
Impact of Remote User Interface
Design and Delivery on Energy Demand

Tomas Cerny
Computer Science, FEE, Czech Technical University,

Charles Square 13, Prague 2, Czech Rep.
Email: tomas.cerny@fel.cvut.cz

Michael J. Donahoo
Computer Science, Baylor University,

Waco, TX, USA
Email: jeff donahoo@baylor.edu

Abstract—Client-side User Interface (UI) for web applications
clearly plays a critical role in user performance and efficiency.
Growing user expectations drive UI design to greater function-
ality with ever increasing expectations for rich and continuous
interactivity. Such increases require greater and greater com-
putational resources. At the same time, web applications are
increasingly accessed through mobile, battery-powered devices,
such as notebooks, tablets, smartphones, and even watches.
In effect, users are simultaneously increasing dependence on
battery power and the pace of battery discharge with demanding
applications. While UI design often considers factors such as
usability, bandwidth consumption, etc., little consideration is
given to the impact rendering and delivery design have on
energy consumption. While we may expect novel technologies
to expand battery capacity, the demands consistently outpace
improvements. Careful consideration of UI design strategy may
reduce the energy demands placed to the users device. This paper
presents a study considering existing UI design and delivery
strategies and evaluates their impact on energy consumption.

Index Terms—energy impact; user interface; separation of concerns

I. INTRODUCTION

Existing UI research [1], [2], [3] usually addresses UI abil-
ities, personification [1], context-awareness or cross-platform
compatibility [2]. Conventional web-based approaches target
design and maintenance simplification and tool-aided ap-
proaches [2], [4], [5], [6]. Research also often focuses on
server-side scalability and UI responsiveness, targeting fast
end-user delivery [1], [7], [8].

The growing market of battery-equipped mobile devices
demonstrates the need for energy-friendly UI design and
delivery approaches. While the forecast for battery capacities
anticipates growth reports12, the ever-increasing reliance on
mobility insures the demands on battery energy will con-
tinue to outpace supply. Considerable reduction in energy
consumption of user’s device could be achieved by choosing
an appropriate UI design, delivery, and rendering strategy by
reducing client-side computational resource demands.

This paper considers contemporary approaches of UI de-
signs, delivery, and rendering of data presentations in web ap-
plications. It investigates their impact on energy consumption
at the user’s device. We compare the conventional, server-side
UI design approach, represented by JavaServer Faces (JSF)

1http://news.mit.edu/2015/yolks-and-shells-improve-rechargeable-batteries-0805
2http://news.mit.edu/2015/solid-state-rechargeable-batteries-safer-longer-lasting-0817

[9], with the approach brought by Google Web Toolkit (GWT)
[7] and AngularJS (AJS) [8]. The study is extended to consider
the impact of JSF PrimeFaces (PF) [10] library providing
better usability and attractive look and feel. Moreover, the
delivery impact is considered from the concern-separating
perspective. To provide a broad study, the Distributed Concern
Delivery (DCD) [1], [11] is compared with the conventional
delivery approach. The DCD extension to JSF, AJS and GWT
is considered and compared with the original.

The presentation is organized as follows. Section 2 intro-
duces web UI design approach, their specifics and abilities. A
case study is described in Section 3 evaluating various factors
to draw the energy impact. Section 4 concludes the paper.

II. BACKGROUND, DESIGN AND DELIVERY APPROACHES

Conventional web applications provide the client UI in the
form of HTML, supplemented with images, style sheets, Java
Script (JS), JSON, XML and other sources. The client-server
interaction uses the HTTP protocol built on top of the TCP/IP
protocol requiring an initial three-way handshake to establish a
connection and four-way handshake to terminate. HTTP brings
multiple simplifications and also transmission optimization.
For instance, it supports content compression to reduce the
volume. Next, seldom-changing resources can be cached by
clients to further improve the interaction. Furthermore, web
browsers open multiple simultaneous connections to server for
parallelization. To avoid handshake overhead, connections are
reused. HTTP works well for partial fragment requests usually
involving asynchronous server calls for web resources.

The server-side UI description of a web application may
use a dynamic interpreter considering the HTML description
extended with a special markup for dynamic behavior or con-
tent resolution with underlying application context, allowing
to bind its data values, use variables, conditionals, interaction,
etc. (e.g., PHP). Alternatively, the description uses an abstract
language defining the UI [6], and the result eventually trans-
forms to HTML or JS before leaving the server (e.g., JSF [9]).

Java Enterprise Edition uses JSF [9] for the UI, and thus
we use it as the reference UI implementation. In fact, no
matter the approach, the conventional UI design suggests to
describe a particular UI page combining components, layout,
data binding, validation rules, constraints, security, etc., so
that the page is self-descriptive. The most simplistic view

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357233959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


may provide the Composite design pattern [3]. JSF uses
an abstract description on top of HTML introducing new
components. It puts the main effort on the server-side where
the JSF interpreter interprets the UI description and assembles
a component tree that represents the UI. JSF renderer traverses
the tree and derives HTML descriptions for the client delivery.

The approach of GWT [7] uses abstraction but on com-
pletely different level than JSF. JSF uses a domain-specific
language that provides a binding mechanism to Java. GWT UI
descriptions use Java and thus improve type safety. GWT Java
descriptions get compiled, rather than interpreted, into a JS
representation. The client loads the JS that gets interpreted at
the client-side, minimizing server-side involvement. The com-
pilation of Java description uses various optimization heuris-
tics to minimize the JS volume and furthermore produces JS
for various browsers. Large part of the JS is cacheable, but
there are also some uncacheable fragments. The data values in
GWT are usually requested through JSON as a separate piece
of information. The nature of GWT fits to interactive pages.
Its use for large, data-oriented systems might be demanding,
considering the volume of produced JS. Since the UI logic
loads with the UI, there is a potential for offline interaction.
Both JSF and GWT introduce design abstraction classifiable as
model-driven design [3], when seeing the JSF/Java description
as model and HTML as the target.

The main argument of its rival, AJS [8], is that Java philoso-
phy is too distant and not corresponding to web-development.
The high abstraction brings difficulty for debugging low level
optimization and inability to apply changes to generated JS.
Similar to GWT, the AJS expect data to be provided as a
separate piece of information. The difference is that it is low-
level, involving JS development. GWT loads the page states all
at once, while AJS suggests incremental state extension, that
fits better with data-oriented systems. Next, there is a novelty
in the client-side involvement and introduction of templating
and data decoration. It allows defining templates used for
data presentation. Thus each data instance displayed on the
page follows the same template, reducing restatements and
transmission size. The templating mechanism expects client’s
browser to execute decoration demanding resources.

[1] argues that conventional design approach, although easy
to comprehend, is not efficient for context-aware situations,
since each new condition or context may lead to a design of a
novel UI description. Instead, it look for inspiration in Aspect-
Oriented Programming (AOP) and applies the approach to
the UI design [3]. This separates out the descriptions of pre-
sentation components, layout, data binding, validation rules,
constraints, security, etc. The UI assembly executes at runtime
from these individual concerns. This avoids the inefficiency of
conventional design when dealing with context-awareness by
designing page per context.

From the delivery perspective, no matter the HTML/JS for-
mat, JSF/GWT/AJS provides a single, tangled UI description
to clients. Additionally, GWT/AJS separate out the data values
in JSON from descriptions. Even the AOP-based approach
tangles all concerns at the server-side.

[1] promotes the AOP idea to delivery. Having the descrip-
tions separated and untangled brings new perspective to the
client-server interaction. Instead of providing the client the
tangled HTML/JS description as a single block of information,
it is possible to preserve the concern separation at the delivery
level and introduce DCD [11]. DCD separates data presenta-
tion concerns, such as component selection and presentation,
validation, structure, layout and data values. Such separation
maintained at the client-side further extends client abilities. For
instance, it extends the caching options to reuse components
presentation and selection, validation, layout and structure
concerns that would be tangled in the conventional approach.
Similarly to conventional approaches, DCD provides the main
HTML document with the page layout. Data presentations
are assembled at the client-side from separately-requested
concerns (JS/JSON). This leaves the decision of concern reuse
and caching to the client-side. The context-awareness with
DCD is less demanding with respect to transmission, since
only changed concerns are provided, rather than all tangled
concerns. Moreover, having the UI concerns separated brings
finer granularity that further allows to classify the concerns to
platform-specific and platform-independent and consequently
simplify the design of platform-aware UIs [11].

DCD can be illustrated by the following example. Conven-
tional design tangles all concerns together, introducing restate-
ments and replication resulting in a single HTML document.
DCD provides concerns to clients separately, which reduces
the total volume and avoids restatements. After the initial page
layout HTML document gets interpreted by the client, other
concerns are requested concurrently. This increases the number
of requests, while providing opportunity for parallel concern
request processing. Thus the same UI with DCD may, in total,
transmit less, in less time, while extending concern caching.

III. CASE STUDY

For the purpose of UI design and delivery approach com-
parison, we conduct the following experiment. A sample UI
page is designed using the JSF/PF/AJS/GWT. Furthermore,
the DCD extension is also integrated to JSF/AJS/GWT to
receive its impact. This gives 7 page prototypes. The impact
of the approach is considered from both the client and server
perspectives. When client’s web browser requests a page to
load, we evaluate multiple criteria. Specifically, from the
client-side perspective, we consider the page load time until
all fields are rendered, used browser tab panel (tab) CPU
sampled per 1ms and measured the total cores usage in ms, the
tab’s allocated memory (Mem), the transmitted volume, total
uncompressed size, total amount of requested resource, total
packets both directions, total packet size and energy impact
calculated by Mac OS X3. From the server-side, we consider
CPU and Mem used for serving the client.

3http://www.tekrevue.com/tip/use-activity-monitor-energy-tab-os-x-mavericks:
The number that is a relative measure of the energy impact of an app or
process, taking into account factors such as overall CPU utilization, idle
energy draw, and interrupts or timers that cause the CPU to wake up. Scale
is 0 till indefinite high, while max number reported is 780. The lower the
number, the less energy impact an app or process has.



TABLE I
CRITERIA RESULTS FOR UNCACHED MEASUREMENT

Criteria Unit PF JSF AJS GWT JSF
DCD

AJS
DCD

GWT
DCD

Page load time ms 381 255,9 275 280,4 170,4 282 281,2
Browser tab CPU 321,2 177,2 311,3 349,8 174,4 310,3 349,4
Browser tab Mem MB 76 60,7 72,1 74 59,8 72,2 74,9
Uncompressed size KB 675 80,5 164 177 51,8 181 178
Compressed trans. KB 170 19,7 56,5 60,6 15 62 60,5
Resources 5 3 4 5 5 6 6
Packets 98 54 77 81 64 89 87
Packets size KB 178,4 24,8 63,6 68,3 22 71,2 69,3
Energy impact 6,5 3,8 6,2 7,1 3,6 6,6 6,8
Server CPU 271,2 171,8 64,2 32,8 96,2 61,6 35,3
Server Mem MB 18,6 18,2 8,5 3,8 7,6 9,6 4,2

The exact configuration is as follows: The UI page is
based on the ACM-ICPC contest registration system. The fully
functional page shows user profile information in an editable
form with backend corresponding to the ACM-ICPC system.
The page data presenting form has 22 input fields that consider
input validation, various UI components, simple layout, and
data binding. The considered UI frameworks versions are
JSF.2.1.18, PF.4.0.7, AJS.1.4.0, and GWT.2.6.0. All images
and style sheets are stripped out from the evaluation, leaving
only the native JS libraries for the approach to operate.
The application backend uses Java Enterprise Edition 6 on
JBoss AS 6.2 server, running Java 8 with Postgres 9.3.4. The
server-client connection has no bandwidth/latency restrictions,
operating on localhost. The physical machine has a 2,3 GHz
Quad-core Intel Core i7 with 16 GB Memory. The Google
Chrome 44.0.2403.155 web browser used in the experiment in
incognito mode with Task Manager and Developer Tools. The
used monitoring tools are JConsole, Instruments 6.4, Activity
Monitor 10.10.0 and Packet Peeper 2014-06-15.

Each page prototype is deployed at the same server and
with criteria measurement repeated 5 times, while interleaving
different prototypes one by one to minimize skew results
due to possible Mac OS X internal tasks. The measurement
considers two situations: Web browser with disabled/enabled
caching. The DCD approach gives us the possibility to cache
structural information in case no context changes to the UI
are made, which is the more common case [11]. To provide
broad evaluation and impact for context-aware situations, we
also consider the situation when structural information change
and plot both situations for DCD evaluation.

Table I shows results for the cache-disabled evaluation.
Next, we discuss the outcome. JSF represents the standard
approach and is compared with other approaches. The ex-
pectation of extension PF is improved usability and look and
feel. Naturally, we expect that nearly all measured criteria get
worse, which is also apparent from the results with mostly
increased transmission volume and processing factors. PF does
not really bring any alternative approach consideration; on the
other hand, it gives us assurance that the measured values
reflect the expectation when compared to JSF. The situation is

311 textual, 4 select menus, 3 dates, 3 radio options and one checkbox

10#

97#

22#

120#

208#

67#

50#

175#

87#

*81#

*79#

10#

75#

19#

125#

215#

100#

65#

187#

74#

*64#

*47#

10#

97#

23#

121#

207#

100#

61#

179#

79#

*79#

*77#

*33#

*2#

*1#
*36#

*24#

67#

19#

*11#

*5#

*44#

*58#

7#

76#

19#

104#

187#

33#

43#

156#

63#

*63#

*53#

*100%# *50%# 0%# 50%# 100%#

Page#load#5me##

Browser#tab#CPU#

Browser#tab#Mem#

Uncompressed#size#

Compressed#trans.#

Resources#

Packets#

Packets#size#

Energy#impact#

Server#CPU#

Server#Mem#

AJS#

GWT#

JSF#DCD#

AJS#DCD#

GWT#DCD#

Fig. 1. Relative criteria percentage impact based to the JSF approach

more interesting considering AJS/GWT that brings significant
resource utilization twist. See the Browser tab CPU and Mem4

and compare it with Server CPU and Mem utilization. The
rendering is offloaded to the client. The transmission increase
is caused by JS libraries. Since most of them are generic,
they do not affect the later cache-enabled evaluation. Both
AJS/GWT have an extra JSON request for data values, and the
increased volume corresponds to packets. The tab measured
energy impact corresponds to the resource utilization in the
UI assembly, almost doubling the impact for GWT.

The DCD extension significantly impacts JSF. Consider the
load time as well the transmission or uncompressed size. It
further decreases the server CPU and Mem utilization; on
the other hand, the energy impact is similar, since the tab
CPU/Mem does not significantly change as it assembles the
UI from concerns. Furthermore, DCD has more requests and
involved packets. The DCD impact on AJS/GWT is for most
factors marginally negative, which is caused by the AJS/GWT
nature that already delegates resource utilization to the client-
side. The energy impact is negative to AJS since the larger
volume is processed and the UI rendering applies DCD as-
sembly as well as AJS assembly. DCD energy impact to GWT
gets slightly better. This may correspond to the CPU usage
peak revealed in the evaluation. The plain GWT demands
considerable CPU in a short time for the initial resource
processing producing high CPU peak; DCD flatten the CPU
peak for page processing, while using the same CPU resources.
Even though the overall DCD effect seems counterproductive
for AJS/GWT, it may affect caching abilities that we reveal
and the later the cache-enables evaluation.

Fig. 1 gives the relative percentage impact of a particular
approach (not considering PF JSF extension) and given criteria
when compared to the JSF approach. As an example, consider
the first criteria showing JSF DCD improving the page load
time by 33% and AJS extending it by 7%.

The cache-enabled results are expected to improve most of
the measured criteria. Table II shows the impact on approaches
without DCD. The load time improves considerably, even
though the tab CPU does not change as significantly and tab

4It is important to point out that, while the Browser tab memory use indicate
60-76 MB, it includes the allocation for the tab itself with 55,4 MB, although
we preserve the total number to draw the practical impact.



TABLE II
CRITERIA RESULTS FOR CACHED MEASUREMENT WITHOUT DCD

Criteria Unit PF JSF AJS GWT
Page load time MS 284 218 251 257
Browser tab CPU 303 172 292 354
Browser tab Mem MB 78 60,3 72,5 74,4
Uncompressed size KB 34,1 19,9 20,6 8,7
Compressed trans. KB 4,6 3,3 4 4,2
Resources 1 1 2 3
Packets 51 51 48 66
Packets size KB 8,2 6,8 8,1 9,2
Energy impact 5,8 3,6 6,1 6,6
Server CPU 178 83,6 31,25 20,4
Server Mem MB 16,1 16,5 6,5 3,9

15#

70#

20#

4#

21#

100#

(6#

19#

69#

(63#

(61#

18#

106#

23#

(56#

27#

200#

29#

35#

83#

(76#

(76#

(24#

(10#

(1#

(62#

6#

200#

10#

29#

(19#

(56#

(66#

17#

77#

20#

(52#

3#

200#

10#

28#

69#

(49#

(58#

17#

113#

24#

(31#

67#

300#

37#

63#

83#

(70#

(75#

9#

98#

23#

(56#

27#

200#

37#

49#

72#

(83#

(79#

10#

79#

19#

(79#

(36#

100#
12#

(1#

64#

(65#

(64#

(29#

(5#

2#

(88#

(36#
100#

(6#

(9#

(22#

(64#

(68#

(100%# (50%# 0%# 50%# 100%#

Page#load#5me##

Browser#CPU#

Allocated#Memory#

Uncompress#trans#

Compress#trans#

Resources#

Packets#

PacketSize#

Energy#impact#

Server#CPU#

Server#Mem#

AJS#

GWT#

JSF(DCD#

AJD(DCD#

GWT(DCD#

JS(DCD+#

AJD(DCD+#

GWT(DCD+#

Fig. 2. Relative criteria percentage impact based to the JSF approach (caching)

Mem even grows. Transmission and uncompressed sizes drop
considerably. Reduction is also apparent for the amount of
resources and packets. Unexpectedly, the energy impact drops
marginally, which corresponds to CPU and Mem. The server
CPU and Mem utilization cut almost in half.

The DCD for context-aware UI similarly to the cache-
disabled results in Table III give slightly worse results for
AJS and GWT, mostly with extended amount of resource and
packets. On the other hand it outperforms the JSF approach,
mostly the server-side resource utilization. The DCD+ marks
the context-unaware DCD version with cached structural infor-
mation. DCD+ clearly outperforms most of the criteria, even
though the packet amount stays high, as well as the tab CPU
and Mem. The over all evaluation is given by Fig. 2.

The most unexpected outcome is the high level of tab CPU
and Mem utilization for cache-enabled evaluation. The energy
impact of cache-enabled results is not that distant from the
cache-disabled results. This makes a significant contrast to the
page load time improvements.

IV. CONCLUSION

This paper considered contemporary UI design and delivery
approaches from the energy impact perspective and resource
utilization. The outcome of the research shows, that there is
always a trade off between server and client-side computation.
While some approaches such as AJS and GWT target client
involvement to positively impact server resource use, bringing
benefits to a service provider, these approaches place higher
demands on energy consumption for clients. The traditional
approach represented by JSF place lower energy demands
on clients, although extensive rich components may degrade

TABLE III
CRITERIA RESULTS FOR CACHED MEASUREMENT WITH DCD

Criteria Unit JSF
DCD

AJS
DCD

GWT
DCD

JSF
DCD+

AJS
DCD+

GWT
DCD+

Page load time ms 166 255,2 255 155,2 240,2 237
Browser tab CPU 154 305 367 163 308 340
Browser tab Mem MB 59,5 72,6 74,5 61,5 72 74,4
Uncompressed size KB 7,5 9,5 13,7 2,4 4,2 8,7
Compressed trans. KB 3,5 3,4 5,5 2,1 2,1 4,2
Resources 3 3 4 2 2 3
Packets 56 56 70 48 57 70
Packets size KB 8,8 8,7 11,1 6,2 6,7 10,1
Energy impact 2,9 6,1 6,6 2,8 5,9 6,2
Server CPU 37 43 25 29,8 29 14,2
Server Mem MB 5,6 6,9 4,1 5,2 6 3,4

the advantages, at the same time there are more efforts
in resource allocation at the server-side. Extension brought
by DCD positively balances the traditional design with a
delivery approach that reduces server-side involvement. An
important factor of the evaluation centered around the volume
of transmitted, compressed information and transmission im-
provements with caching. While caching positively impacts
page load times, surprisingly it does not significantly reduce
the energy demands, since the overall uncompressed volume
of information is utilized by web browsers. The DCD ability
to cache structural information brings reductions to server-
side resource utilization for all considered approaches. No
matter the browser caching or delivery approach the clients-
side seems to use the same amount of CPU and Mem.

Future work involves direct analysis on iOS for energy
evaluation and impact of the network throttling. Furthermore,
optimization to energy consumption will be addressed.

ACKNOWLEDGMENT
This work was supported by the Grant Agency of the Czech Technical

University in Prague, grant No. SGS14/201/OHK3/3T/13

REFERENCES

[1] T. Cerny, M. Macik, J. Donahoo, and J. Janousek, “On distributed
concern delivery in user interface design,” Computer Science and
Information Systems, vol. 12, no. 2, pp. 655–681, June 2015.

[2] M. Macik, T. Cerny, and P. Slavik, “Context-sensitive, cross-platform
user interface generation,” Journal on Multimodal User Interfaces,
vol. 8, no. 2, pp. 217–229, 2014.

[3] T. Cerny, K. Cemus, M. J. Donahoo, and E. Song, “Aspect-driven, data-
reflective and context-aware user interfaces design,” Applied Computing
Review, vol. 13, no. 4, pp. 53–65, 2013.

[4] R. Kennard and J. Leaney, “Towards a general purpose architecture for
UI generation,” Journal of Systems and Software, vol. 83, no. 10, pp.
1896 – 1906, 2010.

[5] M. Schlee and J. Vanderdonckt, “Generative programming of graphical
user interfaces,” in Proceedings of the working conference on Advanced
visual interfaces, ser. AVI ’04. NY, USA: ACM, 2004, pp. 403–406.

[6] M. Karu, “A textual domain specific language for user interface
modelling,” in Emerging Trends in Computing, Informatics, Systems
Sciences, and Engineering, ser. Lecture Notes in Electrical Engineering.
Springer, 2013, vol. 151, pp. 985–996.

[7] R. Hanson and A. Tacy, GWT in Action: Easy Ajax with the Google
Web Toolkit. Greenwich, CT, USA: Manning Publications Co., 2007.

[8] A. Freeman, Pro AngularJS, 1st ed. Berkely, CA, USA: Apress, 2014.
[9] E. Burns and N. Griffin, JavaServer Faces 2.0, The Complete Reference,

1st ed. New York, NY, USA: McGraw-Hill, Inc., 2010.
[10] “Primefaces user interface framework,” http://primefaces.org, 2015.
[11] T. Cerny and M. J. Donahoo, “On separation of platform-independent

particles in user interfaces,” Cluster Computing, pp. 1–14, 2015.


