very short time steps. For reliable prediction strong and fast regres-
sion methods are necessary that are able to cope with these challenges.
In this paper we introduce a novel regression technique, i.e., evolution-
ary local kernel regression, a kernel regression variant based on local
Nadaraya-Watson estimators with independent bandwidths distributed
in data space. The model is regularized with the CMA-ES, a stochastic
non-convex optimization method. We experimentally analyze the load
forecast behavior on real power consumption data. The proposed method
is easily parallelizable, and therefore well appropriate for large-scale sce-
narios in smart grids.

1 Introduction

If we want to design smarter electric grids that are more adaptive or even ”in-
telligent”, the large amount of information about the grid status, e.g., current
wind or solar energy production, or actual power demands of customers must be
considered. Prediction is important for energy saving and cost efficient real-time
decisions. An increasing infrastructure of smart meters at the level of consumers
is supported by governmental laws in many countries, and is currently leading to
an explosion of data about electric grids. Already today, smart meters are able
to yield the consumption status of each customer every second. To be able to
analyze this large amount of data, strong large-scale techniques have to be de-
veloped that allow precise predictions of power supply and power consumption
behaviors, e.g., to avoid voltage band violations. For each customer, a short-,
mid-, and long-term profile can be computed, leading to a precise estimation of
future energy consumption habits. The development of large-scale data mining
techniques in a distributed computing scenario becomes an essential challenge
in smart energy grids.

A survey of methods for the prediction of power supply and demand give Al-
fares and Nazeeruddin [3]. They classify related methods into nine classes, from
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multiple regression to expert systems. But most methods are not parallelizable
or demand a new and expensive training process if the data archive is changed.
Short-term load forecasting with kernel regression has been proposed by Agarwal
et al. [2]. They compared kernel regression to artificial neural networks, ordinary
least squares and ridge regression. We will propose a more flexible kernel regres-
sion hybrid in this paper. Prediction in energy systems is not only restricted
to load forecasting, but also concentrates on other properties. As an example,
Nogales et al. [9] analyze dynamic regression and transfer function models to
forecast next-day electricity prices. Lora et al. [7] also predict next-days prizes
using a weighted nearest neighbors approach, concentrating on parameter deter-
mination, e.g., size of time series windows and number K of neighbors.

In this paper we introduce a novel hybrid regression method that we think is
well appropriate to solve these tasks. It unifies kernel regression and evolution-
ary computation. In Section 2 we introduce evolutionary local kernel regression
(ELKR), and discuss, how ELKR can be parallelized for large-scale decentral-
ized smart grid scenarios. Section 3 shows an experimental analysis on real data
of power demand in electricity grids. Finally, Section 4 summarizes the results
and provides an outlook to future work.

2 Evolutionary Local Kernel Regression

2.1 The Nadaraya-Watson Estimator

Kernel regression is a non-parametric approach and allows fast estimations for
reasonable bandwidth choices. It is based on the Nadaraya-Watson estimator
that has been introduced by Nadaraya and Watson [8, 12]. We assume that
(x1,y1), . . . , (xN ,yN ) is a set ofN recorded input output values, e.g.,N recorded
power consumption values within a particular time period. For an unknown x′
we like to forecast f(x′). Kernel regression is based on a density estimate of data
samples with a kernel function K. A typical kernel function is the Gaussian
kernel:

KH(z) =
1

(2π)q/2det(H)
exp

(
−1

2

∣∣H−1z
∣∣2) . (1)

The kernel density function becomes a measure for the density of two points
x1,x2, if their distance z = |x1 − x2| is fed into the function. An essential
part of kernel regression is the bandwidth h that becomes a diagonal matrix
H = diag(h1, h2, . . . , hd) in case of the multivariate expression. Parameter q is
scaling the Gaussian function in height, and usually set to q = 1. The sum
of density estimates of an unknown point x and all data samples, multiplied
with the corresponding function values, yield the Nadaraya-Watson estimate for
f(x;H), i.e.:

f(x;H) =
N∑

i=1

yi

KH(x− xi)∑N
j=1KH(x− xj)

. (2)

Hence, each sample (xi,yi) contributes to the prediction of the function value
of x, weighted by the normalized (denominator) kernel densities in data space.
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If we assume that the results of N kernel density computations can be saved,
each prediction can be computed in O(N). If the model is trained with regard to
the bandwidth matrix H on the training set, it may over-adapt to the training
examples, and loose the ability to generalize, an effect known as overfitting.
Overfitting is likely to happen if the training set’s size is small, or if the number
of free parameters of a model is comparatively large. Small bandwidth values
lead to an overfitted prediction function, while high values generalize too much.
To avoid overfitting, Clark [5] proposed to select the bandwidth matrix H as
result of LOO-CV. The idea of determining the optimal bandwidth matrix H by
LOOC-CV is to apply the Nadaraya-Watson estimator, leaving out the data pair
(xi,yi) for each summand. The resulting error function that has to be minimized
is:

eloocv =
1
N

N∑
i=1

‖yi − f−i(xi;H)‖2 (3)

=
1
N

N∑
i=1

‖yi −
∑
j 6=i

KH(xi,xj)∑
k 6=iKH(xj ,xk)

yj‖2 (4)

Here, f−i denotes the Nadaraya-Watson estimator leaving out the i-th data point.
All points, without the data sample yi itself, contribute to the estimation of f(xi).

2.2 Extending Kernel Regression to ELKR

This section enhances kernel regression by the concept of locality, the evolution
of kernel parameters, and minimization of the prediction error with a stochastic
optimization method. The concepts are introduced in detail in the following.

Local Models To handle multiple data space conditions in different areas of
the data space, we introduce the concept of locality. Each Nadaraya-Watson
model is specified by a codebook vector ci from the set of codebook vectors
C = (c1, · · · , cK) ∈ Rq in latent space. A data element (xi,yi) is assigned to
the Nadaraya-Watson model fk∗(xi;Hk∗) with minimal distance to its codebook
vector, i.e., k∗ = arg mink ‖xi − ck‖. Algorithm 1 shows the pseudo-code of the
approach with K local regression models, and archive A of samples (xi,yi), 1 ≤
i ≤ N . At the beginning, the codebook vectors are randomly distributed in data
space. In the training phase, the codebook vectors and the other properties of
each local model are optimized, in order to adapt to local data space distributions
that may afford separate bandwidths. The optimization goal is to minimize the
overall data space reconstruction error of all local models, i.e., with regard to
the codebook vector set C, and the local bandwidth matrices Hk:

eELKR =
1
N

N∑
i

‖fk∗(xi;Hk∗)− f(xi)‖2, (5)

with
k∗ = arg min

k=1,...,K
‖xi − ck‖. (6)
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The assignment of data samples to local models results in a significant speedup.
If we assume that the data samples are on average uniformly distributed to all
K models, the computation time for the prediction of one data element can be
reduced to the 1/K-th.

Algorithm 1 Local Kernel Regression
Require: Archive A, H, K, request x1, . . . ,xu

1: Initialize K local Nadaraya-Watson models
2: for i = 1 to |A| do
3: Assign data samples (xi,yi) to closest local model
4: Compute f(xi,H)
5: end for

Stochastic LOO-CV Taking into account every data sample, the computation
of ecv can be a computationally expensive undertaking. To accelerate the band-
width adaptation mechanism in case of large data sets, we stochastically select
at least one data element for each kernel regression model, i.e., we compute
f−i,k(xi;Hk) for a randomly chosen element i. Stochastic LOO-CV may not be
as strong as LOO-CV, and it will be subject to future work to analyze, how many
stochastic repetitions will be necessary in practical applications to balance be-
tween overfitting and generalizations. In our scenario one repetition turned out
to be sufficient for satisfying prediction capabilities, see Section 3.

CMA-ES Engine We use the CMA-ES [6, 10] for adaptation of the free param-
eters of the k-th model, i.e., of the codebook vector ck and bandwidth matrix
Hk. Historically, covariance matrix adaptation techniques have developed from
evolution strategies (ES) [4]. In each generation ES produce λ offspring solutions
and select µ solutions as parents for generation t+1. Often, intermediate recom-
bination is applied: for two uniformly selected parents x1 and x2, the offspring is
x′ := 1

2x1 + 1
2x2. ES became famous for their Gaussian mutation operator with

σ-self-adaptation. In case of the CMA-ES the covariance matrix of differences
between a successful solution and its parents is basis of the mutation process.
The CMA-ES step sizes are controlled using the derandomized cumulative path-
length control by Ostermeier et al. [10]. Its main idea is to construct a solution
path based on the difference between a current solution and a predecessor that
is c generations older. This difference is the basis of a so called evolution path.
A parameter defines the number of generations taken into account, i.e., defining
the exploitation of past information. For a more detailed introduction to the
CMA-ES we can recommend the tutorial by Hansen [6]. The CMA-ES has two
advantages. First, it belongs to the class of non-convex stochastic optimization
methods and allows a flexible LOO-CV minimization with a low chance of get-
ting trapped in local optima. Secondly, like kernel regression it is embarrassingly
parallelizable, e.g., on the level of subpopulations or candidate solutions, see
Section 2.3.
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Fig. 1. Illustration of the benefits of more than one kernel regression model. The usual
Nadaraya-Watson estimator with only one bandwidth (left part) and two local models
(right part). The local model allows an adaptation to local noise conditions.

Illustration Figure 1 illustrates the advantage of local Nadaraya-Watson models
for a simple sinus function (indicated by line) in the interval [0, 6] with two
different areas of noise (red dots), i.e., g(x) = sin(x) + γ · N (0, 1), with γ = 0.25
for x ∈ [0, 3[, and γ = 0.08 for x ∈ [3, 6]. The different noise values afford
different bandwidths in the two areas, i.e., the left and the right part of the
function, dark grey dots indicate the prediction. This is not possible with only
one single Nadaraya-Watson estimator (left part of Figure 1). To reduce the
data space reconstruction error on average, the area with high noise overadapts
to the noisy values due to a too small bandwidth. In case of local models, a
smoother adaptation to local search characteristics, e.g. different degrees of noise,
is possible (right part of Figure 1).

2.3 Parallelization

Evolutionary kernel regression is a method that is parallelizable in two kinds of
ways, i.e, on the level of the kernel density computations of kernel regression,
and on the level of the evolvement of candidate solutions or subpopulations.
First, on the level of the regression method, we assume that the prediction of
N1 values has to be computed. For the sake of simplicity, we assume that each
call of a kernel density function K takes one time step. Furthermore, we assume
that the archive consists of N2 data samples. The prediction of the N1 values
takes O(N1 ·N2) kernel function computations. For M (uniform) machines, the
computation of the kernel density sum, can be distributed and parallelized by as-
signing the kernel density computations uniformly to M machines. If we assume
only constant cost for the distribution of the archive on M machines as well as
the aggregation of results of the M machines, i.e. f(x) = f1(x), . . . , fM (x), the
parallelization results in a total runtime of O(N1 · N2/M). In the distributed
computing scenario of a smart grid, the assumed constants and idealizations do
not apply, but have to be filled with properties of the real system, e.g., envelope
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delay and computational power of the real machines. Second, evolutionary meth-
ods are famous for their property to be parallelizable. The application of genetic
operators such as recombination and covariance matrix based mutation, as well
as the fitness computation of individuals or subpopulations can be distributed
on M machines.

3 ELKR in Power Prediction Scenarios

In the following, we will apply ELKR for prediction of power demand based
on real power consumption data published by the Irish state-owned company
EirGrid, see [1]. The data shows the electricity production required to meet
the national electricity consumption, including system losses and generators’
requirements. The power consumption is stated in mega-watt (MW) every 15
minutes. In our scenario, we have used the data about the power consumption
of three succeeding Sundays in January 2010 and February 2010 to predict the
power consumption of the following Sunday.

We have tested various settings for ELKR. In our experiments we use K =
5 local kernel regression models with Gaussian density kernel, and allow the
evolvement of bandwidth matrices Hk based on stochastic LOO-CV. For this
sake, we use a (5, 10)-CMA-ES, i.e, a parental population of size µ = 5, and an
offspring population of size λ = 10. The CMA-ES terminates after 200 fitness
function evaluations, while the bandwidth is initialized with h = 5.0. Figure
2 shows typical runs of ELKR. The upper left part of the figure shows the
power prediction of the consumption on Feb 7 based on the consumption on
Sundays Jan 17, Jan 24, and Jan 31 (scenario A). The upper right part shows
the prediction of Feb 14 based on Jan 24, Jan 31, and Feb 7 (scenario B). The
lower left part of Figure 2 shows the prediction of the power consumption on
Feb 21 based on Feb 14, Feb 7, and Jan 31 (scenario C). The colored lines show
the three observed power consumption developments. In each figure, the bright
grey dots show the prediction while the dark grey dots show the actual power
consumption that has to be predicted. In all experiments we can observe that
ELKR is able to make satisfying predictions. For comparison, the lower left part
shows the same prediction with a fixed bandwidth of h = 5.0. The regression
model does not adapt to the data, but generalizes too much.

Table 1. Comparison of common kernel regression with a constant bandwidth h = 5.0,
ELKR with K = 5 and CMA-ES based stochastic LOO-CV, least median square
regression and backpropagation, in terms of training error eTR on the archive, and
error eTE on the test set. For ELKR best and median values of 15 runs are shown.

K = 1, h = 5.0 K = 5, LOO-CV LMS NN
eTR eTE best eTR med eTR best eTE med eTE eTR eTE eTR eTE

A 93.89 86.88 66.91 67.39 63.88 64.44 74.08 64.78 134.67 124.51
B 91.06 118.66 58.06 60.79 104.33 104.72 57.79 105.58 104.64 154.01
C 97.44 86.00 72.43 79.58 56.04 64.00 71.95 58.79 142.95 159.31
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Fig. 2. Prediction of power demands (in MW) with ELKR for three Sundays in January
and February 2010 (t = 1, . . . , 96), each based on the previous three Sundays (colored
lines). Bright grey dots show the power prediction, dark grey dots show the amount
of power that has been consumed. ELKR shows satisfying forecast capabilities. For
comparison, the lower right part shows a run with local models, but constant bandwidth
of hk = 5.0.

Table 1 compares kernel regression with only one model and constant band-
width h = 5.0 to ELKR with stochastic LOO-CV and CMA-ES based bandwidth
optimization (200 generations). The results are measured in terms of training er-
ror eTR, i.e., average absolute deviation from all three training data sets, and
test error eTE on the fourth Sunday, i.e., average absolute deviation from the
test values of a fourth data set, see scenarios A-C above. In case of ELKR, the
best and median results of 15 runs are shown. The experimental results show
that ELKR achieves significantly better prediction accuracies on the training
archive data and the test data set. Interestingly, the accuracy on the forecast
data set is higher than the accuracy on the archive data in case of scenario A
and C. This is probably caused by higher deviations of particular power demand
curves, i.e., outliers in the archive. Furthermore, Table 1 shows a comparison
to least median square regression (LMS) and a backpropagation neural network
[11] (96 neurons on input, 48 neurons on hidden layer). ELKR shows compet-
itive results to LMR, and even slightly better results on the test set, while it
outperforms the backpropagation network.
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4 Conclusion

In this paper we have introduced an extension of kernel regression that is based
on local models, and independent stochastic optimization of the bandwidth ma-
trices Hk. LOO-CV can be performed without additional cost. The assignment
to local models saves computations, as only the kernel regression model with the
closest codebook vector is taken into account for prediction. We have shown ex-
perimentally how the model behaves on real data in a power prediction scenario.
ELKR has shown significantly higher accuracies than common kernel regression
or backpropagation, and competitive results to LMR. The regression as well as
the evolutionary part of ELKR are easily parallelizable, and therefore well appro-
priate for large-scale data mining scenarios in smart grids. We plan to perform
parameter studies of ELKR on real power data and also conduct experiments
on other regression problems, e.g., on UCI machine learning library data sets.
In this context we will concentrate on prediction problems that afford different
regularizations in different parts of the data space.
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