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Visual analytics of movement: a rich palette of
techniques to enable understanding

Natalia Andrienko and Gennady Andrienko

9.1 Introduction

Visual analytics develops knowledge, methods, and technologies that exploit
and combine the strengths of human and electronic data processing (Keim
et al., 2008). Technically, visual analytics combines interactive visual tech-
niques with algorithms for computational data analysis. The key role of the
visual techniques is to enable and promote human understanding of the data
and human reasoning about the data, which are necessary, in particular, for
choosing appropriate computational methods and steering their work. Visual
analytics approaches are applied to data and problems for which there are (yet)
no purely automatic methods. By enabling human understanding, reasoning,
and use of prior knowledge and experiences, visual analytics can help the an-
alyst to find suitable ways for data analysis and problem solving, which, pos-
sibly, can later be fully or partly automated. In this way, visual analytics can
drive the development and adaptation of computational analysis and learning
algorithms.

Visualization is particularly essential for analyzing phenomena and pro-
cesses unfolding in geographical space. Since the heterogeneity of the space
and the variety of properties and relationships occurring in it cannot be ade-
quately represented for fully automatic processing, exploration and analysis of
geospatial data and the derivation of knowledge from it needs to rely upon the
human analyst’s sense of the space and place, tacit knowledge of their inherent
properties and relationships, and space/place-related experiences. This applies,
among others, to movement data.

To support understanding and analysis of movement, visual analytics re-
searchers leverage the legacy of cartography , with its established techniques
for representing movements of tribes, armies, explorers, hurricanes, etc.; time
geography (a branch of human geography), with its revolutionary idea of con-
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sidering space and time as dimensions of a unified continuum (space-time
cube) and representation of behaviours of individuals as paths in this contin-
uum; information visualization, with its techniques for user-display interaction
supporting exploratory data analysis; and geovisualization, with its interactive
maps and associated methods enabling exploration of spatial information.

This chapter gives a glimpse of the variety of the existing visual analytics
methods for analyzing movement data. We group the methods into four cate-
gories according to the analysis focus:

1. Looking at trajectories : The focus is on trajectories of moving objects con-
sidered as wholes. The methods support exploration of the spatial and tem-
poral properties of individual trajectories and comparison of several or mul-
tiple trajectories.

2. Looking inside trajectories: The focus is on variation of movement charac-
teristics along trajectories. Trajectories are considered at the level of seg-
ments and points. The methods support detecting and locating segments
with particular movement characteristics and sequences of segments repre-
senting particular local patterns of individual movement.

3. Bird’s-eye view on movement : The focus is on the distribution of multiple
movements in space and time. Individual movements are not of interest;
generalization and aggregation are used to uncover overall spatio-temporal
patterns.

4. Investigating movement in context : The focus is on relations and interac-
tions between moving objects and the environment (context) in which they
move, including various kinds of spatial, temporal, and spatio-temporal ob-
jects and phenomena. Movement data are analyzed together with other data
describing the context. Computational techniques are used to detect occur-
rences of specific kinds of relations or interactions and visual methods sup-
port overall and detailed exploration of these occurrences.

We demonstrate the capabilities of the visual analytics by examples using a
dataset consisting of GPS tracks of 17,241 cars collected during one week in
Milan (Italy). The data were provided by Comune di Milano (Municipality of
Milan).

9.2 Looking at trajectories

In this section, we consider, first, the techniques for visual representation of
trajectories and interaction with the representations; second, the use of clus-
tering methods for comparative studies of multiple trajectories; and, third, the
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time transformations supporting exploration of temporal properties of trajecto-
ries and comparison of dynamic properties of multiple trajectories.

9.2.1 Visualizing trajectories

The most common types of display for the visualization of movements of dis-
crete entities are static and animated maps and interactive space-time cube
(STC), STC is a unified representation of space and time as a 3-dimensional
cube in which two dimensions represent space and one dimension represents
time. Spatio-temporal positions can be represented as points in an STC and tra-
jectories as three-dimensional lines When multiple trajectories are shown, the
displays may suffer from visual clutter and occlusions. The drawback of STC,
besides occlusion, is distortion of both space and time due to projection. It is
also quite limited with respect to the length of the time interval that can be ef-
fectively explored. To compensate for these limitations, map and STC displays
are often complemented with other types of graphs and diagrams.

Common interaction techniques facilitating visual exploration of trajecto-
ries and related data include manipulations of the view (zooming, shifting,
rotation, changing the visibility and rendering order of different information
layers, changing opacity levels, etc.), manipulations of the data representation
(selection of attributes to represent and visual encoding of their values, e.g. by
colouring or line thickness), manipulations of the content (selection or filter-
ing of the objects that will be shown), and interactions with display elements
(e.g. access to detailed information by mouse pointing, highlighting, selection
of objects to explore in other views, etc.). Multiple co-existing displays are
visually linked by using consistent visual encodings (e.g. same colours) and
exhibit coordinated behaviours by simultaneous consistent reaction to various
user interactions.

Figure 9.1 gives examples of map and STC displays and demonstrates some
basic interaction techniques. The map in Figure 9.1A shows a subset of the
Milan dataset consisting of 8206 trajectories that began on Wednesday, 4th
of April 2007. To make the map legible, the trajectory lines are drawn with
only 5% opacity. A temporal filter, as in Figure 9.1C, can be used to limit the
map view to showing only the positions and movements within a selected time
interval. Thus, the display state in Figure 9.1B corresponds to the 30-minutes
time interval from 06:30 till 07:00. The time filter can also be used for map
animation: the limiting time interval is moved (automatically or interactively)
forward or backward in time making the map and other displays dynamically
update their content according to the current start and end of the interval.

Figure 9.1B also demonstrates the access to various attributes associated
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Figure 9.1 A: 8206 trajectories of cars are shown on a map as lines drawn
with 5% opacity. B: The map shows only positions and movements from a
30-minutes time interval selected by means of a temporal filter (C). D: A
space-time cube (STC) shows a subset of trajectories selected by means of a
spatial filter (E).

with a trajectory, such as start and end time, number of positions, length, du-
ration, etc. When the mouse cursor points on a trajectory line, the attributes of
this trajectory are shown in a pop-up window as well as the time when the car
was in the position at the cursor.

Figure 9.1D demonstrates the space-time cube (STC) display where two
dimensions represent the space and the third dimension time. The time axis



Visual analytics of movement 9

is oriented from the bottom of the cube, where the base map is shown, to the
top. When all trajectories are included in the STC, the view is illegible due to
overplotting. In our example, the STC shows 63 trajectories selected by means
of a spatial filter (Figure 9.1E). For the filter, we have outlined on the map two
areas on the northwest and southeast of the city and set the filter so that only
the trajectories that visited both areas in the given order are visible. There are
also many other interactive techniques for data querying and filtering, e.g., the
ones suggested by Bouvier and Oates (2008) and Guo et al. (2011).

9.2.2 Clustering of trajectories

Clustering is a popular technique used in visual analytics for handling large
amounts of data. Clustering should not be considered as a standalone analy-
sis method whose outcomes can be immediately used for whatever purposes.
An essential part of the analysis is interpretation of the clusters by a human
analyst; only in this way they acquire meaning and value. To enable the in-
terpretation, the results of clustering need to be appropriately presented to the
analyst. Visual and interactive techniques play here a key role. Visual analyt-
ics usually does not invent new clustering methods but wraps existing ones in
interactive visual interfaces supporting not only inspection and interpretation
but often also interactive refinement of clustering results.

Trajectories of moving objects are quite complex spatio-temporal constructs.
Their potentially relevant characteristics include the geometric shape of the
path, its position in space, the life span, and the dynamics, i.e. the way in
which the spatial location, speed, direction and other point-related attributes
of the movement change over time. Clustering of trajectories requires appro-
priate distance (dissimilarity) functions which can properly deal with these
non-trivial properties. However, creating a single function accounting for all
properties would not be reasonable. On the one hand, not all characteristics of
trajectories may be simultaneously relevant in practical analysis tasks. On the
other hand, clusters produced by means of such a universal function would be
very difficult to interpret.

A more reasonable approach is to give the analyst a set of relatively simple
distance functions dealing with different properties of trajectories and provide
the possibility to combine them in the process of analysis. The simplest and
most intuitive way is to do the analysis in a sequence of steps. In each step,
clustering with a single distance function is applied either to the whole set of
trajectories or to one or more of the clusters obtained in the preceding steps. If
the purpose and work principle of each distance function is clear to the analyst,
the clusters obtained in each step are easy to interpret by tracking the history
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of their derivation. Step by step, the analyst progressively refines his/her un-
derstanding of the data. New analytical questions arise as an outcome of the
previous analysis and determine the further steps. The whole process is called
“progressive clustering” (Rinzivillo et al., 2008) .

There is an implementation of the density-based clustering algorithm OP-
TICS in which the process of building clusters is separated from measuring the
distances between the objects. This allows clustering with the use of diverse
distance functions. Hence, the procedure of progressive clustering is done as
follows: The user chooses a suitable distance function and applies the cluster-
ing tool first to the whole set of trajectories. Then the user interactively selects
one or more clusters and applies the clustering algorithm to this subset using
a different distance function or different parameter settings. The latter step is
iterated. In this way, the user may (a) refine clustering results, (b) combine
several distance functions differing in semantics, and (c) gradually build com-
prehensive understanding of different aspects of the trajectories.

The procedure of progressive clustering is illustrated in Figure 9.2. The first
image (A) shows the result of clustering of the same subset of the car trajecto-
ries as in Figure 1 using the distance function ”common destinations”, which
compares the spatial positions of the ends of trajectories. From the 8206 trajec-
tories, 4385 have been grouped into 80 density-based clusters and 3821 treated
as noise. Figure 9.2B shows the clusters without the noise. We have selected
the biggest cluster consisting of 590 trajectories that end on the northwest (Fig-
ure 9.2C) and applied clustering with the distance function “route similarity” to
it. This distance function compares the routes followed by the moving objects.
Figure 9.2D presents the 18 clusters we have obtained; the noise consisting of
171 trajectories is hidden. The largest cluster (in red) consists of 116 trajecto-
ries going from the city centre and the next largest cluster (in orange) consists
of 104 trajectories going from the northeast along the northern motorway. The
orange cluster and the yellow cluster (68 trajectories) going from the southeast
along the motorway on the south and west are, evidently, trajectories of tran-
sit cars. The clusters by route similarity are also shown in the STC in Figure
9.2E . This display involves time transformation, which is discussed in the next
subsection.

9.2.3 Transforming times in trajectories

Comparison of dynamic properties of trajectories using STC , time graph , or
other temporal displays is difficult when the trajectories are distant in time,
because their representations are located far from each other in a display. This
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Figure 9.2 Interactive progressive clustering of trajectories. A: The car tra-
jectories have been clustered according to the destinations. B: The noise is
hidden. C: One of the clusters is selected. C: Clustering by route similarity
has been applied to the selected cluster; the noise is hidden. D: The clusters
by route similarity are shown in an STC.

11
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problem can be solved or alleviated by transforming times in trajectories. Two
classes of time transformations are possible:

1. Transformations based on temporal cycles. Depending on the data and ap-
plication, trajectories can be projected in time onto a single year / season /
month / week / day etc. This allows the user to uncover and study move-
ment patterns related to temporal cycles, e.g., find typical routes taken in
the morning and see their differences from the routes taken in the evening.

2. Transformations with respect to the individual lifelines of trajectories. Tra-
jectories can be shifted in time to a common start time or a common end
time. This facilitates the comparison of dynamic properties of the trajecto-
ries (particularly, spatially similar trajectories), for example, the dynamics
of the speed. Aligning both the start and end times supports comparison
of internal dynamics in trajectories irrespective of the average movement
speed.

An example of time-transformed trajectories is shown in Figure 9.2E. The
STC shows the route-based clusters of car trajectories ending on the northwest.
The times in the trajectories have been transformed so that all trajectories have
a common end time. This allows us to see that, although the routes within
each cluster are similar, the dynamics of the movement may differ greatly. The
speeds can be judged from the slopes of the lines. Fast movement is manifested
by slightly inclined lines (which means more distance travelled in less time)
while steep lines signify slow movement. Vertical line segments mean staying
in the same place. In the STC in Figure 9.2 we can very clearly observe the
movement dynamics in the red cluster: the cars moved slowly while being
in the city centre but could move fast after reaching the diagonal motorway.
The orange cluster is divided in two parts. One part consists of nearly straight
slightly tilted lines indicating uniformly high speed along the whole route. The
other part consists of trajectories with steep segments at the beginning. This
means that there were times when the movement in the eastern part of the
northern motorway was obstructed and the cars could not reach high speed.
We can interactively select the trajectories with the steep segments and find
out the times of the obstructed traffic: from about 06 till 13 o’clock; the most
difficult situation was after 10:30. Making such observations could be hardly
possible with the trajectories positioned in the STC according to their original
times.
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9.3 Looking inside trajectories: attributes, events and
patterns

The methods described in the previous section deal with trajectories as wholes,
i.e., treat them as atomic objects. Here we consider methods operating on the
level of points and segments of trajectories. They visualize and analyze the
variation of movement characteristics (speed, direction, etc.) and other dy-
namic attributes associated with trajectory positions or segments. The most
obvious way to visualize position-related attributes is by dividing the lines or
bands representing trajectories on a map or in a 3D display into segments and
varying the appearance of these segments. Attribute values are usually repre-
sented by colouring or shading of the segments.

Position-related dynamic attributes can also be visualized in separate tempo-
ral displays such as a time graph or a time bars display. An example of a time
bars display is given in Figure 9.3A. The horizontal axis represents time. Each
trajectory is represented by a horizontal bar such that its horizontal position
and length correspond to the start time and duration of the trajectory. Note that
temporal zooming has been applied: a selected interval from 06:30 till 12:00 is
stretched to the full available width. The vertical dimension is used to arrange
the bars, which can be sorted based on one or more attributes of the trajectories
(start time in our example). Colouring of bar segments encodes values of some
user-selected dynamic attribute associated with the positions in the trajectories.
This may be an existing (measured) attribute or an attribute derived from the
position records, i.e., coordinates and times. Examples of such derivable at-
tributes are speed, acceleration, direction, etc. To represent attribute values by
colours, the value range is divided into intervals and each interval is assigned
a distinct colour or shade. In Figure 9.3A, shades of red and green represent
speed values; red is used for low speeds and green for high. The legend on
the left explains the colour coding. Interactive linking between displays allows
the user to relate attribute values to the spatial context: when the mouse cursor
points on some element within the time bars display, the corresponding spatial
position is marked in the map by crossing horizontal and vertical lines and the
trajectory containing it is highlighted (Figure 9.3B). In this example we see
that the car whose trajectory is highlighted moved at 06:54 on the northeast
with the speed 1.2km/h.

The use of this kind of dynamic link is limited to exploration of one or a
few particular trajectories. To investigate position-related dynamic attributes
in a large number of trajectories, the analyst can apply filtering of trajectory
segments according to attribute values. Figure 9.3(C-D) illustrates how such
filtering can be done in a highly interactive way. The colour legend on the left
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Figure 9.3 A: A time bars display shows the speeds by colour-coding.
Mouse-pointing highlights the trajectory and marks the pointed position in
a map (B). C: Trajectory segments are filtered according to the speed val-
ues. D: Only the segments satisfying the filter are visible on the map. E: Low
speed events have been extracted from the trajectories according to the seg-
ment filter. F: Density-based spatio-temporal clusters of the low speed events
are shown in a space-time cube. G: A scatterplot shows the times (horizontal
dimension) and movement directions (vertical dimension) of the low speed
events.

of the time bars display is simultaneously a filtering device: the user can switch
off and on the visibility of any value interval by clicking on the corresponding
coloured rectangle in the legend. In Figure 9.3C, the user has switched off
all intervals except for that with the speeds from O to Skm/h. As a result, the
trajectory segments with the speed values higher than Skm/h have been hidden.
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The filter affects not only the time bars display but also the map (Figure 9.3D).
It is possible to combine several segment filters based on values of different
attributes.

The points satisfying filter conditions can be extracted from the trajectories
into a separate dataset (information layer) consisting of spatial events, i.e., ob-
jects located in space and time. This dataset can be visualized and analyzed
independently from the original trajectories or in combination with them. In
Figure 9.3E, the yellow circles represent 19339 spatial events constructed from
the points of the car trajectories where the speeds did not exceed Skm/h. The
filtering of the trajectory segments has been cancelled so that the whole trajec-
tory lines are again visible. As could be expected, there are many low speed
events in the centre of the city. However, there are also visible concentrations of
such events in many places on the motorways and their entrances/exits. These
events are very probable to have occurred due to traffic congestions.

To investigate when and where traffic congestions occurred, we apply density-
based clustering to the set of extracted events in order to find spatio-temporal
clusters of low speed events. We look for dense spatio-temporal clusters be-
cause standalone low speed events may be unrelated to traffic jams. The dis-
tance function we use is spatio-temporal distance between events. The STC in
Figure 9.3F displays the clusters we have obtained; the noise (15554 events)
is hidden. The clusters are coloured according to the geographical positions.
We see a vertically extended cluster in light green on the east of the city.
More precisely, it is located at the Linate airport. Most probably, the reason
for these low speed events is not traffic congestions but car parking or disem-
barking/embarking of passengers. The clusters in the other locations are more
probable to be related to traffic jams. Some clusters on the northwest (blue) and
northeast (cyan) are quite extended spatially, which means that the traffic was
obstructed on long parts of the roads. The existence times of the clusters can
be more conveniently seen in a two-dimensional display like the scatterplot in
Figure 9.3G, where the times of the events (horizontal axis) are plotted against
the movement directions. It is possible to select the clusters one by one and see
when they occurred and in which direction the cars were moving. For instance,
two large clusters of slow movement westwards occurred on the far northeast
in the time intervals 05:38-06:50 and 10:20-12:44.

Generally, there are many possible ways how events extracted from trajecto-
ries can be further analyzed and used. Interested readers are referred to papers
(Andrienko et al., 2011b) and (Andrienko et al., 2011c).
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9.4 Bird’s-eye on movement: generalization and aggregation

Generalization and aggregation enables an overall view of the spatial and tem-
poral distribution of multiple movements, which is hard to gain from displays
showing individual trajectories. Besides, aggregation is helpful in dealing with
large amounts of data. There are two major groups of analysis tasks supported
by aggregation:

o Investigation of the presence of moving objects in different locations in
space and the temporal variation of the presence.

o Investigation of the flows (aggregate movements) of moving objects be-
tween spatial locations and the temporal variation of the flows.

9.4.1 Analyzing presence and density

Presence of moving objects in a location during some time interval can be char-
acterized in terms of the count of different objects that visited the location, the
count of the visits (some objects might visit the location more than once), and
the total time spent in the location. Besides, statistics of various attributes de-
scribing the objects, their movements, or their activities in the location may be
of interest. To obtain these measures, movement data are aggregated spatially
into continuous density surfaces or discrete grids. Density fields are visual-
ized on a map using colour coding and/or shading by means of an illumination
model (Figure 9.4A). Density fields can be built using kernels with different
radii and combined in one map to expose simultaneously large-scale patterns
and fine features, as demonstrated in Figure 9.4A.

An example of spatial aggregation using a discrete grid is given in Figure
9.4B. The irregular grid has been built according to the spatial distribution of
points from the car trajectories. The darkness of the shading of the grid cells
is proportional to the total number of visits. Additionally, each cell contains
a circle with the area proportional to the median duration of a visit. It can be
observed that the median duration of staying in the cells with dense traffic (dark
shading) is mostly low. Longer times are spent in the cells in the city centre
and especially at the Linate airport on the east. There are also places around
the city where the traffic intensity is low while the visit durations are high.

To investigate the temporal variation of object presence and related attributes
across the space, spatial aggregation is combined with temporal aggregation,
which can also be continuous or discrete. The idea of spatial density can be
extended to spatio-temporal density: movement data can be aggregated into
density volumes in three-dimensional space-time continuum, which can be
represented in an STC.
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Figure 9.4 A,B: Car tracks aggregated in a continuous density surface (A)
and by discrete grid cells (B). C: STC shows the variation of car presence
over a day in the most visited cells. D: The cells clustered by similarity of the
presence time series shown on a time graph in (E). F: Hourly time intervals
clustered by similarity of the spatial distributions of car presence, which are
summarized in (G).

17
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For discrete temporal aggregation, time is divided into intervals. Depending
on the application and analysis goals, the analyst may consider time as a line
(i.e. linearly ordered set of moments) or as a cycle, e.g., daily, weekly, or yearly.
Accordingly, the time intervals for the aggregation are defined on the line or
within the chosen cycle. The combination of discrete temporal aggregation
with continuous spatial aggregation gives a sequence of density surfaces, one
per time interval, which can be visualized by animated density maps. It is also
possible to compute differences between two surfaces and visualize them on a
map, to see changes occurring over time (this technique is known as change
map).

The combination of discrete temporal aggregation with discrete spatial ag-
gregation produces one or more aggregate attribute values for each combina-
tion of space compartment (e.g., grid cell) and time interval. In other words,
each space compartment receives one or more time series of aggregate attribute
values. Visualization by animated density/presence maps and change maps is
possible as in the case of continuous surfaces. There are also other possibili-
ties. The time series may be shown in an STC by proportionally sized or shaded
or coloured symbols, which are vertically aligned above the locations; Figure
9.4C gives an example; the colour legend is given in the lower right corner of
Figure 9.4. Occlusion of symbols is often a serious problem in such a display;
therefore, we have applied interactive filtering so that only the data for the most
intensively visited cells (1000 or more visits per day) are visible.

When the number of the space compartments is big and time series are long,
it may be difficult to explore the spatio-temporal distribution of object pres-
ence using only visual and interactive techniques. It is reasonable to cluster the
compartments by similarity of the respective time series and analyze the tem-
poral variation cluster-wise, i.e., investigate the attribute dynamics within the
clusters and do comparisons between clusters. Figure 9.4D demonstrates the
outcome of k-means clustering of grid cells according to the time series of car
presence obtained by aggregating the car movement data from the whole time
period of one week by hourly intervals (hence, the time series consist of 168
time steps). Distinct colours have been assigned to the clusters and used for
painting the cells on the map. The same colours are used for drawing the time
series lines on the time graph in Figure 9.4E. The colours are chosen by pro-
jecting the cluster centroids onto a two-dimensional continuous colour map;
hence, clusters with close centroids receive similar colours and, vice versa,
high difference in colours signifies much dissimilarity between the clusters.
Figure 9.4E shows a prominent periodic variation of car presence in the grid
cells over the week. Interactive tools allow us to select the clusters one by one
or pairs of clusters for comparison and see only these clusters on the displays.
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We find out that the clusters differ mainly in the value magnitudes and not
in the temporal patterns of value variation, with the exception of the bright
red and orange clusters. The value ranges in these clusters are very close. The
main difference is that the red cluster has higher values in the afternoons of
Sunday and Saturday. This may have something to do with people spending
their leisure time near lakes, which are located to the north from the city.

Spatially referenced time series is one of two possible views on a result of
discrete spatio-temporal aggregation. The other possibility is to consider the
aggregates as a temporal sequence of spatial situations. The term ’spatial situ-
ation’ denotes spatial distribution of aggregate values of one or more attributes
in one time interval. Thus, in our example, there are 168 spatial situations each
corresponding to one of the hourly intervals within the week. Temporal vari-
ation of spatial situations can also be investigated by means of clustering . In
this case, the spatial situations are considered as feature vectors characterizing
different time intervals. Clustering groups the time intervals by similarity of
these feature vectors.

In Figure 9.4F, we have applied k-means clustering to the 168 spatial sit-
uations in terms of car presence and built a time mosaic display where each
hourly interval is represented by a square. As in the previous case, different
colours have been assigned to the clusters. The squares in the time mosaic are
painted in these colours. The squares are arranged so that the columns, from
left to right, correspond to the days, from Sunday (the first day in our dataset)
to Saturday, and the rows correspond to the hours of the day, from 0 on the top
to 23 in the bottom. We see that the working days (columns 2-6) have quite
similar patterns of colouring, which means similarity of the daily variations of
the situations. The patterns on Sunday (column 1) and Saturday (column 7) are
different. The multi-map display in Figure 9.4G shows summarized spatial sit-
uations: each small map represents the mean presence values in the respective
time cluster (the colour coding is the same as in the STC in Figure 9.4C; see
the legend in the lower right corner). It is seen that the shades of cyan, which
occur in the night hours, correspond to very low car presence over the city and
the shades of red, which occur in the working days from 5 till 17 o’clock, to
high presence, especially on the belt roads around the city. Red also occurs in
the afternoon of Sunday (from 15 till 17) and in the morning of Saturday (from
8 till 9).

To deal with very large amounts of movement data, possibly, not fitting in
RAM, discrete spatio-temporal aggregation can be done within a database or
data warehouse. The aggregates can then be loaded in RAM for visualization
and interactive analysis.
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9.4.2 Tracing flows

In the previous section, we have considered spatial aggregation of movement
data by locations (space compartments). Another way of spatial aggregation
is by pairs of locations: for two locations A and B, the moves (transitions)
from A to B are summarized. This can result in such aggregate attributes as
number of transitions, number of different objects that moved from A to B,
statistics of the speed, transition duration, etc. The term “flow” is often used
to refer to aggregated movements between locations. The respective amount
of movement, that is, count of moving objects or count of transitions, may be
called "flow magnitude”.

There are two possible ways to aggregate trajectories into flows. Assuming
that each trajectory represents a full trip of a moving object from some origin
to some destination, the trajectories can be aggregated by origin-destination
pairs, ignoring the intermediate locations. A well-known representation of the
resulting aggregates is the origin-destination matrix (OD matrix) where the
rows and columns correspond to the locations and the cells contain aggregate
values. OD matrices are often represented graphically as matrices with shaded
or coloured cells. The rows and columns can be automatically or interactively
reordered for uncovering connectivity patterns such as clusters of strongly con-
nected locations and "hubs”, i.e., locations strongly connected to many others.
A disadvantage of the matrix display is the lack of spatial context.

Another way to visualize flows is the flow map where flows are represented
by straight or curved lines or arrows connecting locations; the flow magnitudes
are represented by proportional widths and/or colouring or shading of the sym-
bols. Since lines or arrows may connect not only neighbouring locations but
any two locations at any distance, massive intersections and occlusions of the
symbols may occur, which makes the map illegible. Several approaches that
have been suggested for reducing the display clutter either involve high infor-
mation loss (e.g. due to filtering or low opacity of lesser flows) or work well
only for special cases (e.g., for showing flows from one or two locations).

The other possible way of transforming trajectories to flows is to represent
each trajectory as a sequence of transitions between all visited locations along
the path and aggregate the transitions from all trajectories. Movement data
having sufficiently fine temporal granularity or allowing interpolation between
known positions may be aggregated so that only neighbouring locations (adja-
cent spatial compartments) are linked by flows. Such flows can be represented
on a flow map without intersections and occlusions of the flow symbols. To
summarize movement data in this way, the space can be tessellated into larger
or smaller compartments, e.g., using the method suggested in (Andrienko and
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Figure 9.5 A,B,C: Flow maps based on fine, medium, and coarse territory
divisions obtained automatically. D,E: Clustering of flows based on the time
series of flow magnitudes. F: Flows between predefined regions. G: Inves-
tigation of movements between the regions over time adjusted to individual
lifetimes of the trajectories.

Andrienko, 2011), to achieve higher or lower degree of generalization and ab-
straction. This is illustrated in Figure 9.5A-C. The same trajectories of cars
(a one-day subset from Wednesday) have been aggregated into flows using
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fine, medium, and coarse territory tessellations. The flows are represented by
“half-arrow” symbols, to distinguish movements between the same locations
in the opposite directions. Minor flows have been hidden to improve the dis-
play legibility; see the legends below the maps. The exact values of the flow
magnitudes and other flow-related attributes can be accessed through mouse-
pointing on the flow symbols. Flow maps can also be built using predefined
locations or space partitioning, as demonstrated in Figure 9.5F, where the flow
map is built based on a division of the territory of Milan into 13 geographic
regions.

Flow maps can serve as expressive visual summaries of clusters of similar
trajectories. To obtain such summaries, aggregation is applied separately to
each cluster.

When movement data are aggregated into flows by time intervals, the re-
sult is time series of flow magnitudes. These can be visualized by animated
flow maps or by combining flow maps with temporal displays such as a time
graph. Flows may be clustered by similarity of the respective time series (Fig-
ure 9.5D,E) and the temporal variation analyzed cluster-wise, as was suggested
for time series of presence indicators in the previous section. Note that the
spatial patterns visible on the map and the periodic patterns of flow variation
visible on the time graph are similar to those that we observed for the presence
(Figure 9.4D.E). However, we see that symmetric flows (i.e., flows between
the same locations in opposite directions) may have different patterns of tem-
poral variation. Thus, on the east and south of the city symmetric flow symbols
are coloured in blue and in magenta, i.e., the respective time series belong to
different clusters. The flows in the magenta cluster achieve higher magnitudes
in the afternoons of all days, except Friday (day 6).

Aggregation of movement data into transitions between locations does not
allow investigation of paths and movement behaviors where more than two
locations are visited. The visualization technique demonstrated in Figure 9.5G
aggregates trajectories in such a way that movement behaviors can be traced
(Bremm et al. (2011)). This is an abstract display where the horizontal axis
represents time and colours represent different locations. The map in Figure
9.5F shows the geographic regions of Milan filled in different colours. The
same colours are used in Figure 9.5G.

In this example, we investigate the movements of 4634 cars who spent at
least 6 hours on the territory under study on Wednesday (i.e., we have selected
the trajectories with the duration of at least 6 hours); the flow map in Fig-
ure 9.5F summarizes the movements of these cars. The trajectories have been
aligned in time to common start and end times, as mentioned in section 9.2.3.
The resulting time units are thousandths (also called ’per mill’) of the total
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trajectory duration. Then the transformed time has been divided into 50 inter-
vals of the length 20 per mills, or 2 percents. The temporal display in Figure
9.5G represents time intervals by vertical bars divided into coloured segments
proportionally to the number of cars that visited the regions in these intervals.
Aggregated transitions between the regions are represented by bands drawn
between the bars. The widths of the bands are proportional to the counts of
the objects that moved. Gradient colouring is applied to the bands so that the
left end is painted in the colour of the origin location and the right end in the
colour of the destination location.

The coloured bars are shown not for all time intervals but for a subset of
intervals selected interactively or automatically. In our example, we have se-
lected the first 3 intervals, the last 3 intervals, and each 10th interval (i.e., 100
per mills, 200 per mills, and so on). The small rectangles at the bottom of the
display represent all time intervals. The greyscale shading encodes the amount
of change in each interval with respect to the previous interval, i.e., how many
objects moved to different locations. We can observe that the most intensive
movements of the selected cars occurred in the first 2% and in the last 2% of
the total trajectory lifetime. Between the time intervals 100 and 900 the cars
mostly stayed in the same regions. The most visited region was centre. There
were higher presence and more movements in the northern part of the city than
in the southern part. The most intensive flows at the beginning of the trips were
to the centre and inner northeast and at the end to the outer northeast.

By interacting with the display, it is possible to explore not only direct tran-
sitions between locations but also longer sequences of visited locations. When
the user clicks on a bar segment, the movements of the corresponding subset
of objects are highlighted in the display (i.e., shown by brighter colours). It is
possible to see which locations were visited and when. Thus, we can learn that
from the 994 cars that were in the centre in the interval 500 (i.e., in the middle
of the trip time) 489 cars were in this region during the whole time and the
remaining cars came to the centre mainly from the northeast (133), southwest
(132), northwest (74) and southeast (62) in the first 2% of the time. At the end,
these cars moved back. Analogously, the user can click on bands connecting
segments to select the objects participating in the respective transitions and
trace their movements.

9.5 Investigation of movement in context

The spatio-temporal context of the movement includes the properties of dif-
ferent locations (e.g., land cover or road type) and different times (e.g. day
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or night, working day or weekend) and various spatial, temporal, and spatio-
temporal objects affecting and/or being affected by the movement. The meth-
ods discussed so far seem to deal with movement data alone and not address
the context of the movement, at least in an explicit way. However, the context is
always involved in the process of interpreting what is seen on visual displays.
Thus, the analyst always tries to relate visible spatial patterns to the spatial con-
text (e.g., the highest car traffic density is on motorways) and visible temporal
patterns to the temporal context (e.g., the traffic decreases on weekends).

The cartographic map is a very important provider of information about spa-
tial context; therefore, maps are essential in analyzing movement data. It is not
very usual although possible to include information about temporal context in
temporal displays such as a time graph. A space-time cube may show spatio-
temporal context, but occlusions and projection effects often complicate the
analysis. Besides the context items that are explicitly represented on visual
displays, the analyst also takes relevant context information from his/her back-
ground knowledge. Visual displays, especially maps, help the analyst in doing
this since things that are shown can facilitate recall of related things from ana-
lyst’s mind. After noticing a probable relationship between an observed pattern
and some context item, or group of items, or type of items, the analyst may
wish to check it, which can be supported by interactive visual tools.

The analyst may not only attend to the movement context for interpreting
results of previously done analysis. It may also be a primary goal of analysis
to detect and investigate particular relationships between the movement and a
certain specific context item or group of items. For example, the goal may be
to investigate how cars move on motorways or in traffic congestions. To do
the analysis, one may need special techniques that support focussing on the
context items and relationships of interest.

Position records in movement data may include some context information,
but this is rarely the case. In any case, movement data cannot include all possi-
ble context information. Typically, the source of relevant context information
is one or more additional datasets describing some aspect(s) of the movement
context. We shall shortly call such data “context data”. Context data may re-
sult from previous analyses of movement data. In our previous examples we
have demonstrated derivation of spatial events, event clusters, as well as classes
(clusters) of locations and of time moments. Such derived data can be consid-
ered as context data and used in further analysis of movement data.

The general approach is to derive contextual attributes for trajectory posi-
tions by joint processing of movement data and context data and then visualize
the attributes to observe patterns and determine relationships. The derived at-
tributes may characterize the environment (such as weather conditions) at the
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positions of the moving objects or relations (such as spatial distance) between
the positions and context items in focus. Values of these attributes are defined,
as a rule, for all trajectory positions. The analyst looks for correlations, depen-
dencies, or, more generally, stable or frequent correspondences between the
contextual attributes and movement attributes.

Besides stable relationships between movement and its context, the analyst
may also be interested in transitory spatial, temporal, and spatio-temporal re-
lationships occurring between moving objects and context items during the
movement and lasting for limited time. This includes, in particular, relative
movements of two or more moving objects such as approaching, meeting,
passing, following, etc., and relative movements with respect to other kinds of
spatial objects. Such occurrent relationships can be regarded as spatial events
since they exist only at certain positions in space and in time.

Many types of relationships can be expressed in terms of spatial and/or tem-
poral distances. This includes proximity between moving objects, visiting of
certain locations or types of locations, being in spatio-temporal neighbourhood
of a spatial event, etc. Spatial and/or temporal distances from moving objects
to context items can be computed and attached to trajectory positions as new
attributes, which can be visualized and/or used in further analyses. Particularly,
they can be used for filtering and event extraction as described in section 9.3.

As an example of analyzing movement in context, we shall investigate how
the speed of car movement on motorways is related to the distances between
the cars. Hence, there are two aspects of the movement context we are inter-
ested in: type of location (specifically, motorway) and other cars (specifically,
distances to them). The distances between the cars can be determined directly
from the trajectory data; no additional data are needed. This can be done using
a computational procedure that finds for each trajectory position the closest po-
sition in another trajectory within a given time window, e.g., of 1 minute length
(from -30 to +30 seconds with respect to the time of the current position).

The location types could be taken from an additional dataset describing the
streets; however, we have no such dataset for Milan. We shall demonstrate the
use of previously derived data. Earlier we have made a tessellation of the terri-
tory (Figure 9.4); moreover, the clustering according to the temporal variation
of the car presence (Figure 9.4D) separates quite well the cells on motorways
from the other cells. We create a suitable classification of the cells, as in Fig-
ure 9.6D, by editing the clusters. Here the yellow filling corresponds to the
cells on motorways. We select this class of cells and compute the distances
from the trajectory positions to the selected cells; for each position the nearest
cell is taken. The computed distances are attached to the position records as a
new attribute, which can now be used for filtering. By filtering, we extract the
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Figure 9.6 A,B,C: Frequency distributions of car speeds on motorways in
different ranges of distance to the nearest neighbour car: below 20m (A),
20-50m (B), over 50m (C). D: Trajectory segments on or near motorways
selected by means of segment filter. E: Spatio-temporal clusters of low speed
events on motorways where the distance to the nearest neighbour is 10m or
less. Yellow shapes represent spatio-temporal convex hulls of the clusters.
F: Trajectories that passed through one of the convex hulls are selected by
filtering. G: The selected trajectories and respective low speed events in a
STC.

points and segments of the trajectories with zero distances to the selected cells
(Figure 9.6D).

We compute also the distance from each position to the nearest position of
another car within the 1-minute time window. This makes one more attribute
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attached to the position records. Then we use an additional filter according
to values of this attribute to sequentially select the trajectory points with the
distances to the nearest neighbour in three different ranges: below 20m, from
20 to 50m, and over 50m. For each subset of points, we produce a frequency
histogram of the respective speeds. The histograms are shown in Figure 9.6A-
C. They have the same height and bar width. The latter corresponds to a speed
range of approximately Skm/h. Hence, despite the differing sizes of the point
subsets, the shapes of the distributions can be compared. There are many points
with low speeds (0-10km/h) in each subset but the relative number of such
points is the highest in the first subset and the lowest in the third subset. In
all subsets, there is a smaller peak of frequencies for the speeds 80-90km/h,
but this peak is the lowest for the first subset and the highest for the third
subset. Hence, we observe that smaller distances between cars on a motorway
correspond to lower movement speeds.

To demonstrate investigation of occurrent relationships between moving ob-
jects and items of the context, we extract from the car trajectories the events
where the car is on a motorway and its distance to the nearest neighbour car is
at most 10m while the movement speed is not more than 10km/h. These events
reflect occurrent proximity relationships of cars to motorways and other cars
while the low speeds indicate that these occurrences may be related to traffic
congestions. As we did in section 9.3, we find spatio-temporal clusters of these
events; some of them are shown in the STC in Figure 9.6E. We build spatio-
temporal convex hulls around the event clusters (the yellow shapes in Figure
9.6E). We assume that each convex hull represents a traffic jam. Hence, we
have obtained an additional dataset with spatio-temporal boundaries of traffic
jams on motorways. It may, in turn, be considered as context data and used in
further analysis. Thus, Figure 9.6F shows selected trajectories passing through
one of the traffic jams, which have been used as a filter for trajectory selection.
We can closely investigate the movement of the cars affected by this traffic jam
by means of a STC (Figure 9.6G).

Sections 9.2-9.4 show that movement can be analyzed at different levels:
whole trajectories, elements of trajectories (points and segments), and high-
level summaries (densities, flows, etc.). In principle, analyzing movement in
context can also be done at these levels. A comprehensive set of visual ana-
lytics methods addressing all these levels and different types of context items
does not exist yet, which necessitates further research in this direction.
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9.6 Recommended reading

Keim et al. (2008) give a general definition of visual analytics and describe
the scope of this research field. Andrienko et al. (2011a) suggest a conceptual
framework defining the concepts of movement data, trajectories, and events,
and possible relationships between moving objects, locations, and times. It
shows that movement data hold valuable information not only about the mov-
ing objects but also about properties of space and time and about events and
processes occurring in space and time. To uncover various types of informa-
tion hidden in movement data, it is necessary to consider the data from dif-
ferent perspectives and to perform a variety of analytical tasks. The paper de-
fines the possible foci and tasks in analyzing movement data. Furthermore, it
defines generic classes of analytical techniques and links the types of tasks
to the classes of techniques that can support fulfilling them. The techniques
include visualizations, data transformations, and computational analysis meth-
ods developed in several areas: visualization and visual analytics, geographic
information science, database research, and data mining.

Readers interested in visualization of trajectories and techniques for inter-
action with the displays can be referred to the papers by Kapler and Wright
(2005) describing a nice implementation of the space-time cube, Bouvier and
Oates (2008) suggesting original interaction techniques for marking moving
objects on an animated display and tracing their movements, and Guo et al.
(2011) showing the use of several coordinated displays and interactive query
techniques specifically designed for trajectories, such as sketching for finding
trajectories with particular shapes.

Rinzivillo et al. (2008) talk about visually supported progressive cluster-
ing of trajectories. The paper argues for the use of diverse distance functions
addressing different properties of trajectories, describes several distance func-
tions, and demonstrates the use of progressive clustering by example.

The papers Andrienko et al. (2011b) and Andrienko et al. (2011c) refer to
”looking inside trajectories” (section 9.3). The first paper describes visual dis-
plays that show temporal variation of dynamic attributes associated with tra-
jectory positions. The second paper gives a structured list of position-related
attributes that can be computationally derived from movement data alone and
from a combination of movement data and context data. These attributes char-
acterize either the movement itself or possible relationships between the mov-
ing objects and the movement context. Both papers deal with extraction of spa-
tial events from movement data. The first paper introduces a conceptual model
where movement is considered as a composition of spatial events of diverse
types and extents in space and time. Spatial and temporal relations occur be-
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tween movement events and elements of the spatial and temporal contexts. The
model gives a ground to a generic approach based on extraction of interesting
events from trajectories and treating the events as independent objects. The pa-
per also describes interactive techniques for extracting events from trajectories.
The second paper focuses more on the use of extracted events in further anal-
ysis. Thus, it considers density-based clustering of movement-related events,
which accounts for their positions in space and time, movement directions,
and, possibly, other attributes. The clustering allows extraction of meaningful
places. The further analysis involves spatio-temporal aggregation of events or
trajectories using the extracted places.

Andrienko and Andrienko (2010) give an illustrated survey of the aggre-
gation methods used for movement data and the visualization techniques ap-
plicable to the results of the aggregation. These methods and techniques are
also presented in a more formal way by Andrienko et al. (2011a). Willems
et al. (2009) describe aggregation of trajectories into a continuous density sur-
face using a specially designed kernel density estimation method, which in-
volves interpolation between consecutive trajectory points taking into account
the speed and acceleration. Density fields built using kernels with different
radii can be combined into one field to expose simultaneously large-scale pat-
terns and fine features. Andrienko and Andrienko (2011) suggest a method for
the tessellation of a territory used for discrete spatial aggregation of movement
data and generation of expressive visual summaries in the form of flow maps.
The method divides a territory into convex polygons of desired size on the ba-
sis of the spatial distribution of characteristic points extracted from trajectories.
It uses a special algorithm for spatial clustering of points that produces clusters
of user-specified spatial extent (radius). Depending on the chosen radius, the
data can be aggregated at different spatial scales for achieving lower or higher
degree of generalization and abstraction.

An example of visualization of flows between locations in the form of an
origin-destination matrix can be found in the paper by (Guo, 2007). The rows
and columns can be automatically or interactively reordered for uncovering
connectivity patterns such as clusters of strongly connected locations and hubs”,
i.e., locations strongly connected to many others.

To deal with very large amounts of movement data, possibly, not fitting in
RAM, discrete spatio-temporal aggregation can be done within a database or
a data warehouse as described by (Raffaeta et al., 2011). Only aggregated data
are loaded in RAM for visualization and interactive analysis. Using roll-up
and drill-down operators of the warehouse, the analyst may vary the level of
aggregation.

Andrienko and Andrienko (2012) give a comprehensive review and exten-
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sive bibliography of methods, tools and procedures for visual analysis of move-
ment data.

9.7 Conclusion

Movement data link together space, time, and objects positioned in space and
time. They hold valuable and multifaceted information about moving objects,
properties of space and time as well as events and processes occurring in space
and time. Visual analytics has developed a wide variety of methods and tools
for analysis of movement data, which allow an analyst to look at the data
from different perspectives and perform diverse analytical tasks. Visual dis-
plays and interactive techniques are often combined with computational pro-
cessing, which, in particular, allows analysis of larger amounts of data than
it would be possible with purely visual methods. Visual analytics leverages
methods and tools developed in other areas related to data analytics, partic-
ularly, statistics, machine learning, and geographic information science. The
main goal of visual analytics is to enable human understanding and reasoning.
We have demonstrated by examples how understanding of various aspects of
movement is gained by viewing visual displays and interacting with them, pos-
sibly, after appropriate data transformations and/or computational derivation of
additional data.
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